

30 Arduino
™

Projects for

the Evil Genius
™

Evil Genius™ Series

Bike, Scooter, and Chopper Projects for the Evil Genius

Bionics for the Evil Genius: 25 Build-it-Yourself Projects

Electronic Circuits for the Evil Genius, Second Edition: 64 Lessons with Projects

Electronic Gadgets for the Evil Genius: 28 Build-it-Yourself Projects

Electronic Sensors for the Evil Genius: 54 Electrifying Projects

50 Awesome Auto Projects for the Evil Genius

50 Green Projects for the Evil Genius

50 Model Rocket Projects for the Evil Genius

51 High-Tech Practical Jokes for the Evil Genius

46 Science Fair Projects for the Evil Genius

Fuel Cell Projects for the Evil Genius

Holography Projects for the Evil Genius

Mechatronics for the Evil Genius: 25 Build-it-Yourself Projects

Mind Performance Projects for the Evil Genius: 19 Brain-Bending Bio Hacks

MORE Electronic Gadgets for the Evil Genius: 40 NEW Build-it-Yourself Projects

101 Spy Gadgets for the Evil Genius

101 Outer Space Projects for the Evil Genius

123 PIC® Microcontroller Experiments for the Evil Genius

123 Robotics Experiments for the Evil Genius

125 Physics Projects for the Evil Genius

PC Mods for the Evil Genius: 25 Custom Builds to Turbocharge Your Computer

PICAXE Microcontroller Projects for the Evil Genius

Programming Video Games for the Evil Genius

Recycling Projects for the Evil Genius

Solar Energy Projects for the Evil Genius

Telephone Projects for the Evil Genius

30 Arduino Projects for the Evil Genius

22 Radio and Receiver Projects for the Evil Genius

25 Home Automation Projects for the Evil Genius

30 Arduino
™

Projects for

the Evil Genius
™

Simon Monk

New York Chicago San Francisco Lisbon London Madrid

Mexico City Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no

part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior

written permission of the publisher.

ISBN: 978-0-07-174134-7

MHID: 0-07-174134-8

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174133-0,

MHID: 0-07-174133-X.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use

names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designa-

tions appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To

contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Trademarks: McGraw-Hill, the McGraw-Hill Publishing logo, Evil Genius™, and related trade dress are trademarks or registered trademarks of The

McGraw-Hill companies and/or its affiliates in the United States and other countries and may not be used without written permission. All other trade-

marks are the property of their respective owners. The McGraw-Hill Companies is not associated with any product or vendor mentioned in this book.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical

error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not

responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use of this

work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may

not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or

sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any

other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE

ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY IN-

FORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY

WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FIT-

NESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet

your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else

for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for

the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect,

incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been

advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises

in contract, tort or otherwise.

mailto:bulksales@mcgraw-hill.com

To my late father, Hugh Monk, from whom I inherited a love for electronics.

He would have had so much fun with all this.

About the Author

Simon Monk has a bachelor’s degree in cybernetics and computer science and a doctorate

in software engineering. He has been an active electronics hobbyist since his school days,

and is an occasional author in hobby electronics magazines.

Contents

 Acknowledgments . ix

Introduction . xi

1 Quickstart . 1

 Powering Up . 1

 Installing the Software. 1

 Configuring Your Arduino Environment . 6

 Downloading the Project Software . 6

 Project 1 Flashing LED . 8

 Breadboard. 11

 Summary . 13

2 A Tour of Arduino . 15

 Microcontrollers. 15

 What’s on an Arduino Board? . 15

 The Arduino Family. 20

 The C Language. 21

 Summary . 25

3 LED Projects. 27

 Project 2 Morse Code S.O.S. Flasher . 27

 Loops . 29

 Arrays. 30

 Project 3 Morse Code Translator. 31

 Project 4 High-Brightness Morse Code Translator . 35

 Summary . 40

4 More LED Projects. 41

 Digital Inputs and Outputs. 41

 Project 5 Model Traffic Signal . 41

 Project 6 Strobe Light . 44

 Project 7 S.A.D. Light . 47

 Project 8 High-Powered Strobe Light . 52

 Random Number Generation. 55

 Project 9 LED Dice . 55

 Summary . 59

5 Sensor Projects . 61

 Project 10 Keypad Security Code . 61

 Rotary Encoders. 67

 Project 11 Model Traffic Signal Using a Rotary Encoder 68

 Sensing Light. 72

 Project 12 Pulse Rate Monitor. 73

vii

viii 30 Arduino Projects for the Evil Genius

Measuring Temperature .. 77

Project 13 USB Temperature Logger ... 77

Summary ... 83

6 Light Projects .. 85
Project 14 Multicolor Light Display .. 85

Seven-Segment LEDs ... 89

Project 15 Seven-Segment LED Double Dice ... 91

Project 16 LED Array ... 95

LCD Displays ... 101

Project 17 USB Message Board ... 102

Summary ... 105

7 Sound Projects ... 107
Project 18 Oscilloscope .. 107

Sound Generation ... 111

Project 19 Tune Player ... 112

Project 20 Light Harp ... 117

Project 21 VU Meter .. 120

Summary ... 124

8 Power Projects .. 125
Project 22 LCD Thermostat .. 125

Project 23 Computer-Controlled Fan ... 132

H-Bridge Controllers .. 134

Project 24 Hypnotizer ... 134

Servo Motors .. 138

Project 25 Servo-Controlled Laser ... 138

Summary ... 142

9 Miscellaneous Projects .. 145
Project 26 Lie Detector ... 145

Project 27 Magnetic Door Lock ... 148

Project 28 Infrared Remote .. 153

Project 29 Lilypad Clock .. 159

Project 30 Evil Genius Countdown Timer ... 163

Summary ... 168

10 Your Projects ... 169
Circuits ... 169

Components .. 171

Tools ..175

Project Ideas ... 179

Appendix Components and Supplies .. 181
Suppliers ... 181

Starter Kit of Components .. 185

Index ... 187

Acknowledgments

I WOULD LIKE to thank my sons, Stephen and Matthew Monk, for their interest and

encouragement in the writing of this book, their helpful suggestions, and their field testing

of projects. Also, I could not have written this book without Linda’s patience and support.

I am grateful to Chris Fitzer for the loan of his oscilloscope, and his good grace after I

broke it! I also thank all the “techies” at Momote for taking an interest in the project and

humoring me.

Finally, I would like to thank Roger Stewart and Joya Anthony at McGraw-Hill, who

have been extremely supportive and enthusiastic, and have been a pleasure to work with.

ix

This page intentionally left blank

Introduction

ARDUINO INTERFACE BOARDS provide the Evil

Genius with a low-cost, easy-to-use technology to

create their evil projects. A whole new breed of

projects can now be built that can be controlled

from a computer. Before long, the computer-

controlled, servo-driven laser will be complete and

the world will be at the mercy of the Evil Genius!

This book will show the Evil Genius how to

attach an Arduino board to their computer, to

program it, and to connect all manner of

electronics to it to create projects, including the

computer-controlled, servo-driven laser mentioned

earlier, a USB-controlled fan, a light harp, a USB

temperature logger, a sound oscilloscope, and

many more.

Full schematic and construction details are

provided for every project, and most can be built

without the need for soldering or special tools.

However, the more advanced Evil Genius may

wish to transfer the projects from a plug-in

breadboard to something more permanent, and

instructions for this are also provided.

So, What Is Arduino?

Well, Arduino is a small microcontroller board

with a USB plug to connect to your computer and

a number of connection sockets that can be wired

up to external electronics, such as motors, relays,

light sensors, laser diodes, loudspeakers,

microphones, etc. They can either be powered

through the USB connection from the computer or

from a 9V battery. They can be controlled from the

computer or programmed by the computer and

then disconnected and allowed to work

independently.

At this point, the Evil Genius might be

wondering which top secret government

organization they need to break into in order to

acquire one. Well, disappointingly, no evil deeds at

all are required to obtain one of these devices. The

Evil Genius needs to go no further than their

favorite online auction site or search engine. Since

the Arduino is an open-source hardware design,

anyone is free to take the designs and create their

own clones of the Arduino and sell them, so the

market for the boards is competitive. An official

Arduino costs about $30, and a clone often less

than $20.

The name “Arduino” is reserved by the original

makers. However, clone Arduino designs often

have the letters “duino” on the end of their name,

for example, Freeduino or DFRduino.

The software for programming your Arduino is

easy to use and also freely available for Windows,

Mac, and LINUX computers at no cost.

Arduino

Although Arduino is an open-source design for a

microcontroller interface board, it is actually rather

more than that, as it encompasses the software

development tools that you need to program an

Arduino board, as well as the board itself. There is

a large community of construction, programming,

electronics, and even art enthusiasts willing to

share their expertise and experience on the

Internet.

To begin using Arduino, first go to the Arduino

site (www.arduino.cc) and download the software

for Mac, PC, or LINUX. You can then either buy

an official Arduino by clicking the Buy An

xi

xii 30 Arduino Projects for the Evil Genius

Arduino button or spend some time with your

favorite search engine or an online auction site to

find lower-cost alternatives. In the next chapter,

step-by-step instructions are provided for installing

the software on all three platforms.

There are, in fact, several different designs of

Arduino board. These are intended for different

types of applications. They can all be programmed

from the same Arduino development software, and

in general, programs that work on one board will

work on all.

In this book we mostly use the Arduino

Duemilanove, sometimes called Arduino 2009,

which is an update of the popular board, the

Diecimila. Duemilanove is Italian for 2009, the

year of its release. The older Diecimila name

means 10,000 in Italian, and was named that after

10,000 boards had been manufactured. Most

compatible boards such as the Freeduino are based

on the Diecimila and Duemilanove designs.

Most of the projects in this book will work with

a Diecimila, Duemilanove, or their clone designs,

apart from one project that uses the Arduino

Lilypad.

When you are making a project with an

Arduino, you will need to download programs onto

the board using a USB lead between your

computer and the Arduino. This is one of the most

convenient things about using an Arduino. Many

microcontroller boards use separate programming

hardware to get programs into the microcontroller.

With Arduino, it’s all contained on the board itself.

This also has the advantage that you can use the

USB connection to pass data back and forth

between an Arduino board and your computer. For

instance, you could connect a temperature sensor

to the Arduino and have it repeatedly tell your

computer the temperature.

On the older Diecimila boards, you will find a

jumper switch immediately below the USB socket.

With the jumper fitted over the top two pins, the

board will receive its power from the USB

connection. When over the middle and bottom

pins, the board will be powered from an external

power supply plugged into the socket below. On

the newer Duemilanove boards, there is no such

jumper and the supply switches automatically from

USB to the 9V socket.

The power supply can be any voltage between

7 and 12 volts. So a small 9V battery will work

just fine for portable applications. Typically, while

you are making your project, you will probably

power it from USB for convenience. When you are

ready to cut the umbilical cord (disconnect the

USB lead), you will want to power the board

independently. This may be with an external power

adaptor or simply with a 9V battery connected to a

plug to fit the power socket.

There are two rows of connectors on the edges

of the board. The row at the top of the diagram is

mostly digital (on/off) pins, although any marked

with “PWM” can be used as analog outputs. The

bottom row of connectors has useful power

connections on the left and analog inputs on

the right.

These connectors are arranged like this so that

so-called “shield” boards can be plugged on to the

main board in a piggyback fashion. It is possible to

buy ready-made shields for many different

purposes, including:

■ Connection to Ethernet networks

■ LCD displays and touch screens

■ XBee (wireless data communications)

■ Sound

■ Motor control

■ GPS tracking

■ And many more

You can also use prototyping shields to create

your own shield designs. We will use these

Protoshields in some of our projects. Shields

usually have through connectors on their pins,

which means that you can stack them on top of

Introduction xiii

each other. So a design might have three layers: an

Arduino board on the bottom, a GPS shield on it,

and then an LCD display shield on top of that.

The Projects

The projects in this book are quite diverse. We

begin with some simple examples using standard

LEDs and also the ultra high-brightness Luxeon

LEDs.

In Chapter 5, we look at various sensor projects

for logging temperature and measuring light and

pressure. The USB connection to the Arduino

makes it possible to take the sensor readings in

these projects and pass them back to the computer,

where they can be imported into a spreadsheet and

charts drawn.

We then look at projects using various types of

display technology, including an alphanumeric

LCD message board (again using USB to get

messages from your computer), as well as seven-

segment and multicolor LEDs.

Chapter 7 contains four projects that use sound

as well as a simple oscilloscope. We have a simple

project to play tunes from a loudspeaker, and build

up to a light harp that changes the pitch and

volume of the sound by waving your hand over

light sensors. This produces an effect rather like

the famous Theremin synthesizer. The final project

in this chapter uses sound input from a

microphone. It is a VU meter that displays the

intensity of the sound on an LED display.

The final chapters contain a mixture of projects.

Among others, there is, as we have already

mentioned, an unfathomable binary clock using an

Arduino Lilypad board that indicates the time in an

obscure binary manner only readable by an Evil

Genius, a lie detector, a motor-controlled swirling

hypnotizer disk, and, of course, the computer-

controlled-servo-guided laser.

Most of the projects in this book can be

constructed without the need for soldering; instead

we use a breadboard. A breadboard is a plastic

block with holes in it with sprung metal

connections behind. Electronic components are

pushed through the holes at the front. These are

not expensive, and a suitable breadboard is also

listed in the appendix. However, if you wish to

make your designs more permanent, the book

shows you how to do that, too, using the

prototyping board.

Sources for all the components are listed in the

appendix, along with some useful suppliers. The

only things you will need in addition to these

components are an Arduino board, a computer,

some wire, and a piece of breadboard. The

software for all the projects is available for

download from www.arduinoevilgenius.com.

Without Further Ado

The Evil Genius is not noted for their patience, so

in the next chapter we will show you how to get

started with Arduino as quickly as possible. This

chapter contains all the instructions for installing

the software and programming your Arduino

board, including downloading the software for the

projects, so you will need to read it before you

embark on your projects.

In Chapter 2 we take a look at some of the

essential theory that will help you build the

projects described in this book, and go on to

design projects of your own. Most of the theory is

contained in this chapter, so if you are the kind of

Evil Genius who prefers to just make the projects

and find out how they work afterwards, you may

prefer, after reading Chapter 1, to just to pick a

project and start building. Then if you get stuck,

you can use the index or read some of the early

chapters.

http://www.arduinoevilgenius.com/

This page intentionally left blank

C H A P T E R 1

Quickstart

THIS IS A CHAPTER for the impatient Evil Genius.

Your new Arduino board has arrived and you are

eager to have it do something.

So, without further ado...

Powering Up

When you buy an Arduino Diecimila or

Duemilanove board, it is usually preinstalled with

a sample Blink program that will make the little

built-in LED flash. Figure 1-1 shows an Arduino-

compatible board with the LED lit.

The light-emitting diode (LED) marked L is

wired up to one of the digital input-output sockets

on the board. It is connected to digital pin 13. This

really limits pin 13 to being used as an output, but

the LED only uses a small amount of current, so

you can still connect other things to that connector.

All you need to do to get your Arduino up and

running is supply it with some power. The easiest

way to do this is to plug in it into the Universal

Serial Bus (USB) port on your computer. You will

need a type A-to-type B USB lead. This is the

same type of lead that is normally used to connect

a computer to a printer.

If you are using the older Arduino Diecimila

board, make sure that the power jumper is in the

USB position (see Figure 1-1). The jumper should

connect together the two top pins to allow the

board to be powered from the USB. The newer

Arduino Duemilanove boards do not have this

jumper and select the power source automatically.

If everything is working okay, the LED should

blink once every two seconds. The reason that new

Arduino boards have this Blink sketch already

installed is to verify that the board works. If your

board does not start to blink when connected,

check the position of the power jumper (if it has

one) and try a different USB socket, possibly on a

different computer, as some USB sockets are

capable of supplying more power than others.

Also, clicking the Reset button should cause the

LED to flicker momentarily. If this is the case, but

the LED does not flash, then it may just be that the

board has not been programmed with the Flash

sketch; but do not despair, as once everything is

installed, we are going to modify and install that

script anyway as our first project.

Installing the Software

Now we have our Arduino working, let’s get the

software installed so that we can alter the Blink

program and send it down to the board. The exact

procedure depends on what operating system you

use on your computer. But the basic principle is

the same for all.

Install the USB driver that allows the computer

to talk to the Arduino’s USB port. It uses this for

programming and sending messages.

1

2 30 Arduino Projects for the Evil Genius

Install the Arduino development environment,

which is the program that you run on your

computer that enables you to write sketches and

download them to the Arduino board.

The Arduino website (www.arduino.cc) contains

the latest version of the software.

Installation on Windows

Follow the download link on the Arduino home

page (www.arduino.cc) and select the download

for Windows. This will start the download of the

Zip archive containing the Arduino software, as

shown in Figure 1-2. You may well be

downloading a more recent version of the software

than the version 17 shown. This should not matter,

but if you experience any problems, refer back to

the instructions on the Arduino home page.

The Arduino software does not distinguish

between different versions of Windows. The

download should work for all versions, from

Windows XP onwards. The following instructions

Select the Save option from the dialog, and save

the Zip file onto your desktop. The folder

contained in the Zip file will become your main

Arduino directory, so now unzip it into C:\Program

Files\Arduino.

You can do this in Windows XP by right-

clicking the Zip file to show the menu in Figure

1-3 and selecting the Extract All option. This will

open the Extraction Wizard, shown in Figure 1-4.

are for Windows XP.
Figure 1-2 Downloading the Arduino software

for Windows.

Figure 1-1 A powered-up Arduino board with LED lit.

Chapter 1 Quickstart 3 ■

Click Next and then modify the folder to extract

files to C:\Program Files\Arduino as shown in

Figure 1-5. Then click Next again.

This will create a new directory for this version

of Arduino (in this case, 17) in the folder

C:\Program Files\Arduino. This allows you to have

multiple versions of Arduino installed at the same

time, each in its own folder. Updates of Arduino

are fairly infrequent and historically have always

kept compatibility with earlier versions of the

software. So unless there is a new feature of the

software that you want to use, or you have been

having problems, it is by no means essential to

keep up with the latest version.

Now that we have got the Arduino folder in the

right place, we need to install the USB drivers. We

let Windows do this for us by plugging in the

Arduino board to trigger the Windows Found New

Hardware Wizard shown in Figure 1-6.

Figure 1-4

Extracting the Arduino file in

Windows.

Figure 1-3

The Extract All menu option in

Windows.

Select the option No, Not This Time, and then

click Next.

On the next screen (Figure 1-7), click the option

to install from a specified location, enter or browse

to the location C:\Program Files\Arduino\arduino-

0017\drivers\FTDI USB Drivers, and then click

Next. Note that you will have to change 0017 in

the path noted if you download a different version.

The installation will then complete and you are

ready to start up the Arduino software itself. To do

this, go to My Computer, navigate to C:\Program

Figure 1-5 Setting the directory for extraction.

4 30 Arduino Projects for the Evil Genius

Figure 1-6

Windows Found New Hardware

Wizard.

Figure 1-7

Setting the location of the USB

drivers.

Files\Arduino\arduino-0017, and click the Arduino

icon, as shown in Figure 1-8. The Arduino

software will now start.

Note that there is no shortcut created for the

Arduino program, so you may wish to select the

Arduino program icon, right-click, and create a

shortcut that you can then drag to your desktop.

The next two sections describe this same

procedure for installing on Mac and LINUX

computers, so if you are a Windows user, you can

skip these sections.

Installation on Mac OS X

The process for installing the Arduino software on

the Mac is a lot easier than on the PC.

 Figure 1-8 Starting the Arduino software from Windows.

Chapter 1 Quickstart 5 ■

As before, the first step is to download the file.

In the case of the Mac, it is a disk image file. Once

downloaded, it will mount the disk image and open

a Finder window, as shown in Figure 1-9. The

Arduino application itself is installed in the usual

Mac way by dragging it from the disk image to

your Applications folder.

The disk image also contains two installer

packages for the USB drivers (see Figure 1-10). Be

sure to choose the package for your system

architecture. Unless you are using a Mac built

before March 2006, you will need to use the Intel

version rather than the PPC version.

When you run the installer, you can simply click

Continue until you come to the Select Disk screen,

where you must select the hard disk before

Figure 1-9

Installing the Arduino software on

Mac OS X.

clicking Continue. As this software installs a

kernel extension, it will prompt you to enter your

password before completing the installation.

You can now find and launch the Arduino

software in your Applications folder. As you are

going to use it frequently, you may wish to right-

click its icon in the dock and set it to Keep In

Dock.

You can now skip the next subsection, which is

for installation on LINUX.

Installation on LINUX

There are many different LINUX distributions, and

for the latest information, refer to the Arduino

home page. However, for most versions of LINUX,

installation is straightforward. Your LINUX will

 Figure 1-10 Installing the USB drivers on Mac OS X.

6 30 Arduino Projects for the Evil Genius

probably already have the USB drivers installed,

the AVR-GCC libraries, and the Java environment

that the Arduino software needs.

So, if you are lucky, all you will need to do is

download the TGZ file for the Arduino software

from the Arduino home page (www.arduino.cc),

extract it, and that is your working Arduino

directory.

If, on the other hand, you are unlucky, then as a

LINUX user, you are probably already adept at

finding support from the LINUX community for

setting up your system. The pre-requisites that you

will need to install are Java runtime 5 or later and

the latest AVR-GCC libraries.

Entering into Google the phrase “Installing

Arduino on SUSE LINUX,” or whatever your

distribution of LINUX is, will, no doubt, find you

lots of helpful material.

Configuring Your Arduino
Environment

Whatever type of computer you use, you should

now have the Arduino software installed on it. We

now need to make a few settings. We need to

specify the operating system name for the port that

is connected to the USB port for communicating

with the Arduino board, and we need to specify the

type of Arduino board that we are using. But first,

you need to connect your Arduino to your

computer using the USB port or you will not be

able to select the serial port.

The serial port is set from the Tools menu, as

shown in Figure 1-11 for the Mac and in Figure

1-12 for Windows—the list of ports for LINUX is

similar to the Mac.

If you use many USB or Bluetooth devices with

your Mac, you are likely to have quite a few

options in this list. Select the item in the list that

begins with “dev/tty.usbserial.”

On Windows, the serial port can just be set to

COM3.

From the Tools menu, we can now select the

board that we are going to use, as shown in Figure

1-13. If you are using the newer Duemilanove,

choose the first option. However, if you are using

the older Diecimila board, select the second

option.

Downloading the Project

Software

The software for all of these sketches is available

for download. The whole download is less than a

megabyte, so it makes sense to download the

software for all of the projects, even if you only

intend to use a few. To download them, browse to

www.arduinoevilgenius.com and click Downloads

at the top of the screen.

 Figure 1-11 Setting the serial port on the Mac.

http://www.arduinoevilgenius.com/

Chapter 1 Quickstart 7 ■

7

Figure 1-12 Setting the serial port on Windows.

Figure 1-13 Setting the board.

8 30 Arduino Projects for the Evil Genius

Click the evil_genius.zip link to download a Zip

file of all the projects. If you are using Windows,

unzip the file to My Documents\Arduino. On a

Mac and LINUX, you should unzip it to

Documents/Arduino in your home directory.

Once the files are installed, you will be able to

access them from the File | Sketchbook menu on

the Arduino software.

Project 1
Flashing LED

Having assumed that we have successfully

installed the software, we can now start on our first

exciting project. Actually, it’s not that exciting, but

we need to start somewhere, and this will ensure

that we have everything set up correctly to use our

Arduino board.

We are going to modify the example Blink

sketch that comes with Arduino. We will increase

the frequency of the blinking and then install the

modified sketch on our Arduino board. Rather than

blink slowly, our board will flash its LED quickly.

We will then take the project a stage further by

using a bigger external LED and resistor rather

than the tiny built-in LED.

Software

First, we need to load the Blink sketch into the

Arduino software. The Blink sketch is included as

an example when you install the Arduino

environment. So we can load it using the File

menu, as shown in Figure 1-14.

The majority of the text in this sketch is in the

form of comments. Comments are not actually part

of the program but explain what is going on in the

program to anyone reading the sketch.

Comments can be single-line comments that

start after a // and continue to the end of the line,

or they can be multiline comments that start with a

/* and end some lines later with a */.

If all the comments in a sketch were to be

removed, it would still work in exactly the same

way, but we use comments because they are useful

to anyone reading the sketch trying to work out

what it does.

Before we start, a little word about vocabulary

is required. The Arduino community uses the word

“sketch” in place of “program,” so from now on, I

will refer to our Arduino programs as sketches.

Occasionally I may refer to “code.” Code is

programmer speak for a section of a program or

even as a generic term for what is written when

creating a program. So, someone might say, “I

wrote a program to do that,” or they could say, “I

wrote some code to do that.”

To modify the rate at which the LED will blink,

we need to change the value of the delay so that in

the two places in the sketch where we have:

delay(1000);

COMPONENTS AND EQUIPMENT

Description Appendix

 Arduino Diecimila or

Duemilanove board or clone

1

D1 5-mm red LED 23

R1 270 K 0.5W metal film resistor 6

■ In actual fact, almost any commonly available

LED and 270 K resistor will be fine.

■ No tools other than a pair of pliers or wire

cutters are required.

■ The number in the Appendix column refers to

the component listing in the appendix, which

lists part numbers for various suppliers.

Chapter 1 Quickstart 9 ■

Figure 1-14

Loading the example Blink sketch.

change the value in the parentheses to 200 so that

it appears as:

This is changing the delay between turning the

LED on and off from 1000 milliseconds (1 second)

to 200 milliseconds (1/5th of a second). In Chapter

3 we will explore this sketch further, but for now,

we will just change the delay and download the

sketch to the Arduino board.

With the board connected to your computer,

click the Upload button on the Arduino. This is

shown in Figure 1-15. If everything is okay, there

will be a short pause and then the two red LEDs

on the board will start flashing away furiously as

the sketch is uploaded onto the board. This should

take around 5 to 10 seconds.

If this does not happen, check the serial port and

board type settings as described in the previous

sections.

When the completed sketch has been installed,

the board will automatically reset, and if

everything has worked, you will see the LED for

digital port 13 start to flash much more quickly

than before.

Figure 1-15 Uploading the sketch to the Arduino board.

delay(200);

Chapter 1 Quickstart 11 ■

Hardware

At the moment, this doesn’t really seem like

real electronics because the hardware is all

contained on the Arduino board. In this section, we

will add an external LED to the board.

LEDs cannot simply have voltage applied to

them; they must have a current-limiting resistor

attached. Both parts are readily available from any

electronics suppliers. The component order codes

for a number of suppliers are detailed in the

appendix.

The Arduino board connectors are designed to

attach “shield” plug-in boards. However, for

experimentation purposes, they also allow wires or

component leads to be inserted directly into the

sockets.

Figure 1-16 shows the schematic diagram for

attaching the external LED.

This kind of schematic diagram uses special

symbols to represent the electronic components.

The LED appears rather like an arrow, which

indicates that light-emitting diodes, in common

with all diodes, only allow the current to flow in

one direction. The little arrows next to the LED

symbol indicate that it emits light.

The resistor is just depicted as a rectangle.

Resistors are also often shown as a zigzag line.

The rest of the lines on the diagram represent

electrical connections between the components.

These connections may be lengths of wire or

tracks on a circuit board. In this case, they will just

be the wires of the components.

We can connect the components directly to the

Arduino sockets between the digital pin 12 and the

GND pin, but first we need to connect one lead of

the LED to one lead of the resistor.

It does not matter which lead of the resistor is

connected to the LED; however, the LED must be

connected the correct way. The LED will have one

lead slightly longer than the other, and it is the

longer lead that must be connected to digital pin

12 and the shorter lead that should be connected to

the resistor. LEDs and some other components

have the convention of making the positive lead

longer than the negative one.

To connect the resistor to the short lead of the

LED, gently spread the leads apart and twist the

short lead around one of the resistor leads, as

shown in Figure 1-17.

Then push the LED’s long lead into the digital

pin 12 and the free lead of the resistor into one of

Figure 1-16 Schematic diagram for an LED

connected to the Arduino board.

Figure 1-17 An LED connected to a serial

resistor.

10 30 Arduino Projects for the Evil Genius

Figure 1-18

An LED connected to the Arduino board.

the two GND sockets. This is shown in Figure 1-18.

Sometimes, it helps to bend a slight kink into the

end of the lead so that it fits more tightly into the

sockets.

We can now modify our sketch to use the

external LED that we have just connected. All we

need to do is change the sketch so that it uses

digital pin 12 instead of 13 for the LED. To do

this, we change the line:

to read:

Now upload the sketch by clicking the Upload

To IO Board button in the same way as you did

when modifying the flash rate.

Breadboard

Twisting together a few wires is not practical for

anything much more than a single LED. A

breadboard allows us to build complicated circuits

without the need for soldering. In fact, it is a good

idea to build all circuits on a breadboard first to get

the design right and then commit the design to

solder once everything is working.

A breadboard comprises a plastic block with

holes in it, with sprung metal connections behind.

Electronic components are pushed through the

holes at the front.

Underneath the breadboard holes, there are

strips of connectors, so each of the holes in a strip

are connected together. The strips have a gap

between them so that integrated circuits in dual-in-

line packaging can be inserted without leads on the

same row being shorted together.

int ledPin = 13;

// LED connected to digital pin 13

int ledPin = 12;

// LED connected to digital pin 12

Chapter 1 Quickstart 13 ■

We can build this project on a breadboard rather

than with twisted wires. Figure 1-19 shows a

photograph of this. Figure 1-20 makes it a little

easier to see how the components are positioned

and connected together.

You will notice that at the edges of the

breadboard (top and bottom), there are two long

horizontal strips. The connections on the back of

these long strips run at right angles to the normal

strips of connections and are used to provide

power to the components on the breadboard.

Normally, there is one for ground (0V or GND)

and one for the positive supply voltage (usually

5V). There are little linking wires between the left

and right halves of the GND strip, as on this

breadboard, as it does not go the whole width of

the board.

In addition to a breadboard, you will need some

solid-core wire and some wire strippers or pliers to

cut and remove the insulation from the ends of the

wire. It is a good idea to have at least three

different colors: red for all wires connected to the

positive side of the supply, black for negative, and

some other color (orange or yellow) for other

connections. This makes it much easier to

understand the layout of the circuit. You can also

buy prepared short lengths of solid-core wire in a

variety of colors. Note that it is not advisable to

use multicore wire, as it will tend to bunch up

when you try to push it into the breadboard holes.

Figure 1-19 Project 1 on breadboard.

Figure 1-20 Project 1 breadboard layout.

12 30 Arduino Projects for the Evil Genius

Possible sources of these materials are included

in the appendix.

We can straighten out the wires of our LED and

resistor and plug them into a breadboard. It is best

to use a reasonable-sized breadboard and attach the

Arduino board to it. You probably do not want to

attach the board permanently, so I use a small

lump of adhesive putty. However, you may find it

easier to dedicate one Arduino board to be your

design board and leave it permanently attached to

the breadboard.

Summary

We have created our first project, albeit a very

simple one. In the next chapter we will get a bit

more background on the Arduino before moving

on to some more interesting projects.

Chapter 1 Quickstart 13 ■

This page intentionally left blank

C H A P T E R 2

A Tour of Arduino

IN THIS CHAPTER, we look at the hardware of the

Arduino board and also of the microcontroller at

its heart. In fact, the board basically just provides

support to the microcontroller, extending its pins to

the connectors so that you can connect hardware to

them and providing a USB link for downloading

sketches, etc.

We also learn a few things about the C language

used to program the Arduino, something we will

build on in later chapters as we start on some

practical project work.

Although this chapter gets quite theoretical at

times, it will help you understand how your

projects work. However, if you would prefer just to

get on with your projects, you may wish to skim

this chapter.

Microcontrollers

The heart of our Arduino is a microcontroller.

Practically everything else on the board is

concerned with providing the board with power

and allowing it to communicate with your desktop

computer.

So what exactly do we get when we buy one of

these little computers to use in our projects?

The answer is that we really do get a little

computer on a chip. It has everything and more

than the first home computers had. It has a

processor, a kilobyte of random access memory

(RAM) for holding data, a few kilobytes of

erasable programmable read-only memory

(EPROM) or Flash memory for holding our

programs, and it has input and output pins. These

input/output pins are what link the microcontroller

to the rest of our electronics.

Inputs can read both digital (is the switch on or

off?) and analog (what is the voltage at a pin?).

This enables us to connect many different types of

sensors for light, temperature, sound, etc.

Outputs can also be analog or digital. So, you

can set a pin to be on or off (0V or 5V) and this

can turn LEDs on and off directly, or you can use

the output to control higher-power devices such as

motors. They can also provide an analog output

voltage. That is, you can set the output of a pin to

some particular voltage, allowing you to control

the speed of a motor or the brightness of a light,

for example, rather than simply turning it on or off.

What’s on an Arduino Board?

Figure 2-1 shows our Arduino board—or in this

case an Arduino clone. Let us have a quick tour of

the various components on the board.

15

16 30 Arduino Projects for the Evil Genius

Power Supply

Directly below the USB connector is the 5V

voltage regulator. This regulates whatever voltage

(between 7 and 12 volts) is supplied from the

power socket into a constant 5V.

5V (along with 3V, 6V, 9V, and 12V) is a bit of

a standard voltage in electronics. 3, 6, and 9V are

standard because the voltage that you get from a

single alkaline cell is 1.5V, and these are all

convenient multiples of 1.5V, which is what you

get when you make a “battery” of two, three, six,

or eight cells.

So if that is the case, you might be wondering

why 5V? You cannot make that using 1.5V cells.

Well, the answer lies in the fact that in the early

days of computing, a range of chips became

available, each of which contained logic gates.

These chips used something called TTL

(Transistor-Transistor Logic), which was a bit

fussy about its voltage requirements and required

something between 4.5V and 5.5V. So 5V became

the standard voltage for all digital electronics.

These days, the type of logic gates used in chips

has changed and they are far more tolerant of

different voltages.

The 5V voltage regulator chip is actually quite

big for a surface-mount component. This is so that

it can dissipate the heat required to regulate the

voltage at a reasonably high current, which is

useful when driving our external electronics.

Power Connections

Next, let us look at the connectors at the bottom of

Figure 2-1. You can read the connection names

next to the connectors.

The first is Reset. This does the same thing as

pressing the Reset button on the Arduino. Rather

like rebooting a PC, it resets the microcontroller,

beginning its program from the start. The Reset

connector allows you to reset the microcontroller

Figure 2-1 The components of an Arduino board.

Chapter 2 A Tour of Arduino 17 ■

by momentarily setting this pin high (connecting it

to +5V).

The rest of the pins in this section provide

different voltages (3.3, 5, GND, and 9), as labeled.

GND, or ground, just means zero volts. It is the

reference voltage to which all other voltages on the

board are relative.

At this point, it would be useful to remind the

reader about the difference between voltage and

current. There is no perfect analogy for the

behavior of electrons in a wire, but the author finds

an analogy with water in pipes to be helpful,

particularly in dealing with voltage, current, and

resistance. The relationship between these three

things is called Ohm’s Law.

Figure 2-2 summarizes the relationship

between voltage, current, and resistance. The left

side of the diagram shows a circuit of pipes,

where the top of the diagram is higher up (in

elevation) than the bottom of the diagram. So

water will naturally flow from the top of the

diagram to the bottom. Two factors determine

how much water passes any point in the circuit in

a given time (the current):

■ The height of the water (or if you prefer, the

pressure generated by the pump). This is like

voltage in electronics.

■ The resistance to flow offered by the

constriction in the pipework

The more powerful the pump, the higher the

water can be pumped and the greater the current

that will flow through the system. On the other

hand, the greater the resistance offered by the

pipework, the lower the current.

In the right half of Figure 2-2, we can see the

electronic equivalent of our pipework. In this case,

current is actually a measure of how many

electrons flow past a point per second. And yes,

resistance is the resistance to the flow of electrons.

Instead of height or pressure, we have a

concept of voltage. The bottom of the diagram is

at 0V, or ground, and we have shown the top of

the diagram as being at 5V. So the current that

flows (I) will be the voltage difference (5) divided

by the resistance R.

Ohm’s Law is usually written as V = IR.

Normally, we know what V is and are trying to

Figure 2-2 Ohm’s Law.

18 30 Arduino Projects for the Evil Genius

calculate R or I, so we can do a bit of rearranging

to have the more convenient I = V/R and R = V/I.

It is very important to do a few calculations

using Ohm’s Law when connecting things to your

Arduino, or you may damage it if you ask it to

supply too much current. Generally, though, the

Arduino boards are remarkably tolerant of

accidental abuse.

So, going back to our Arduino power pins, we

can see that the Arduino board will supply us with

useful voltages of 3.3V, 5V, and 9V. We can use

any of those supplies to cause a current to flow, as

long as we are careful not to make it a short circuit

(no resistance to flow), which would cause a

potentially large current to flow that could cause

damage. In other words, we have to make sure that

anything we connect to the supply has enough

resistance to prevent too much current from

flowing. As well as supplying a particular voltage,

each of those supply connections will have a

maximum current that can be allowed to flow.

Those currents are 50 mA (thousandths of an amp)

for the 3.3V supply, and although it is not stated in

the Arduino specification, probably around 300

mA for the 5V.

Analog Inputs

The next section of connections is labeled Analog

In 0 to 5. These six pins can be used to measure

the voltage connected to them so that the value can

be used in a sketch. Note that they measure a

voltage and not a current. Only a tiny current will

ever flow into them and down to ground because

they have a very large internal resistance.

Although labeled as analog inputs, these

connections can also be used as digital inputs or

outputs, but by default, they are analog inputs.

Digital Connections

We now switch to the top connector and start on

the right side (Figure 2-1). We have pins labeled

Digital 0 to 13. These can be used as either inputs

or outputs. When using them as outputs, they

behave rather like the supply voltages we talked

about earlier, except that these are all 5V and can

be turned on or off from our sketch. So, if we turn

them on from our sketch, they will be at 5V and if

we turn them off, they will be at 0V. As with the

supply connectors, we have to be careful not to

exceed their maximum current capabilities.

These connections can supply 40 mA at 5V.

That is more than enough to light a standard LED,

but not enough to drive an electric motor directly.

As an example, let us look at how we would

connect an LED to one of these digital

connections. In fact, let’s go back to Project 1 in

Chapter 1.

As a reminder, Figure 2-3 shows the schematic

diagram for driving the LED that we first used in

the previous chapter. If we were to not use a

resistor with our LED but simply connect the LED

between pin 12 and GND, then when we turned

digital output 12 on (5V), we might burn out the

LED, destroying it.

This is because LEDs have a very low resistance

and will cause a very high current to flow unless

they are protected from themselves by using a

resistor to limit the flow of current.

Figure 2-3 LED and series resistor.

Chapter 2 A Tour of Arduino 19 ■

An LED needs about 10 mA to shine reasonably

brightly. The Arduino can supply 50 mA, so there

is no problem there; we just need to choose a

sensible value of resistor.

LEDs have the interesting property that no

matter how much current flows through them,

there will always be about 2V between their pins.

We can use this fact and Ohm’s Law to work out

the right value of resistor to use.

We know that (at least when it’s on) the output

pin will be supplying 5V. Now, we have just said

that 2V will be “dropped” by our LED, leaving

3V (5 – 2) across our current-limiting resistor. We

want the current flowing around the circuit to be

10 mA, so we can see that the value for the

resistor should be

R = V/I

R = 3V/10 mA

R = 3V/0.01 A

R = 300 K

Resistors come in standard values, and the

closest value to 300 K is 270 K. This means that

instead of 10 mA, the current will actually be

I = V/R

I = 3/270

I = 11.111 mA

These things are not critical, and the LED

would probably be equally happy with anything

between 5 and 30 mA, so 270 K will work just

fine.

We can also set one of these digital connections

to be an input, in which case, it works rather like

an analog input, except that it will just tell us if the

voltage at a pin is above a certain threshold

(roughly 2.5V) or not.

Some of the digital connections (3, 5, 6, 9, 10,

and 11) have the letters PWM next to them. These

can be used to provide a variable output voltage

rather than a simple 5V or nothing.

On the left side of the top connector in Figure

2-1, there is another GND connection and a

connection called AREF. AREF can be used to

scale the readings for analog inputs. This is rarely

used and can safely be ignored.

Microcontroller

Getting back to our tour of the Arduino board, the

microcontroller chip itself is the black rectangular

device with 28 pins. This is fitted into a DIL

(dual in-line) socket so that it can be easily

replaced. The 28-pin microcontroller chip used on

Arduino Duemilanove is the ATmega328. Figure

2-4 is a block diagram showing the main features

of this device.

The heart, or perhaps more appropriately the

brain, of the device is the CPU (central processing

unit). It controls everything that goes on within the

device. It fetches program instructions stored in the

Flash memory and executes them. This might

involve fetching data from working memory

(RAM), changing it, and then putting it back. Or, it

may mean changing one of the digital outputs from

0 to 5 volts.

Figure 2-4 ATmega328 block diagram.

Chapter 2 A Tour of Arduino 21 ■

The electrically erasable programmable read-

only memory (EEPROM) memory is a little like

the Flash memory in that it is nonvolatile. That is,

you can turn the device off and on and it will not

have forgotten what is in the EEPROM. Whereas

the Flash memory is intended for storing program

instructions (from sketches), the EEPROM is used

to store data that you do not want to lose in the

event of a reset or power failure.

The older Diecimila uses the ATmega168,

which functions in an identical way to the

ATmega328 except that it has half the amount of

every sort of memory. It has 16KB of Flash

memory, 1KB of RAM, and 512 bytes of

EEPROM.

Other Components

Above the microcontroller there is a small, silver,

rectangular component. This is a quartz crystal

oscillator. It “ticks” 16 million times a second, and

on each of those ticks, the microcontroller can

perform one operation—an addition, subtraction, etc.

To the right of the crystal, is the Reset switch.

Clicking this sends a logic pulse to the Reset pin

of the microcontroller, causing the microcontroller

to start its program afresh and clear its memory.

Note that any program stored on the device will be

retained because this is kept in nonvolatile Flash

memory—that is, memory that remembers even

when the device is not powered.

To the right of the Reset button is the serial

programming connector. It offers another means of

programming the Arduino without using the USB

port. Since we do have a USB connection and

software that makes it convenient to use, we will

not avail ourselves of this feature.

In the top left of the board next to the USB

socket is the USB interface chip. This converts the

signal levels used by the USB standard to levels

that can be used directly by the Arduino board.

The Arduino Family

It’s useful to have a little background on the

Arduino boards. We will be using the Duemilanove

for most of our projects; however, we will also

dabble with the interesting Lilypad Arduino.

The Lilypad (Figure 2-5), is a tiny, thin Arduino

board that can be stitched into clothing for

applications that have become known as wearable

computing. It does not have a USB connection,

and you must use a separate adaptor to program it.

This is an exceptionally beautiful design. Inspired

by its clocklike appearance, we will use this in

Project 29 (Unfathomable Binary Clock).

At the other end of the spectrum is the Arduino

Mega. This board has a faster processor with more

memory and a greater number of input/output pins.

Cleverly, the Arduino Mega can still use shields

built for the smaller Arduino Diecimila and

Duemilanove boards, which sit at the front of the

board, allowing access to the double row of

connectors for the Mega’s additional connections

at the rear. Only the most demanding of projects

really need an Arduino Mega.

Figure 2-5 Arduino Lilypad.

20 30 Arduino Projects for the Evil Genius

The C Language

Many languages are used to program

microcontrollers, from hard-core Assembly

language to graphical programming languages like

Flowcode. Arduino sits somewhere in between

these two extremes and uses the C programming

language. It does, however, wrap up the C

language, hiding away some of the complexity.

This makes it easy to get started.

The C language is, in computing terms, an old

and venerable language. It is well suited to

programming the microcontroller because it was

invented at a time when compared to today’s

monsters, the typical computer was quite poorly

endowed.

C is an easy language to learn, yet compiles into

efficient machine code that only takes a small

amount of room in our limited Arduino memory.

An Example

We are now going to examine the sketch for

Project 1 in a bit more detail. The listing for this

sketch to flash an LED on and off is shown here.

We have ignored all the lines that begin with // or

blocks of lines that start with /* and end with */

because these are comment lines that have no

effect on the program and are just there for

information.

It is standard practice to include such text at the

top of any program file. You can also include

comments that describe a tricky bit of code, or

anything that requires some explanation.

The Arduino development environment uses

something called a compiler that converts the

script into the machine code that will run on the

microcontroller.

So, moving onto the first real line of code, we

have:

This line of code gives a name to the digital

output pin that we are going to connect to the

LED. If you look carefully at your Arduino board,

you will see the connector for pin 13 between

GND and pin 12 on the Arduino’s top connector.

The Arduino board has a small green LED already

soldered onto the board and connected to pin 13.

We are going to change the voltage of this pin to

between 0V and 5V to make the LED flash.

We are going to use a name for the pin so that

it’s easy to change it and use a different one. You

can see that we refer to “ledPin” later in the

sketch. You may prefer to use pin 12 and the

external LED that you used with your breadboard

in Chapter 1. But for now, we will assume that you

are using the built-in LED attached to pin 13.

You will notice that we did not just write:

That is because compilers are kind of fussy and

precise about how we write our programs. Any

name we use in a program cannot use spaces, so it

is a convention to use what is called “bumpy case.”

led pin = 13

digitalWrite(ledPin, LOW);

// set the LED off

delay(1000);

// wait for a second

}

int ledPin = 13;

int ledPin = 13;

// LED connected to digital pin 13

void setup()

{

pinMode(ledPin, OUTPUT);

}

void loop()

{

digitalWrite(ledPin, HIGH);

// set the LED on

delay(1000);

// wait for a second

22 30 Arduino Projects for the Evil Genius

So, we start each word (apart from the first) with

an uppercase letter and remove the space; that

gives us:

The next lines of the sketch are

The word ledPin is what is termed a variable.

When you want to use a variable for the first time

in a sketch, you have to tell the compiler what type

of variable it is. It may be an int, as is the case

here, or a float, or a number of other types that we

will describe later in this chapter.

An int is an integer—that is, a whole number—

which is just what we need when referring to a

particular pin on the Arduino. There is, after all, no

pin 12.5, so it would not be appropriate to use a

floating point number (float).

The syntax for a variable declaration is

So first we have the type (int), then a space,

then a variable name in bumpy case (ledPin), then

an equal sign, then a value, and finally a semicolon

to indicate the end of the line:

This is what is called a function, and in this

case, the function is called setup. Every sketch

must contain a setup function, and the lines of

code inside the function surrounded by curly

brackets will be carried out in the order that they

are written. In this case, that is just the line starting

with pinMode.

A good starting point for any new project is to

copy this example project and then alter it to your

needs.

We will not worry too much about functions at

this stage, other than to say that the setup function

will be run every time the Arduino is reset,

including when the power is first turned on. It will

also be run every time a new sketch is

downloaded.

In this case, the only line of code in setup is

As I mentioned, the compiler is fussy, so if you

forget the semicolon, you will receive an error

message when you compile the sketch. Try

removing the semicolon and clicking the Play

button. You should see a message like this:

It’s not exactly “you forgot a semicolon,” and it

is not uncommon for error messages to be

similarly misleading.

The first thing to mention is that we have a

different type of comment on the end of this line.

That is, the single-line comment. This begins with

a // and ends at the end of the line.

The line can be thought of as a command to the

Arduino to use the ledPin as a digital output. If we

had a switch connected to ledPin, we could set it

as an input using:

However, we would call the variable something

more appropriate, like switchPin.

ledPin = 13

void setup()

// run once, when the sketch starts

{

pinMode(ledPin, OUTPUT);

// sets the digital pin as output

}

type variableName = value;

int ledPin = 13;

pinMode(ledPin, OUTPUT);

// sets the digital pin as output

error: expected unqualified-id before

numeric constant

pinMode(ledPin, INPUT);

Chapter 2 A Tour of Arduino 23 ■

The words INPUT and OUTPUT are what are

called constants. They will actually be defined

within C to be a number. INPUT may be defined

as 0 and OUPUT as 1, but you never need to

actually see what number is used, as you always

refer to them as INPUT or OUTPUT. Later in this

chapter, we will see two more constants, HIGH

and LOW, that are used when setting the output of

a digital pin to +5V or 0V, respectively.

The next section of code is another function that

every Arduino sketch must have; it is called loop:

The function loop will be run continuously until

the Arduino is powered down. That is, as soon as it

finishes executing the commands it contains, it will

begin again. Remember that an Arduino board is

capable of running 16 million commands per

second, so things inside the loop will happen

frequently if you let them.

In this case, what we want the Arduino to keep

doing continuously is to turn the LED on, wait a

second, turn the LED off, and then wait another

second. When it has finished doing this, it will

begin again, turning the LED on. In this way it will

go round the loop forever.

By now, the command syntax for digitalWrite

and delay will be becoming more familiar.

Although we can think of them as commands that

are sent to the Arduino board, they are actually

functions just like setup and loop, but in this case

they have what are called parameters. In the case

of digitalWrite, it is said to take two parameters:

the Arduino pin to write to and the value to write.

In our example, we pass the parameters of

ledPin and HIGH to turn the LED on and then

ledPin and LOW to turn it off again.

Variables and Data Types

We have already met the variable ledPin and

declared it to be of type int. Most of the variables

that you use in your sketches are also likely to be

ints. An int holds an integer number between

–32,768 and +32,767. This uses just two bytes of

data for each number stored from the 1024

available bytes of storage on an Arduino. If that

range is not enough, you can use a long, which

uses four bytes for each number and will give you

a range of numbers from –2,147,483,648 to

+2,147,483,647.

Most of the time, an int represents a good

compromise between precision and use of memory.

If you are new to programming, I would use ints

for almost everything and gradually expand your

repertoire of data types as your experience grows.

Other data types available to you are

summarized in Table 2-1.

One thing to consider is that if data types

exceed their range, strange things happen. So if

you have a byte variable with 255 in it and you

add 1 to it, you get 0. More alarmingly, if you have

an int variable with 32,767 and you add 1 to it, you

will end up with –32,768.

Until you are completely happy with these

different data types, I would recommend sticking

to int, as it works for practically everything.

Arithmetic

It is fairly uncommon to need to do much in the

way of arithmetic in a sketch. Occasionally, you

will need to do a bit of scaling of, say, an analog

void loop()

{

digitalWrite(ledPin, HIGH);

// sets the LED on

delay(1000);

// waits for a second

digitalWrite(ledPin, LOW);

// sets the LED off

delay(1000);

// waits for a second

}

24 30 Arduino Projects for the Evil Genius

TABLE 2-1 Data Types in C

Type Memory (bytes) Range Notes

boolean 1 true or false (0 or 1)

char 1 –128 to +128 Used to represent an ASCII

character code (e.g., A is

represented as 65). Its negative

numbers are not normally used.

byte 1 0 to 255

int 2 –32,768 to +32,767

unsigned int 2 0 to 65,536 Can be used for extra precision

where negative numbers are not

needed. Use with caution, as

arithmetic with ints may cause

unexpected results.

long 4 –2,147,483,648 to

2,147,483,647

Needed only for representing very

large numbers.

unsigned long 4 0 to 4,294,967,295 See unsigned int.

float 4 –3.4028235E+38 to

+ 3.4028235E+38

double 4 as float Normally, this would be eight bytes

and higher precision than float with

a greater range. However, on

Arduino, it is the same as float.

input to turn it into a temperature, or more

typically, add 1 to a counter variable.

When you are performing some calculation, you

need to be able to assign the result of the

calculation to a variable.

The following lines of code contain two

assignments. The first gives the variable y the

value 50 and the second gives the variable x the

value of y + 100.

Strings

When programmers talk of Strings, they are

referring to a string of characters such as the

much-used message “Hello World.” In the world of

Arduino, there are a couple of situations where you

might want to use Strings: when writing messages

to an LCD display or sending back serial text data

over the USB connection.

Strings are created using the following syntax:

The char* word indicates that the variable

message is a pointer to a character. For now, we do

not need to worry too much about how this works.

We will meet this later in the book when we look

at interfacing with textual LCD displays.

Conditional Statements

Conditional statements are a means of making

decisions in a sketch. For instance, your sketch

may turn the LED on if the value of a temperature

variable falls below a certain threshold.

char* message = "Hello World";

y = 50;

x = y + 100;

Chapter 2 A Tour of Arduino 25 ■

The code for this is shown here:

The line or lines of code inside the curly braces

will only be executed if the condition after the if

keyword is true.

The condition has to be contained in

parentheses, and is what programmers call a

logical expression. A logical expression is like a

mathematical sentence that must always return one

of two possible values: true or false.

The following expression will return true if the

value in the temperature variable is less than 15:

As well as <, you have: >, <=, and >=.

To see if two numbers are equal, you can use ==

and to test if they are not equal, you can use !=.

So the following expression would return true if

the temperature variable had a value that was

anything except 15:

You can also make complex conditions using

what are called logical operators. The principal

operators being && (and) and || (or).

So an example that turned the LED on if the

temperature was less than 15 or greater than 20

might look like this:

Often, when using an if statement, you want to

do one thing if the condition is true and a different

thing if it is false. You can do this by using the else

keyword, as shown in the following example. Note

the use of nested parentheses to make it clear what

is being or’d with what.

Summary

In this chapter, we have explored the hardware

provided by the Arduino and refreshed our

knowledge of a little elementary electronics.

We have also started our exploration of the C

programming language. Don’t worry if you found

some of this hard to follow. There is a lot to take in

if you are not familiar with electronics, and while

the author’s goal is to explain how everything

works, you are completely at liberty to simply start

on the projects first and come back to the theory

when you are ready.

In the next chapter we will get to grips with

programming our Arduino board and embark on

some more serious projects.

if ((temperature < 15) || (temperature

> 20))

{

digitalWrite(ledPort, HIGH);

}

if ((temperature < 15) || (temperature

> 20))

{

digitalWrite(ledPort, HIGH);

}

else

{

digitalWrite(ledPort, LOW);

}

if (temperature < 15)

{

digitalWrite(ledPort, HIGH);

}

(temperature < 15)

(temperature != 15)

26 30 Arduino Projects for the Evil Genius

This page intentionally left blank

C H A P T E R 3

LED Projects

IN THIS CHAPTER, we are going to start building

some LED-based projects. We will keep the

hardware fairly simple so that we can concentrate

on the programming of the Arduino.

Programming microcontrollers can be a tricky

business requiring an intimate knowledge of the

inner workings of the device: fuses, registers, etc.

This is, in part, because modern microcontrollers

are almost infinitely configurable. Arduino

standardizes its hardware configuration, which, in

return for a small loss of flexibility, makes the

devices a great deal easier to program.

Project 2
Morse Code S.O.S. Flasher

Morse code used to be a vital method of

communication in the 19th and 20th centuries. Its

coding of letters as a series of long and short dots

meant that it could be sent over telegraph wires,

over a radio link, and using signaling lights. The

letters S.O.S. (Save Our Souls) is still recognized

as an international signal of distress.

In this project, we will make our LED flash the

sequence S.O.S. over and over again.

For this project, you will need just the same

components as for Project 1.

Hardware

The hardware is exactly the same as Project 1. So,

you can either just plug the resistor and LED

directly into the Arduino connectors or use a

breadboard (see Chapter 1).

Software

Rather than start typing this project in from

scratch, we will use Project 1 as a starting point.

So if you have not already done so, please

complete Project 1.

If you have not already done so, download the

project code from www.arduinoevilgenius.com;

then you can also just load the completed sketch

for Project 1 from your Arduino Sketchbook and

download it to the board (see Chapter 1). However,

27

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 5-mm red LED 23

R1 270 K 0.5W metal film resistor 6

■ Almost any commonly available LED and 270

K resistor will be fine.

■ No tools other than a pair of pliers or wire

cutters are required.

Chapter 3 LED Projects 29 ■

it will help you understand Arduino better if you

modify the sketch from Project 1 as suggested

next.

Modify the loop function of Project 1 so that it

now appears as shown here. Note that copy and

paste is highly recommended in this kind of

situation:

This would all work, and feel free to try it;

however, we are not going to leave it there. We are

going to alter our sketch to improve it, and at the

same time make it a lot shorter.

We can reduce the size of the sketch by creating

our own function to replace the four lines of code

involved in any flash with one line.

After the loop function’s final curly brace, add

the following code:

Now modify the loop function so that it looks

like this:

void flash(int duration)

{

digitalWrite(ledPin, HIGH);

delay(duration);

digitalWrite(ledPin, LOW);

delay(duration);

}

void loop()

{

flash(200); flash(200); flash(200);

// S

delay(300);

// otherwise the flashes run

together

flash(500); flash(500); flash(500);

// O

flash(200); flash(200); flash(200);

// S

delay(1000);

// wait 1 second before we start

again

}

delay(200);

digitalWrite(ledPin, HIGH);

// third dot

delay(200);

digitalWrite(ledPin, LOW);

delay(1000);

// wait 1 second before we start

again

} void loop()

{

digitalWrite(ledPin, HIGH);

// S (...) first dot

delay(200);

digitalWrite(ledPin, LOW);

delay(200);

digitalWrite(ledPin, HIGH);

// second dot

delay(200);

digitalWrite(ledPin, LOW);

delay(200);

digitalWrite(ledPin, HIGH);

// third dot

delay(200);

digitalWrite(ledPin, LOW);

delay(500);

digitalWrite(ledPin, HIGH);

// O (—-) first dash

delay(500);

digitalWrite(ledPin, LOW);

delay(500);

digitalWrite(ledPin, HIGH);

// second dash

delay(500);

digitalWrite(ledPin, LOW);

delay(500);

digitalWrite(ledPin, HIGH);

// third dash

delay(500);

digitalWrite(ledPin, LOW);

delay(500);

digitalWrite(ledPin, HIGH);

// S (...) first dot

delay(200);

digitalWrite(ledPin, LOW);

delay(200);

digitalWrite(ledPin, HIGH);

// second dot

delay(200);

digitalWrite(ledPin, LOW);

28 30 Arduino Projects for the Evil Genius

The whole final listing is shown in Listing

Project 2.

This makes the sketch a lot smaller and a lot

easier to read.

Putting It All Together

That concludes Project 2. We will now cover some

more background on programming the Arduino

before we go on to look at Project 3, where we

will use our same hardware to write a Morse code

translator, where we can type sentences on our

computer and have them flashed as Morse code. In

Project 4, we will improve the brightness of our

flashing by replacing our red LED with a high-

power Luxeon-type LED.

But first, we need a little more theory in order

to understand Projects 3 and 4.

Loops

Loops allow us to repeat a group of commands a

certain number of times or until some condition is

met.

In Project 2, we only want to flash three dots for

an S, so it is no great hardship to repeat the flash

command three times. However, it would be far

less convenient if we needed to flash the LED 100

or 1000 times. In that case we can use the for

language command in C.

The for loop is a bit like a function that takes

three arguments, although here, those arguments

are separated by semicolons rather than the usual

LISTING PROJECT 2

int ledPin = 13;

void setup()

{

pinMode(ledPin,

OUTPUT);

}

// run once, when the sketch starts

// sets the digital pin as output

void loop()

{

flash(200);

delay(300);

flash(500);

flash(200);

delay(1000);

}

flash(200); flash(200);

flash(500);

flash(200);

flash(500);

flash(200);

// S

// otherwise the flashes run together

// O

// S

// wait 1 second before we start again

void flash(int duration)

{

digitalWrite(ledPin,

HIGH); delay(duration);

digitalWrite(ledPin, LOW);

delay(duration);

}

for (int i = 0; i < 100; i ++)

{

flash(200);

}

Chapter 3 LED Projects 39 ■

commas. This is just a quirk of the C language.

The compiler will soon tell you when you get it

wrong.

The first thing in the parentheses after “for” is a

variable declaration. This specifies a variable to be

used as a counter variable and gives it an initial

value—in this case, 0.

The second part is a condition that must be true

for us to stay in the loop. In this case, we will stay

in the loop as long as “i” is less than 100, but as

soon as “i” is 100 or more, we will stop doing the

things inside the loop.

The final part is what to do every time you have

done all the things in the loop. In this case, that is

increment “i” by 1 so that it can, after 100 trips

around the loop, cease to be less than 100 and

cause the loop to exit.

Another way of looping in C is to use the while

command. The same example shown previously

could be accomplished using a while command,

as shown here:

contrast, an array contains a list of values, and you

can access any one of those values by its position

in the list.

C, in common with the majority of programming

languages, begins its index positions at 0 rather

than 1. This means that the first element is actually

element zero.

To illustrate the use of arrays, we could change

our Morse code example to use an array of flash

durations. We can then use a for loop to step

through each of the items in the array.

First let’s create an array of ints containing the

durations:

You indicate that a variable contains an array by

placing [] after the variable name. If you are

setting the contents of the array at the same time

you are defining it, as in the previous example, you

do not need to specify the size of the array. If you

are not setting its initial contents, then you need to

specify the size of the array inside the square

brackets. For example:

The expression in parentheses after while must

be true to stay in the loop. When it is no longer

true, the sketch will continue running the

commands after the final curly brace.

The curly braces are used to bracket together a

group of commands. In programming parlance,

they are known as a block.

Arrays

Arrays are a way of containing a list of values.

The variables we have met so far have only

contained a single value, usually an int. By

Now we can modify our loop method to use the

array:

int durations[10];

int durations[] = {200, 200, 200, 500,

500, 500, 200, 200, 200}

int i = 0;

while (i < 100)

{

flash(200);

i ++;

}

void loop()

// run over and over again

{

for (int i = 0; i < 9; i++)

{

flash(durations[i]);

}

delay(1000);

// wait 1 second before we start

// again

}

30 30 Arduino Projects for the Evil Genius

An obvious advantage of this approach is that it

is easy to change the message by simply altering

the durations array. In Project 3, we will take the

use of arrays a stage further to make a more

general-purpose Morse code flasher.

Project 3
Morse Code Translator

In this project, we are going to use the same

hardware as for Projects 1 and 2, but we are going

to write a new sketch that will let us type in a

sentence on our computer and have our Arduino

board convert that into the appropriate Morse code

dots and dashes.

Figure 3-1 shows the Morse code translator in

action. The contents of the message box are being

flashed as dots and dashes on the LED.

To do this, we will make use of what we have

learned about arrays and strings, and also learn

something about sending messages from our

computer to the Arduino board through the USB

cable.

For this project, you will need just the same

components as for Project 1 and 2. In fact, the

hardware is exactly the same; we are just going to

modify the sketch of Project 1.

COMPONENTS AND EQUIPMENT

Description Appendix A

Arduino Diecimila or

Duemilanove board or clone 1

D1 5-mm Red LED 23

R1 270  0.5W metal film resistor 6

Hardware

Please refer back to Project 1 for the hardware

construction for this project.

You can either just plug the resistor and LED

directly into the Arduino connectors, or use the

 Figure 3-1 Morse code translator.

32 30 Arduino Projects for the Evil Genius

breadboard (see Chapter 1). You can even just

change the ledPin variable in the sketch to be pin

13 so that you use the built-in LED and do not

need any external components at all.

Software

The letters in Morse code are shown in Table 3-1.

Some of the rules of Morse code are that a dash

is three times as long as a dot, the time between

each dash or dot is equal to the duration of a dot,

the space between two letters is the same length as

a dash, and the space between two words is the

same duration as seven dots.

For the sake of this project, we will not worry

about punctuation, although it would be an

interesting exercise for you to try adding this to the

sketch. For a full list of all the Morse characters,

see http://en.wikipedia.org/wiki/Morse_code.

The sketch for this is shown in Listing Project 3.

An explanation of how it all works follows.

LISTING PROJECT 3

int ledPin = 12;

char* letters[] = {

".-", "-...", "-.-.", "-..", ".", "..-.", "--.", "....", "..", // A-I

".---", "-.-", ".-..", "--", "-.", "---", ".--.", "--.-", ".-.", // J-R

"...", "-", "..-", "...-", ".--", "-..-", "-.--", "--.." // S-Z

};

char* numbers[] = {"-----", ".----", "..---", "...--", "....-", ".....", "-....",

"--...", "---..", "----."};

int dotDelay = 200;

void setup()

{

pinMode(ledPin, OUTPUT);

Serial.begin(9600);

}

void loop()

{

char ch;

if (Serial.available()) // is there anything to be read from USB?

TABLE 3-1 Morse Code Letters

A .- N -. 0 ——-

B -… O —- 1 .——

C -.-. P .--. 2 ..---

D -.. Q --.- 3 …--

E . R .-. 4 ….-

F ..-. S … 5 …..

G --. T - 6 -….

H …. U ..- 7 --…

I .. V …- 8 ---..

J .--- W .-- 9 ----.

K -.- X -..-

L .-.. Y -.--

M -- Z --..

http://en.wikipedia.org/wiki/Morse_code

Chapter 3 LED Projects 33 ■

LISTING PROJECT 3 (continued)

{

ch = Serial.read(); // read a single letter

if (ch >= 'a' && ch <= 'z')

{

flashSequence(letters[ch - 'a']);

}

else if (ch >= 'A' && ch <= 'Z')

{

flashSequence(letters[ch - 'A']);

}

else if (ch >= '0' && ch <= '9')

{

flashSequence(numbers[ch - '0']);

}

else if (ch == ' ')

{

delay(dotDelay * 4); // gap between words

}

}

}

void flashSequence(char* sequence)

{

int i = 0;

while (sequence[i] != NULL)

{

flashDotOrDash(sequence[i]);

i++;

}

delay(dotDelay * 3); // gap between letters

}

void flashDotOrDash(char dotOrDash)

{

digitalWrite(ledPin, HIGH);

if (dotOrDash == '.')

{

delay(dotDelay);

}

else // must be a -

{

delay(dotDelay * 3);

}

digitalWrite(ledPin, LOW);

delay(dotDelay); // gap between flashes

}

34 30 Arduino Projects for the Evil Genius

We keep track of our dots and dashes using

arrays of strings. We have two of these, one for

letters and one for numerals. So to find out what

we need to flash for the first letter of the alphabet

(A), we will get the string letters[0]—remember,

the first element of an array is element 0, not

element 1.

The variable dotDelay is defined, so if we want

to make our Morse code flash faster or slower, we

can change this value, as all the durations are

defined as multiples of the time for a dot.

The setup function is much the same as for our

earlier projects; however, this time we are getting

communications from the USB port, so we must

add the command:

 Serial.begin(9600);

This tells the Arduino board to set the

communications speed through USB to be 9600

baud. This is not very fast, but fast enough for our

Morse code messages. It is also a good speed to set

it to because that is the default speed used by the

Arduino software on your computer.

In the loop function, we are going to repeatedly

see if we have been sent any letters over the USB

connection and if we have to process the letter. The

Arduino function Serial.available() will be true if

there is a character to be turned into Morse code

and the Serial.read() function will give us that

character, which we assign to a variable called

“ch” that we defined just inside the loop.

We then have a series of if statements that

determine whether the character is an uppercase

letter, a lowercase letter, or a space character

separating two words. Looking at the first if

statement, we are testing to see if the character’s

value is greater than or equal to “a” and less than

or equal to “z.” If that is the case, we can find the

sequence of dashes and dots to flash using the

letter array that we defined at the top of the sketch.

We determine which sequence from the array to

use by subtracting “a” from the character in ch.

At first sight, it might look strange to be

subtracting one letter from another, but it is

perfectly acceptable to do this in C. So, for

example, “a” - “a” is 0, whereas “d” - “a” will give

us the answer 3. So, if the letter that we read from

the USB connections was f, we will calculate “f” -

“a,” which gives us 5 as the position of the letters

array. Looking up letters[5] will give us the string

“..-.”. We pass this string to a function called

flashSequence.

The flashSequence function is going to loop

over each of the parts of the sequence and flash it

as either a dash or a dot. Strings in C all have a

special code on the end of them that marks the end

of the string, and this is called NULL. So, the first

thing flashSequence does is to define a variable

called “i.” This is going to indicate the current

position in the string of dots and dashes, starting at

position 0. The while loop will keep going until we

reach the NULL on the end of the string.

Inside the while loop, we first flash the current

dot or dash using a function that we are going to

discuss in a moment and then add 1 to “i” and go

back round the loop flashing each dot or dash in

turn until we reach the end of the string.

The final function that we have defined is

flashDotOrDash’; this just turns the LED on and

then uses an if statement to either delay for the

duration of a single dot if the character is a dot, or

for three times that duration if the character is a

dash, before it turns the LED off again.

Putting It All Together

Load the completed sketch for Project 3 from

your Arduino Sketchbook and download it onto

your board (see Chapter 1).

To use the Morse code translator, we need to

use a part of the Arduino software called the Serial

Monitor. This window allows you to type messages

that are sent to the Arduino board as well as see

any messages that the Arduino board chooses to

reply with.

Chapter 3 LED Projects 35 ■

Figure 3-2

Launching the Serial Monitor.

The Serial Monitor is launched by clicking the

rightmost icon shown highlighted in Figure 3-2.

The Serial Monitor (see Figure 3-3) has two

parts. At the top, there is a field into which a line

of text can be typed that will be sent to the board

when you either click Send or press RETURN.

Below that is a larger area in which any

messages coming from the Arduino board will be

displayed. Right at the bottom of the window is a

drop-down list where you can select the speed at

which the data is sent. Whatever you select here

must match the baud rate that you specify in your

script’s startup message. We use 9600, which is the

default, so there is no need to change anything

here.

So, all we need to do is launch the Serial

Monitor and type some text into the Send field and

press RETURN. We should then have our message

flashed to us in Morse code.

Project 4
High-Brightness Morse

Code Translator

The little LED on Project 3 is unlikely to be

visible from the ship on the horizon being lured by

our bogus Evil Genius distress message. So in this

project, we are going to up the power and use a

1W Luxeon LED. These LEDs are extremely

bright and all the light comes from a tiny little area

in the center, so to avoid any possibility of retina

damage, do not stare directly into it.

We also look at how, with a bit of soldering, we

can make this project into a shield that can be

plugged into our Arduino board.

 Figure 3-3 The Serial Monitor window.

COMPONENTS AND EQUIPMENT

Description Appendix A

Arduino Diecimila or

Duemilanove board or clone 1

D1 Luxeon 1W LED 30

R1 270 K 0.5W metal film resistor 6

R2 4 K 1W resistor 16

T1 BD139 power transistor 41

Protoshield kit (optional) 3

36 30 Arduino Projects for the Evil Genius

Hardware

The LED we used in Project 3 used about 10 mA

at 2V. We can use this to calculate power using the

formula:

P = I V

Power equals the voltage across something

times the current flowing through it, and the unit

of power is the watt. So that LED would be

approximately 20 mW, or a fiftieth of the power of

our 1W Luxeon LED. While an Arduino will cope

just fine driving a 20 mW LED, it will not be able

to directly drive the 1W LED.

This is a common problem in electronics, and

can be summed up as getting a small current to

control a bigger current, something that is known

as amplification. The most commonly used

electronic component for amplification is the

transistor, so that is what we will use to switch our

Luxeon LED on and off.

The basic operation of a transistor is shown in

Figure 3-4. There are many different types of

transistors, and probably the most common and the

type that we are going to use is called an NPN

bipolar transistor.

This transistor has three leads: the emitter, the

collector, and the base. And the basic principle is

that a small current flowing through the base will

allow a much bigger current to flow between the

collector and the emitter.

Just how much bigger the current is depends on

the transistor, but it is typically a factor of 100. So

a current of 10 mA flowing through the base could

cause up to 1 A to flow through the collector. So, if

we kept the 270 K resistor that we used to drive

the LED at 10 mA, we could expect it to be more

than enough to allow the transistor to switch the

350mA needed by the Luxeon LED.

The schematic diagram for our control circuit is

shown in Figure 3-5.

The 270K resistor (R1) limits the current that

flows through the base. We can calculate the current

using the formula I = V/R. V will be 4.4V rather

than 5V because transistors normally have a voltage

of 0.6V between the base and emitter, and the highest

voltage the Arduino can supply from an output pin is

5V. So, the current will be 4.4/270 = 16 mA.

R2 limits the current flowing through the LED

to around 350 mA. We came up with the figure of

4 K by using the formula R = V/I. V will be

 Figure 3-4 The operation of an NPN bipolar transistor.

Chapter 3 LED Projects 37 ■

power LED driving.

roughly 5 – 3 – 0.6 = 1.4 V. 5V is the supply

voltage, the LED drops roughly 3V and the

transistor 0.6V, so the resistance should be

1.4V/350 mA = 4 K. We must also use a resistor

that can cope with this relatively high current. The

power that the resistor will burn off as heat is

equal to the voltage across it multiplied by the

current flowing through it. In this case, that is 350

mA * 1.4 V, which is 490 mW. To be on the safe

side, we have selected a 1W resistor.

In the same way, when choosing a transistor, we

need to make sure it can handle the power. When it

is turned on, the transistor will consume power equal

to current times voltage. In this case, the base current

is small enough to ignore, so the power will just be

0.6V * 350 mA, or 210 mW. It is always a good idea

to pick a transistor that can easily cope with the

power. In this case, we are going to use a BD139

that has a power rating of over 12W. In Chapter 10,

you can find a table of commonly used transistors.

Now we need to put out components into the

breadboard according to the layout shown in

Figure 3-6, with the corresponding photograph of

Figure 3-8. It is crucial to correctly identify the

leads of the transistor and the LED. The metallic

side of the transistor should be facing the board.

The LED will have a little + symbol next to the

positive connection.

Later in this project we are going to show you

how you can move the project from the breadboard

to a more permanent design using the Arduino

Protoshield. This requires some soldering, so if

you think you might go on to make a shield and

have the facilities to solder, I would solder some

leads onto the Luxeon LED. Solder short lengths

of solid-core wire to two of the six tags around the

edge. They should be marked + and –. It is a good

idea to color-code your leads with red for positive

and blue or black for negative.

If you do not want to solder, that’s fine; you just

need to carefully twist the solid-core wire around

the connectors as shown in Figure 3-7.

 Figure 3-6 Project 4 breadboard layout.

Figure 3-5 The schematic diagram for high-

38 30 Arduino Projects for the Evil Genius

The LED actually has a very wide angle of

view, so one variation on this project would be to

adapt an LED torch where the LED has a reflector

to focus the beam.

Making a Shield

Figure 3-7

Attaching leads to the Luxeon LED

without soldering.

This is the first project that we have made that has

enough components to justify making an Arduino

Shield circuit board to sit on top of the Arduino

board itself. We are also going to use this hardware

with minor modifications in Project 6, so perhaps
Figure 3-8 shows the fully assembled

breadboard.

Software

The only change in the software from Project 3 is

that we are using digital output pin 11 rather than

pin 12.

Putting It All Together

Load the completed sketch for Project 4 from your

Arduino Sketchbook and download it onto your

board (see Chapter 1).

Again, testing the project is the same as for

Project 3. You will need to open the Serial Monitor

window and just start typing.

it is time to make ourselves a Luxeon LED Shield.

Making your own circuit boards at home is

perfectly possible, but requires the use of noxious

chemicals and a fair amount of equipment. But

fortunately, there is another great piece of Arduino-

related open-source hardware called the Arduino

Protoshield. If you shop around, these can be

obtained for $10 or less and will provide you with

a kit of all you need to make a basic shield. That

includes the board itself; the header connector pins

that fit into the Arduino; and some LEDs,

switches, and resistors. Please be aware that there

are several variations of the Protoshield board, so

you may have to adapt the following design if your

board is slightly different.

Figure 3-8 Photograph of complete breadboard for Project 4.

Chapter 3 LED Projects 39 ■

The components for a Protoshield are shown in

Figure 3-9, the most important part being the

Protoshield circuit board (PCB). It is possible to

just buy the Protoshield circuit board on its own,

which for many projects will be all you need.

We are not going to solder all the components

that came with our kit onto the board. We are just

going to add the power LED, its resistor, and just

the bottom pins that connect to the Arduino board,

as this is going to be a top shield and will not have

any other shields on top of it.

A good guide for assembling circuit boards is to

solder in place the lowest components first. So in

this case we will solder the resistors, the LED, the

reset switch, and then the bottom pin connectors.

The 1K resistor, LED, and switch are all pushed

through from the top of the board and soldered

underneath (Figure 3-10). The short part of the

connector pins will be pushed up from underneath

the board and soldered on top.

When soldering the connector pins, make sure

they are lined up correctly, as there are two parallel

rows for the connectors: one for the connection to

the pins below and one for the sockets, which we

are not using, that are intended to connect to

further shields.

A good way to ensure that the headers are in the

right place is to fit the sections of header into an

Arduino board and then place the shield on top and

solder the pins while it’s still plugged into the

Arduino board. This will also ensure that the pins

are straight.

When all the components have been soldered in

place, you should have a board that looks like

Figure 3-11.

We can now add our components for this

project, which we can take from the breadboard.

First, line up all the components in their intended

places according to the layout of Figure 3-12 to

make sure everything fits in the available space.

This kind of board is double-sided—that is, you

can solder to the top or bottom of the board. As

you can see from the layout in Figure 3-12, some

of the connections are in strips like a breadboard.

We are going to mount all the components on

the top side, with the leads pushed through and

soldered on the underside where they emerge from

the board. The leads of the components underneath

can then be connected up and excess leads snipped

off. If necessary, lengths of solid-core wire can be

used where the leads will not reach.

Figure 3-10 The underside of the Protoshield.

Figure 3-9 Protoshield in kit form.

40 30 Arduino Projects for the Evil Genius

Figure 3-13 shows the completed shield. Power

up your board and test it out. If it does not work as

soon as you power it up, disconnect it from the

power right away and carefully check the shield

for any short circuits or broken connections using a

multimeter.

Congratulations! You have created your first

Arduino Shield, and it is one that we can reuse in

later projects.

Summary

So, we have made a start on some simple LED

Projects and discovered how to use high power

Luxeon LEDs. We have also learnt a bit more

about programming our Arduino board in C.

In the next chapter, we are going to extend this

by looking at some more LED-based projects

including a model traffic signal and a high power

strobe light.

 Figure 3-13 Complete Luxeon shield attached to an Arduino board.

Figure 3-11 Assembled basic
Protoshield.

Figure 3-12 Project 4 Protoshield layout.

40 30 Arduino Projects for the Evil Genius

C H A P T E R 4

More LED Projects

IN THIS CHAPTER, we are going to build on those

versatile little components, LEDs, and learn a bit

more about digital inputs and outputs, including

how to use push-button switches.

The projects that we are going to build in this

chapter are a model traffic signal, two strobe light

projects, and a bright light module using high-

power Luxeon LEDs.

Digital Inputs and Outputs

The digital pins 0 to 12 can all be used as either an

input or an output. This is set in your sketch. Since

you are going to be connecting electronics to one

of these pins, it is unlikely that you are going to

want to change the mode of a pin. That is, once a

pin is set to be an output, you are not going to

change it to be an input midway through a sketch.

For this reason, it is a convention to set the

direction of a digital pin in the setup function that

must be defined in every sketch.

For example, the following code sets digital pin

10 to be an output and digital pin 11 to be an

input. Note how we use a variable declaration in

our sketch to make it easier to change the pin used

for a particular purpose later on.

Project 5
Model Traffic Signal

So now we know how to set a digital pin to be an

input, we can build a project for model traffic

signals using red, yellow, and green LEDs. Every

time we press the button, the traffic signal will go

to the next step in the sequence. In the UK, the

sequence of such traffic signals is red, red and

amber together, green, amber, and then back to red.

As a bonus, if we hold the button down, the

lights will change in sequence by themselves with

a delay between each step.

The components for Project 5 are listed next.

When using LEDs, for best effect, try and pick

LEDs of similar brightness.

41

int ledPin = 10;

int switchPin = 11;

void setup()

{

pinMode(ledPin, OUTPUT);

pinMode(switchPin, INPUT);

}

42 30 Arduino Projects for the Evil Genius

resistor. The digital pin 5 is “pulled” down to GND

by R4 until the switch is pressed, which will make

it go to 5V.

A photograph of the project is shown in Figure

4-2 and the board layout in Figure 4-3.

Software

Hardware

The schematic diagram for the project is shown in

Figure 4-1.

The LEDs are connected in the same way as our

earlier project, each with a current-limiting

The sketch for Project 5 is shown in Listing

Project 5.

The sketch is fairly self-explanatory. We only

check to see if the switch is pressed once a second,

so pressing the switch rapidly will not move the

light sequence on. However, if we press and hold

the switch, the lights will automatically sequence

round.

We use a separate function setLights to set the

state of each LED, reducing three lines of code to

one.

 Figure 4-1 Schematic diagram for Project 5.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 5-mm red LED 23

D2 5-mm yellow LED 24

D3 5-mm green LED 25

R1-R3 270 K 0.5W metal film

resistor 6

R4 100 KK 0.5W metal film

resistor 13

S1 Miniature push to make

switch 48

Chapter 4 More LED Projects 43 ■

 Figure 4-3 Breadboard layout for Project 5.

Figure 4-2 Project 5. A model traffic signal.

44 30 Arduino Projects for the Evil Genius

LISTING PROJECT 5

int redPin = 2;

int yellowPin = 3;

int greenPin = 4;

int buttonPin = 5;

int state = 0;

void setup()

{

pinMode(redPin, OUTPUT);

pinMode(yellowPin,

OUTPUT); pinMode(greenPin,

OUTPUT); pinMode(buttonPin,

INPUT);

}

void loop()

{

Putting It All Together

Load the completed sketch for Project 5 from your

Arduino Sketchbook (see Chapter 1).

Test the project by holding down the button and

make sure the LEDs all light in sequence.

Project 6
Strobe Light

This project uses the same high-brightness Luxeon

LED as the Morse code translator. It adds to that a

variable resistor, sometimes called a potentiometer.

This provides us with a control that we can rotate

to control the flashing rate of the strobe light.

if (digitalRead(buttonPin))

{

if (state == 0)

{

setLights(HIGH, LOW, LOW);

state = 1;

This is a strobe light; it flashes

brightly. If you have a health

condition such as epilepsy, you may wish to skip this

project.

}

else if (state == 1)

{

setLights(HIGH, HIGH, LOW);

state = 2;

}

else if (state == 2)

{

setLights(LOW, LOW, HIGH);

state = 3;

}

else if (state == 3)

{

setLights(LOW, HIGH, LOW);

state = 0;

}

delay(1000);

}

}

void setLights(int red, int yellow,

int green)

{

digitalWrite(redPin, red);

digitalWrite(yellowPin, yellow);

digitalWrite(greenPin, green);

Hardware

The hardware for this project is basically the same

as for Project 4, but with the addition of a variable

resistor (see Figure 4-4).

}

CAUTION

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 Luxeon 1W LED 30

R1 270 K 0.5W metal film resistor 6

R2 4 K 1W resistor 16

T1 BD139 power transistor 41

R3 100K linear potentiometer 17

Protoshield kit (optional) 3

2.1-mm power plug (optional) 49

9V battery clip (optional) 50

Chapter 4 More LED Projects 45 ■

The Arduino is equipped with six analog input

pins numbered Analog 0 to Analog 5. These

measure the voltage at their input and give a

number between 0 (0V) and 1023 (5V).

We can use this to detect the position of a

control knob by connecting a variable resistor

acting as a potential divider to our analog pin.

Figure 4-5 shows the internal structure of a

variable resistor.

A variable resistor is a component that is

typically used for volume controls. It is

constructed as a circular conductive track with a

gap in it and connections at both ends. A slider

provides a moveable third connection.

You can use a variable resistor to provide a

variable voltage by connecting one end of the

resistor to 0V and the other end to 5V, and then the

voltage at the slider will vary between 0 and 5V as

you turn the knob.

As you would expect, the breadboard layout

(Figure 4-6) is similar to Project 4.

Figure 4-5

The internal workings of a variable

resistor.

Figure 4-4 Schematic diagram for Project 6.

46 30 Arduino Projects for the Evil Genius

Figure 4-6

Breadboard layout for Project 6.

Software

The listing for this project is shown here. The

interesting parts are concerned with reading the

value from the analog input and controlling the

rate of flashing.

For analog pins, it is not necessary to use the

pinMode function, so we do not need to add

anything into the setup function.

Let us say that we are going to vary the rate of

flashing between once a second and 20 times a

second; the delays between turning the LED on

and off will be 500 milliseconds and 25

milliseconds, respectively.

So, if our analog input changes from 0 to 1023,

the calculation that we need to determine the flash

delay is roughly:

So an analog_value of 0 would give a

flash_delay of 561 and an analog_value of 1023

would give a delay of 25. We should actually be

dividing by slightly more than 2, but it makes

things easier if we keep everything as integers.

Putting It All Together

Load the completed sketch for Project 6 from your

Arduino Sketchbook and download it to the board

(see Chapter 1).

You will find that turning the variable resistor

control clockwise will increase the rate of flashing

as the voltage at the analog input increases.

Turning it counterclockwise will slow the rate of

flashing.

flash_delay = (1023 – analog_value) / 2

+ 25

LISTING PROJECT 6

int ledPin = 11;

int analogPin = 0;

void setup()

{

pinMode(ledPin, OUTPUT);

}

void loop()

{

int period = (1023 -

analogRead(analogPin)) / 2 + 25;

digitalWrite(ledPin, HIGH);

delay(period);

digitalWrite(ledPin, LOW);

delay(period);

}

Chapter 4 More LED Projects 47 ■

Making a Shield

If you want to make a shield for this project, you

can either adapt the shield for Project 4 or create a

new shield from scratch.

The layout of components on the Protoshield is

shown in Figure 4-7.

This is basically the same as for Project 4,

except that we have added the variable resistor.

The pins on a variable resistor are too thick to fit

into the holes on the Protoshield, so you can either

attach it using wires or, as we have done here,

carefully solder the leads to the top surface where

they touch the board. To provide some mechanical

strength, the variable resistor can be glued in place

first with a drop of Super Glue. The wiring for the

variable resistor to 5V, GND, and Analog 0 can be

made underneath the board out of sight.

Having made a shield, we can make the project

independent of our computer by powering it from a

9V battery.

To power the project from a battery, we need to

make ourselves a small lead that has a PP3 battery

clip on one end and a 2.1-mm power plug on the

other. Figure 4-8 shows the semi-assembled lead.

Project 7
S.A.D. Light

Seasonal affective disorder (S.A.D.) affects a great

number of people, and research has shown that

exposure to a bright white light that mimics

daylight for 10 or 20 minutes a day has a

beneficial effect. To use this project for such a

purpose, I would suggest the use of some kind of

diffuser such as frosted glass, as you should not

stare directly at the point light sources of the

LEDs.

This is another project based on the Luxeon

high-brightness LEDs. We will use an analog input

connected to a variable resistor to act as a timer

control, turning the LED on for a given period set

by the position of the variable resistor’s slider.

We will also use an analog output to slowly raise

the brightness of the LEDs as they turn on and

then slowly decrease it as they turn off. To make

the light bright enough to be of use as a S.A.D.

light, we are going to use not just one Luxeon

LED but six.

At this point, the caring nature of this project

may be causing the Evil Genius something of an

identity crisis. But, fear not—in Project 8, we will

turn this same hardware into a fearsome high-

powered strobe light.

 Figure 4-7 Protoshield layout for Project 6.

Figure 4-8 Creating a battery lead.

48 30 Arduino Projects for the Evil Genius

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1-6 Luxeon 1W LED 30

R1-3 1 KK 0.5W metal film resistor 7

R4-5 4 K 2W resistor 16

R6 100K linear potentiometer 17

IC1-2 LM317 Voltage regulator 45

T1-2 2N7000 FET 42

Regulated 15V 1A power supply 51

Perf board 53

Three-way screw terminal 52

■ Please note this is one of the projects in this

book that requires soldering.

■ You are going to need six Luxeon LEDs for

this project. If you want to save some money,

look at online auctions, where ten of these

should be available for $10 to $20.

Hardware

Some of the digital pins, namely digital pins 5, 6,

9, 10, and 11, can provide a variable output rather

than just 5V or nothing. These are the pins with

PWM next to them on the board. This is the reason

that we have switched to using pin 11 for our

output control.

PWM stands for Pulse Width Modulation, and

refers to the means of controlling the amount of

power at the output. It does so by rapidly turning

the output on and off.

The pulses are always delivered at the same rate

(roughly 500 per second), but the length of the

pulses is varied. If the pulse is long, our LED will

be on all the time. If, however, the pulses are short,

the LED is only actually lit for a small portion of

the time. This happens too fast for the observer to

even tell that the LED is flickering, and it just

appears that the LED is brighter or dimmer.

Readers may wish to refer to Wikipedia for a

fuller description of PWM.

The value of the output can be set using the

function analogWrite, which requires an output

value between 0 and 255, where 0 will be off and

255 full power.

As you can see from the schematic diagram in

Figure 4-9, the LEDs are arranged in two columns

of three. The LEDs are also supplied from an

external 15V supply rather than the 5V supply that

we used before. Since each LED consumes about

300 mA, each column will draw about 300 mA

and so the supply must be capable of supplying

0.6A (1 A to be on the safe side).

This is the most complex schematic so far in our

projects. We are using two integrated-circuit

variable voltage regulators to limit the current

flowing to the LEDs. The output of the voltage

regulators will normally be 1.25V above whatever

the voltage is at the Ref pin of the chip. This

means that if we drive our LEDs through a 4 K

resistor, there will be a current of roughly I = V/R,

or 1.25 / 4 = 312 mA flowing through it (which is

about right).

The FET (field effect transistor) is like our

normal bipolar transistor, in that it can act as a

switch, but it has a very high off resistance. So

when it is not triggered by a voltage at its gate, it’s

as if it isn’t there in the circuit. However, when it

is turned on, it will pull down the voltage at the

regulator’s Ref pin to a low enough voltage to

prevent any current flowing into the LEDs turning

them off. Both of the FETs are controlled from the

same digital pin 11.

The completed LED module is shown in Figure

4-10 and the perf board layout in Figure 4-11.

The module is built on perf (perforated) board.

The perf board is just a board with holes in it. It

has no connections at all. So it acts as a structure

on which to fit your components, but you have to

wire them up on the underside of the board, either

by connecting their leads together or adding wires.

Chapter 4 More LED Projects 49 ■

It is easier to solder two wires onto each LED

before fitting them onto the board. It is a good idea

to color-code those leads—red for positive and

black or blue for negative—so that you get the

LEDs in the correct way round.

The LEDs will get hot, so it is a good idea to

leave a gap between them and the perf board using

the insulation on the wire to act as a spacer. The

voltage regulator will also get hot but should be

okay without a heatsink. The voltage regulator

Figure 4-10 Project 7. High-power light module.

Figure 4-9 Schematic diagram for Project 7.

Chapter 4 More LED Projects 51 ■

integrator circuits (ICs) actually have built-in

thermal protection and will automatically reduce

the current if they start to get too hot.

The screw terminals on the board are for the

power supply GND and 15V and a control input.

When we connect this to the Arduino board, the

15V will come from the Vin pin on the Arduino,

which in turn is supplied from a 15V power

supply.

Our high-power LED module will be of use in

other projects, so we are going to plug the variable

resistor directly into the Analog In strip of

connectors on the Arduino board. The spacing of

pins on the variable resistor is 1/5 of an inch,

which means that if the middle slider pin is in the

socket for Analog 2, the other two pins will be in

the sockets for Analog 0 and 4. You can see this

arrangement in Figure 4-12.

You may remember that analog inputs can also

be used as digital outputs by adding 14 to their pin

number. So in order to have 5V at one end of our

variable resistor and 0V at the other, we are going

to set the outputs of analog pins 0 and 4 (digital

pins 14 and 18) to 0V and 5V, respectively.

Software

At the top of the sketch, after the variable used for

pins, we have four other variables: startupSeconds,

turnOffSeconds, minOnSeconds, and

maxOnSeconds. This is common practice in

programming. By putting these values that we

might want to change into variables and making

them visible at the top of the sketch, it makes it

easier to change them.

Figure 4-11 Perf board layout.

50 30 Arduino Projects for the Evil Genius

LISTING PROJECT 7

int ledPin = 11;

int analogPin = 2;

int startupSeconds = 20;

int turnOffSeconds = 10;

int minOnSeconds = 300;

int maxOnSeconds = 1800;

int brightness = 0;

void setup()

{

pinMode(ledPin, OUTPUT);

digitalWrite(ledPin, HIGH);

pinMode(14, OUTPUT); // Use Analog pins 0 and 4 for

pinMode(18, OUTPUT); // the variable resistor

digitalWrite(18, HIGH);

int analogIn = analogRead(analogPin);

int onTime = map(analogIn, 0, 1023, minOnSeconds, maxOnSeconds);

turnOn();

delay(onTime * 1000);

turnOff();

}

void turnOn()

{

brightness = 0;

int period = startupSeconds * 1000 / 256;

while (brightness < 255)

{

analogWrite(ledPin, 255 - brightness);

delay(period);

brightness ++;

}

}

void turnOff()

{

int period = turnOffSeconds * 1000 / 256;

while (brightness >= 0)

{

analogWrite(ledPin, 255 - brightness);

delay(period);

brightness —;

}

}

void loop()

{}

52 30 Arduino Projects for the Evil Genius

The variable startupSeconds determines how

long it will take for the brightness of the LEDs to

be gradually raised until it reaches maximum

brightness. Similarly, turnOffSeconds determines

the time period for dimming the LEDs. The

variables minOnSeconds and maxOnSeconds

determine the range of times set by the variable

resistor.

In this sketch, there is nothing in the loop

function. Instead all the code is in setup. So, the

light will automatically start its cycle when it is

powered up. Once it has finished, it will stay

turned off until the reset button is pressed.

The slow turn-on is accomplished by gradually

increasing the value of the analog output by 1.

This is carried out in a while loop, where the delay

is set to 1/255 of the startup time so that after 255

steps maximum brightness has been achieved.

Slow turn-off works in a similar manner.

The time period at full brightness is set by the

analog input. Assuming that we want a range of

times from 5 to 30 minutes, we need to convert the

value of 0 to 1023 to a number of seconds between

300 and 1800. Fortunately, there is a handy

Arduino function that we can use to do this. The

function map takes five arguments: the value you

want to convert, the minimum input value (0 in

this case), the maximum input value (1023), the

minimum output value (300), and the maximum

output value (1800).

Putting It All Together

Load the completed sketch for Project 7 from your

Arduino Sketchbook and download it to the board

(see Chapter 1).

You now need to attach wires from the Vin,

GND, and digital pin 11 of the Arduino board to

the three screw terminals of the LED module

(Figure 4-12). Plug a 15V power supply into the

board’s power socket and you are ready to try it.

To start the light sequence again, click the reset

button.

Project 8
High-Powered Strobe Light

For this project, you can use the six Luxeon LED

module of Project 7 or you can use the Luxeon

shield that we created for Project 4. The software

will be almost the same in both cases.

Figure 4-12 Project 7. S.A.D. light.

Chapter 4 More LED Projects 53 ■

In this version of the strobe light, we are going

to control the strobe light effect from the computer

with commands. We will send the following

commands over the USB connection using the

Serial Monitor.

Hardware

See Project 4 (the Morse code translator using a

single Luxeon LED shield) or Project 7 (array of

six Luxeon LEDs) for components and

construction details.

Software

This sketch uses the sin function to produce a nice,

gently increasing brightness effect. Apart from

that, the techniques we use in this sketch have

mostly been used in earlier projects.

LISTING PROJECT 8

int ledPin = 11;

int period = 100;

char mode = 'o'; // o-off, s-strobe, w-wave

void setup()

{

pinMode(ledPin, OUTPUT);

analogWrite(ledPin, 255);

Serial.begin(9600);

}

void loop()

{

if (Serial.available())

{

char ch = Serial.read();

if (ch == '0')

{

mode = 0;

analogWrite(ledPin, 255);

}

else if (ch > '0' && ch <= '9')

{

setPeriod(ch);

}

else if (ch == 'w' || ch == 's')

(continued)

0–9 0–9 sets the speed of the following

mode commands: 0 for off, 1 for slow, and

9 for fast

w Wave effect gradually getting lighter

then darker

s Strobe effect

54 30 Arduino Projects for the Evil Genius

LISTING PROJECT 8 (continued)

{

mode = ch;

}

}

if (mode == 'w')

{

waveLoop();

}

else if (mode == 's')

{

strobeLoop();

}

}

void setPeriod(char ch)

{

int period1to9 = 9 - (ch - '0');

period = map(period1to9, 0, 9, 50, 500);

}

void waveLoop()

{

static float angle = 0.0;

angle = angle + 0.01;

if (angle > 3.142)

{

angle = 0;

}

// analogWrite(ledPin, 255 - (int)255 * sin(angle)); // Breadboard

analogWrite(ledPin, (int)255 * sin(angle)); // Shield

delay(period / 100);

}

void strobeLoop()

{

//analogWrite(ledPin, 0); // breadboard

analogWrite(ledPin, 255); // shield

delay(10);

//analogWrite(ledPin, 255); // breadboard

analogWrite(ledPin, 0); // shield

delay(period);

}

Chapter 4 More LED Projects 55 ■

Putting It All Together

Load the completed sketch for Project 8 from your

Arduino Sketchbook and download it to the board

(see Chapter 1).

When you have installed the sketch and fitted

the Luxeon shield or connected the bright six-

Luxeon panel, initially the lights will be off. Open

the Serial Monitor window, type s, and press

RETURN. This will start the light flashing. Try the

speed commands 1 to 9. Then try typing the w

command to switch to wave mode.

Random Number Generation

Computers are deterministic. If you ask them the

same question twice, you should get the same

answer. However, sometimes, you want chance to

take a hand. This is obviously useful for games.

It is also useful in other circumstances—for

example, a “random walk,” where a robot makes a

random turn, then moves forward a random

distance or until it hits something, then reverses

and turns again, is much better at ensuring the

robot covers the whole area of a room than a more

fixed algorithm that can result in the robot getting

stuck in a pattern.

The Arduino library includes a function for

creating random numbers.

There are two flavors of the function random. It

can either take two arguments (minimum and

maximum) or one argument (maximum), in which

case the minimum is assumed to be 0.

Beware, though, because the maximum

argument is misleading, as the highest number you

can actually get back is the maximum minus one.

So, the following line will give x a value

between 1 and 6:

and the following line will give x a value between

0 and 9:

As we pointed out at the start of this section,

computers are deterministic, and actually our

random numbers are not random at all, but a long

sequence of numbers with a random distribution.

You will actually get the same sequence of

numbers every time you run your script.

A second function (randomSeed) allows you to

control this. The randomSeed function determines

where in its sequence of pseudo-random numbers

the random number generator starts.

A good trick is to use the value of a

disconnected analog input, as this will float around

at a different value and give at least 1000 different

starting points for our random sequence. This

wouldn’t do for the lottery, but is acceptable for

most applications. Truly random numbers are very

hard to come by and involve special hardware.

Project 9
LED Dice

This project uses what we have just learned about

random numbers to create electronic dice with six

LEDs and a button. Every time you press the

button, the LEDs “roll” for a while before settling

on a value and then flashing it.

int x = random(1, 7);

int x = random(10);

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1-7 Standard red LEDs 23

R1-7 270 K 0.5W metal film resistor 6

S1 Miniature push-to-make switch 48

R8 100K K 0.5W metal film resistor 13

56 30 Arduino Projects for the Evil Genius

Hardware

The schematic diagram for Project 9 is shown in

Figure 4-13. Each LED is driven by a separate

digital output via a current-limiting resistor. The

only other components are the switch and its

associated pull-down resistor.

Even though a die can only have a maximum of

six dots, we still need seven LEDs to have the

normal arrangement of a dot in the middle for odd-

numbered rolls.

Figure 4-14 shows the breadboard layout and

Figure 4-15 the finished breadboard.

Software

This sketch is fairly straightforward; there are a

few nice touches that make the dice behave in a

similar way to real dice. For example, as the dice

rolls, the number changes, but gradually slows.

Also, the length of time that the dice rolls is also

random.

Figure 4-13 Schematic diagram for Project 9.

Figure 4-14 The breadboard layout for Project 9.

Chapter 4 More LED Projects 57 ■

Figure 4-15

Project 9. LED dice.

LISTING PROJECT 9

int ledPins[7] = {2, 3, 4, 5, 6, 7, 8};

int dicePatterns[7][7] = {
{0, 0, 0, 0, 0, 0, 1}, // 1
{0, 0, 1, 1, 0, 0, 0}, // 2
{0, 0, 1, 1, 0, 0, 1}, // 3
{1, 0, 1, 1, 0, 1, 0}, // 4
{1, 0, 1, 1, 0, 1, 1}, // 5
{1, 1, 1, 1, 1, 1, 0}, // 6
{0, 0, 0, 0, 0, 0, 0} // BLANK

};

int switchPin = 9;

int blank = 6;

void setup()

{
for (int i = 0; i < 7; i++)
{

pinMode(ledPins[i], OUTPUT);
digitalWrite(ledPins[i], LOW);

}
randomSeed(analogRead(0));

}

void loop()

{
 (continued)

58 30 Arduino Projects for the Evil Genius

LISTING PROJECT 9 (continued)

if (digitalRead(switchPin))

{

rollTheDice();

}

delay(100);

}

void rollTheDice()

{

int result = 0;

int lengthOfRoll = random(15, 25);

for (int i = 0; i < lengthOfRoll; i++)

{

result = random(0, 6); // result will be 0 to 5 not 1 to 6

show(result);

delay(50 + i * 10);

}

for (int j = 0; j < 3; j++)

{

show(blank);

delay(500);

show(result);

delay(500);

}

}

void show(int result)

{

for (int i = 0; i < 7; i++)

{

digitalWrite(ledPins[i], dicePatterns[result][i]);

}

}

We now have seven LEDs to initialize in the

setup method, so it is worth putting them in an

array and looping over the array to initialize each

pin. We also have a call to randomSeed in the

setup method. If this was not there, every time we

reset the board, we would end up with the same

sequence of dice throws. As an experiment, you

may wish to try commenting out this line by

placing a // in front of it and verifying this. In fact,

as an Evil Genius, you may like to omit that line

so that you can cheat at Snakes and Ladders!

The dicePatterns array determines which LEDs

should be on or off for any particular throw. So

each throw element of the array is actually itself an

array of seven elements, each one being either

HIGH or LOW (1 or 0). When we come to display

a particular result of throwing the dice, we can just

Chapter 4 More LED Projects 59 ■

loop over the array for the throw, setting each LED

accordingly.

Putting It All Together

Load the completed sketch for Project 9 from your

Arduino Sketchbook and download it to the board

(see Chapter 1).

Summary

In this chapter we have used a variety of LEDs and

software techniques for lighting them in interesting

ways. In the next chapter we will investigate some

different types of sensors and use them to provide

inputs to our projects.

60 30 Arduino Projects for the Evil Genius

This page intentionally left blank

C H A P T E R 5

Sensor Projects

SENSORS TURN REAL-WORLD measurements into

electronic signals that we can then use on our

Arduino boards. The projects in this chapter are all

about using light and temperature.

We also look at how to interface with keypads

and rotary encoders.

Project 10
Keypad Security Code

This project would not be out of place in the lair of

any Evil Genius worth their salt. A secret code

must be entered on the keypad, and if it is correct,

a green LED will light; otherwise, a red LED will

stay lit. In Project 27, we will revisit this project

and show how it cannot just show the appropriate

light, but also control a door lock.

Unfortunately, keypads do not usually have pins

attached, so we will have to attach some, and the

only way to do that is to solder them on. So this is

another of our projects where you will have to do a

little soldering.

Hardware

The schematic diagram for Project 10 is shown in

Figure 5-1. By now, you will be used to LEDs; the

new component is the keypad.

Keypads are normally arranged in a grid so that

when one of the keys is pressed, it connects a row

to a column. Figure 5-2 shows a typical

arrangement for a 12-key keyboard with numbers

from 0 to 9 and * and # keys.

The key switches are arranged at the

intersection of row-and-column wires. When a key

is pressed, it connects a particular row to a

particular column.

By arranging the keys in a grid like this, it

means that we only need to use 7 (4 rows + 3

columns) of our digital pins rather than 12 (one for

each key).

However, it also means that we have to do a bit

more work in the software to determine which

keys are pressed. The basic approach we have to

take is to connect each row to a digital output and

each column to a digital input. We then put each

output high in turn and see which inputs are high.

61

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 Red 5-mm LED 23

D2 Green 5-mm LED 25

R1-2 270 K 0.5W metal film resistor 6

K1 4 by 3 keypad 54

0.1-inch header strip 55

Chapter 5 Sensor Projects 69 ■

Figure 5-3 shows how you can solder seven pins

from a pin header strip onto the keypad so that you

can then connect it to the breadboard. Pin headers

are bought in strips and can be easily snapped to

provide the number of pins required.

Now, we just need to find out which pin on the

keypad corresponds to which row or column. If we

are lucky, the keypad will come with a datasheet

that tells us this. If not, we will have to do some

detective work with a multimeter. Set the

multimeter to continuity so that it beeps when you

connect the leads together. Then get some paper,

 Figure 5-3 Soldering pins to the keypad.

Figure 5-1 Schematic diagram for Project 10.

Figure 5-2 A 12-switch keypad.

62 30 Arduino Projects for the Evil Genius

Figure 5-4

Working out the keypad

connections.

The completed breadboard layout is shown in

Figure 5-5. Note that the keypad conveniently has

seven pins that will just fit directly into the Digital

Pin 0 to 7 socket on the Arduino board (Figure

5-6), so we only need the breadboard for the two

LEDs.

You may have noticed that digital pins 0 and 1

have TX and RX next to them. This is because

they are also used by the Arduino board for serial

communications, including the USB connection. In

this case, we are not using digital pin 0, but we

have connected digital pin 1 to the keyboard’s

middle column. We will still be able to program

the board, but it does mean that we will not be able

to communicate over the USB connection while

the sketch is running. Since we do not want to do

this anyway, this is not a problem.

draw a diagram of the keyboard connections, and

label each pin with a letter from a to g. Then write

a list of all the keys. Then, holding each key down

in turn, find the pair of pins that make the

multimeter beep indicating a connection (Figure

5-4). Release the key to check that you have

indeed found the correct pair. After a while, a

pattern will emerge and you will be able to see

how the pins relate to rows and columns. Figure

5-4 shows the arrangement for the keypad used by

the author.

Software

While we could just write a sketch that turns on

the output for each row in turn and reads the inputs

to get the coordinates of any key pressed, it is a bit

more complex than that because switches do not

always behave in a good way when you press

them. Keypads and push switches are likely to

bounce. That is, when you press them, they do not

simply go from being opened to closed, but may

open and close several times as part of pressing the

button.

 Figure 5-5 Project 10 breadboard layout.

64 30 Arduino Projects for the Evil Genius

Fortunately for us, Mark Stanley and Alexander

Brevig have created a library that you can use to

connect to keypads that handles such things for us.

This is a good opportunity to demonstrate

installing a library into the Arduino software.

In addition to the libraries that come with the

Arduino, many people have developed their own

libraries and published them for the benefit of the

Arduino community. The Evil Genius is much

amused by such altruism and sees it as a great

weakness. However, the Evil Genius is not above

using such libraries for their own devious ends.

To make use of this library, we must first

download it from the Arduino website at this

address: www.arduino.cc/playground/Code/

Keypad.

Download the file Keypad.zip and unzip it. If

you are using Windows, you right-click and choose

Extract All and then save the whole folder into

C:\Program Files\Arduino\Arduino-0017\

hardware\libraries (Figure 5-7).

On LINUX, find the Arduino installation

directory and copy the folder into hardware/

libraries.

On a Mac, you do not put the new library into

the Arduino installation. Instead, you create a

folder called libraries in Documents/Arduino

(Figure 5-8) and put the whole library folder in

there. Incidentally, the Documents/Arduino

directory is also the default location where your

sketches are stored.

Once we have installed this library into our

Arduino directory, we will be able to use it with

any sketches that we write. But remember that on

Windows and LINUX, if you upgrade to a newer

version of the Arduino software, you will have to

reinstall the libraries that you use.

You can check that the library is correctly

installed by restarting the Arduino, starting a new

sketch, and choosing the menu option Sketch |

Import Library | Keypad. This will then insert the

text “#include <Keypad.h>” into the top of the file.

The sketch for the application is shown in

Listing Project 10. Note that you may well have to

change your keys, rowPins, and colPins arrays so

that they agree with the key layout of your keypad,

as we discussed in the hardware section.

Figure 5-6 Project 10. Keypad security code.

http://www.arduino.cc/playground/Code/

Chapter 5 Sensor Projects 65 ■

Figure 5-7 Installing the library for Windows.

Figure 5-8 Installing the library for Mac.

66 30 Arduino Projects for the Evil Genius

LISTING PROJECT 10

#include <Keypad.h>

char* secretCode = "1234";

int position = 0;

const byte rows = 4;

const byte cols = 3;

char keys[rows][cols] = {

{'1','2','3'},

{'4','5','6'},

{'7','8','9'},

{'*','0','#'}

};

byte rowPins[rows] = {2, 7, 6, 4};

byte colPins[cols] = {3, 1, 5};

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, rows, cols);

int redPin = 9;

int greenPin = 8;

void setup()

{

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

setLocked(true);

}

void loop()

{

char key = keypad.getKey();

if (key == '*' || key == '#')

{

position = 0;

setLocked(true);

}

if (key == secretCode[position])

{

position ++;

}

if (position == 4)

{

setLocked(false);

}

delay(100);

}

void setLocked(int locked)

Chapter 5 Sensor Projects 67 ■

LISTING PROJECT 10 (continued)

{

if (locked)

{

digitalWrite(redPin, HIGH);

digitalWrite(greenPin, LOW);

}

else

{

digitalWrite(redPin, LOW);

digitalWrite(greenPin, HIGH);

}

}

This sketch is quite straightforward. The loop

function checks for a key press. If the key pressed

is a # or a * it sets the position variable back to 0.

If, on the other hand, the key pressed is one of the

numerals, it checks to see if it is the next key

expected (secretCode[position]) is the key just

pressed, and if it is, it increments position by one.

Finally, the loop checks to see if position is 4, and

if it is, it sets the LEDs to their unlocked state.

Putting It All Together

Load the completed sketch for Project 10 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

If you have trouble getting this to work, it is

most likely a problem with the pin layout on your

keypad. So persevere with the multimeter to map

out the pin connections.

Rotary Encoders

We have already met variable resistors: as you turn

the knob, the resistance changes. These used to be

behind most knobs that you could twiddle on

electronic equipment. There is an alternative, the

rotary encoder, and if you own some consumer

electronics where you can turn the knob round

and round indefinitely without meeting any kind of

end stop, there is probably a rotary encoder behind

the knob.

Some rotary encoders also incorporate a button

so that you can turn the knob and then press. This

is a particularly useful way of making a selection

from a menu when used with a liquid crystal

display (LCD) screen.

A rotary encoder is a digital device that has two

outputs (A and B), and as you turn the knob, you

get a change in the outputs that can tell you

whether the knob has been turned clockwise or

counterclockwise.

Figure 5-9 shows how the signals change on A

and B when the encoder is turned. When rotating

clockwise, the pulses will change, as they would

moving left to right on the diagram; when moving

counterclockwise, the pulses would be moving

right to left on the diagram.

So if A is low and B is low, and then B becomes

high (going from phase 1 to phase 2), that would

indicate that we have turned the knob clockwise. A

clockwise turn would also be indicated by A being

low, B being high, and then A becoming high

(going from phase 2 to phase 3), etc. However, if A

was high and B was low and then B went high, we

have moved from phase 4 to phase 3 and are,

therefore, turning counterclockwise.

68 30 Arduino Projects for the Evil Genius

Figure 5-9

Pulses from a rotary encoder.

Project 11
Model Traffic Signal Using
a Rotary Encoder

This project uses a rotary encoder with a built-in

push switch to control the sequence of the traffic

signals, and is based on Project 5. It is a much

more realistic version of a traffic signal controller

and is really not far off the logic that you would

find in a real traffic signal controller.

Rotating the rotary encoder will change the

frequency of the light sequencing. Pressing the

button will test the lights, turning them all on at

the same time, while the button is pressed.

The components are the same as for Project 5,

with the addition of the rotary encoder and pull-up

resistors in place of the original push switch.

Hardware

The schematic diagram for Project 11 is shown in

Figure 5-10. The majority of the circuitry is the

same as for Project 5, except that now we have a

rotary encoder.

The rotary encoder works just as if there were

three switches: one each for A and B and one for

the push switch. Each of these switches requires a

pull-down resistor.

Since the schematic is much the same as for

Project 5, it will not be much of a surprise to see

that the breadboard layout (Figure 5-11) is similar

to the one for that project.

Software

The starting point for the sketch is the sketch for

Project 5. We have added code to read the encoder

and to respond to the button press by turning all

the LEDs on. We have also taken the opportunity

to enhance the logic behind the lights to make

them behave in a more realistic way, changing

automatically. In Project 5, when you hold down

the button, the lights change sequence roughly

once per second. In a real traffic signal, the lights

stay green and red a lot longer than they are

yellow. So our sketch now has two periods:

shortPeriod, which does not alter but is used when

the lights are changing, and longPeriod, which

determines how long they are illuminated for when

green or red. This longPeriod is the period that is

changed by turning the rotary encoder.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 5-mm Red LED 23

D2 5-mm Yellow LED 24

D3 5-mm Green LED 25

R1-R3 270  0.5W metal film resistor 6

R4-R6 100 K 0.5W metal film

resistor 13

S1 Rotary encoder with push

switch 57

Chapter 5 Sensor Projects 69 ■

The key to handling the rotary encoder lies in

the function getEncoderTurn. Every time this is

called, it compares the previous state of A and B

with their current state and if something has

changed, works out if it was clockwise or

counterclockwise and returns a –1 or 1,

respectively. If there is no change (the knob has

not been turned), it returns 0. This function must

be called frequently or turning the rotary controller

quickly will result in some changes not being

recognized correctly.

If you want to use a rotary encoder for other

projects, you can just copy this function. The

function uses the static modifier for the oldA and

oldB variables. This is a useful technique that

allows the function to retain the values between

one call of the function and the next, where

normally it would reset the value of the variable

every time the function is called.

Figure 5-11 Breadboard layout for Project 11.

Figure 5-10 Schematic diagram for Project 11.

Chapter 5 Sensor Projects 71 ■

LISTING PROJECT 11

int redPin = 2;

int yellowPin = 3;

int greenPin = 4;

int aPin = 6;

int bPin = 7;

int buttonPin = 5;

int state = 0;

int longPeriod = 5000; // Time at green or red

int shortPeriod = 700; // Time period when changing

int targetCount = shortPeriod;

int count = 0;

void setup()

{

pinMode(aPin, INPUT);

pinMode(bPin, INPUT);

pinMode(buttonPin, INPUT);

pinMode(redPin, OUTPUT);

pinMode(yellowPin, OUTPUT);

pinMode(greenPin, OUTPUT);

}

void loop()

{

count++;

if (digitalRead(buttonPin))

{

setLights(HIGH, HIGH, HIGH);

}

else

{

int change = getEncoderTurn();

int newPeriod = longPeriod + (change * 1000);

if (newPeriod >= 1000 && newPeriod <= 10000)

{

longPeriod = newPeriod;

}

if (count > targetCount)

{

setState();

count = 0;

}

}

delay(1);

}

int getEncoderTurn()

{

// return -1, 0, or +1

static int oldA = LOW;

70 30 Arduino Projects for the Evil Genius

LISTING PROJECT 11 (continued)

static int oldB = LOW;

int result = 0;

int newA = digitalRead(aPin);

int newB = digitalRead(bPin);

if (newA != oldA || newB != oldB)

{

// something has changed

if (oldA == LOW && newA == HIGH)

{

result = -(oldB * 2 - 1);

}

}

oldA = newA;

oldB = newB;

return result;

}

int setState()

{

if (state == 0)

{

setLights(HIGH, LOW, LOW);

targetCount = longPeriod;

state = 1;

}

else if (state == 1)

{

setLights(HIGH, HIGH, LOW);

targetCount = shortPeriod;

state = 2;

}

else if (state == 2)

{

setLights(LOW, LOW, HIGH);

targetCount = longPeriod;

state = 3;

}

else if (state == 3)

{

setLights(LOW, HIGH, LOW);

targetCount = shortPeriod;

state = 0;

}

}

void setLights(int red, int yellow, int green)

{

digitalWrite(redPin, red);

digitalWrite(yellowPin,

yellow); digitalWrite(greenPin,

green);

}

72 30 Arduino Projects for the Evil Genius

This sketch illustrates a useful technique that

lets you time events (turning an LED on for so

many seconds) while at the same time checking

the rotary encoder and button to see if they have

been turned or pressed. If we just used the Arduino

delay function with, say, 20,000, for 20 seconds,

we would not be able to check the rotary encoder

or switch in that period.

So what we do is use a very short delay (1

millisecond) but maintain a count that is

incremented each time round the loop. Thus, if we

want to delay for 20 seconds, we stop when the

count has reached 20,000. This is less accurate

than a single call to the delay function because the

1 millisecond is actually 1 millisecond plus the

processing time for the other things that are done

inside the loop.

Putting It All Together

Load the completed sketch for Project 11 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

You can press the rotary encoder button to test

the LEDs and turn the rotary encoder to change

how long the signal stays green and red.

Sensing Light

A common and easy-to-use device for measuring

light intensity is the light-dependent resistor or

LDR. They are also sometimes called

photoresistors.

The brighter the light falling on the surface of

the LDR, the lower the resistance. A typical LDR

will have a dark resistance of up to 2 MK and a

resistance when illuminated in bright daylight of

perhaps 20 KK.

We can convert this change in resistance to a

change in voltage by using the LDR, with a fixed

resistor as a voltage divider, connected to one of

our analog inputs. This schematic for this is shown

in Figure 5-12.

With a fixed resistor of 100K, we can do some

rough calculations about the voltage range to

expect at the analog input.

In darkness, the LDR will have a resistance of

2 MK, so with a fixed resistor of 100K, there will

be about a 20:1 ratio of voltage, with most of that

voltage across the LDR, so that would mean about

4V across the LDR and 1V at the analog pin.

On the other hand, if the LDR is in bright light,

its resistance might fall to 20 KK. The ratio of

voltages would then be about 4:1 in favor of the

fixed resistor, giving a voltage at the analog input

of about 4V.

A more sensitive photo detector is the

phototransistor. This functions like an ordinary

transistor except there is not usually a base

connection. Instead, the collector current is

controlled by the amount of light falling on the

phototransistor.

Figure 5-12 Using an LDR to measure light.

Chapter 5 Sensor Projects 73 ■

Project 12
Pulse Rate Monitor

This project uses an ultra-bright infrared (IR) LED

and a phototransistor to detect the pulse in your

finger. It then flashes a red LED in time with your

pulse.

Hardware

The pulse monitor works as follows: Shine the

bright LED onto one side of your finger while the

phototransistor on the other side of your finger

picks up the amount of transmitted light. The

resistance of the phototransistor will vary slightly

as the blood pulses through your finger.

The schematic for this is shown in Figure 5-13

and the breadboard layout in Figure 5-15. We have

chosen quite a high value of resistance for R1

because most of the light passing through the

finger will be absorbed and we want the

phototransistor to be quite sensitive. You may need

to experiment with the value of the resistor to get

the best results.

It is important to shield the phototransistor from

as much stray light as possible. This is particularly

important for domestic lights that actually fluctuate

at 50Hz or 60Hz and will add a considerable

amount of noise to our weak heart signal.

 Figure 5-13 Schematic for Project 12.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 5-mm red LED 23

D2 5-mm IR LED sender 940 nm 26

R1 56 KK 0.5W metal film resistor 12

R2 270 K 0.5W metal film resistor 6

R4 39 K 0.5W metal film resistor 4

T1 IR phototransistor

(same wavelength as D2) 36

74 30 Arduino Projects for the Evil Genius

For this reason, the phototransistor and LED are

built into a tube or corrugated cardboard held

together with duct tape. The construction of this is

shown in Figure 5-14.

Two 5-mm holes are drilled opposite each other

in the tube and the LED inserted into one side and

the phototransistor into the other. Short leads are

soldered to the LED and phototransistor, and then

another layer of tape is wrapped over everything to

hold it all in place. Be sure to check which colored

wire is connected to which lead of the LED and

phototransistor before you tape them up.

The breadboard layout for this project (Figure

5-15) is very straightforward.

The final “finger tube” can be seen in Figure

5-16.

Figure 5-15 Breadboard layout for Project 12.

Figure 5-16 Project 12. Pulse rate monitor.

Figure 5-14 Sensor tube for heart monitor.

Chapter 5 Sensor Projects 75 ■

Software

The software for this project is quite tricky to get

right. Indeed, the first step is not to run the entire

final script, but rather a test script that will gather

data that we can then paste into a spreadsheet and

chart to test out the smoothing algorithm (more on

this later).

The test script is provided in Listing Projet 12.

This script reads the raw signal from the analog

input and applies the smoothing function and then

writes both values to the Serial Monitor, where we

can capture them and paste them into a spreadsheet

for analysis. Note that the Serial Monitor’s

communications is set to its fastest rate to

minimize the effects of the delays caused by

sending the data. When you start the Serial

Monitor, you will need to change the serial speed

to 115200 baud.

The smoothing function uses a technique called

“leaky integration,” and you can see in the code

where we do this smoothing using the line:

The variable alpha is a number greater than 0

but less than 1 and determines how much

smoothing to do.

Put your finger into the sensor tube, start the

Serial Monitor, and leave it running for three or

four seconds to capture a few pulses.

Then, copy and paste the captured text into a

spreadsheet. You will probably be asked for the

column delimiter character, which is a comma. The

resultant data and a line chart drawn from the two

columns are shown in Figure 5-17.

The more jagged trace is from the raw data read

from the analog port, and the smoother trace

clearly has most of the noise removed. If the

smoothed trace shows significant noise—in

particular, any false peaks that will confuse the

monitor—increase the level of smoothing by

decreasing the value of alpha.

Once you have found the right value of alpha

for your sensor arrangement, you can transfer this

value into the real sketch and switch over to using

the real sketch rather than the test sketch. The real

sketch is provided in the following listing on the

next page.

double value = alpha * oldValue + (1 -

alpha) * rawValue;

LISTING PROJECT 12—TEST SCRIPT

int ledPin = 13;

int sensorPin = 0;

double alpha = 0.75;

int period = 20;

double change = 0.0;

void setup()

{

pinMode(ledPin, OUTPUT);

Serial.begin(115200);

}

void loop()

{

static double oldValue = 0;

static double oldChange = 0;

int rawValue =

analogRead(sensorPin);

double value = alpha * oldValue

+ (1 - alpha) * rawValue;

Serial.print(rawValue);

Serial.print(“,”);

Serial.println(value);

oldValue = value;

delay(period);

}

76 30 Arduino Projects for the Evil Genius

There now just remains the problem of detecting

the peaks. Looking at Figure 5-17, we can see that

if we keep track of the previous reading, we can

see that the readings are gradually increasing until

the change in reading flips over and becomes

negative. So, if we lit the LED whenever the old

change was positive but the new change was

negative, we would get a brief pulse from the LED

at the peak of each pulse.

Putting It All Together

Both the test and real sketch for Project 12 are in

your Arduino Sketchbook. For instructions on

downloading it to the board, see Chapter 1.

As mentioned, getting this project to work is a

little tricky. You will probably find that you have to

get your finger in just the right place to start

getting a pulse. If you are having trouble, run the

test script as described previously to check that

your detector is getting a pulse and the smoothing

factor alpha is low enough.

Figure 5-17 Heart monitor test data pasted into a spreadsheet.

LISTING PROJECT 12

int ledPin = 13;

int sensorPin = 0;

double alpha = 0.75;

int period = 20;

double change = 0.0;

void setup()

{

pinMode(ledPin, OUTPUT);

}

void loop()

{

static double oldValue = 0;

static double oldChange = 0;

int rawValue =

analogRead(sensorPin);

double value = alpha * oldValue

+ (1 - alpha) * rawValue;

change = value - oldValue;

digitalWrite(ledPin, (change <

0.0 && oldChange > 0.0));

oldValue = value;

oldChange = change;

delay(period);

}

Chapter 5 Sensor Projects 77 ■

The author would like to point out that this

device should not be used for any kind of real

medical application.

Measuring Temperature

Measuring temperature is a similar problem to

measuring light intensity. Instead of an LDR, a

device called a thermistor is used. As the

temperature increases, so does the resistance of the

thermistor.

When you buy a thermistor, it will have a stated

resistance. In this case, the thermistor chosen is

33 KK. This will be the resistance of the device

at 25°C.

The formula for calculating the resistance at a

particular temperature is given by:

R = Ro exp(–Beta/(T + 273) — Beta/(To + 273)

In this case, Ro is the resistance at 25ºC (33

KK) and beta is a constant value that you will find

in the thermistor’s datasheet. In this case, its value

is 4090.

So,

R = Ro exp(Beta/(T + 273) — Beta/298)

Rearranging this formula, we can get an

expression for the temperature knowing the

resistance.

R = Ro exp(Beta/(T + 273) — Beta/298)

If we use a 33 KK fixed resistor, we can

calculate the voltage at the analog input using the

formula:

V = 5 * 33K/(R + 33K)

so

R = ((5 * 33K)/V) — 33K

Since the analog value “a” is given by:

a = V * (1023/5)

then

V = a/205

and

R = ((5 * 33K * 205)/a) — 33K

R = (1025 × 33K/a) — 33K

We can rearrange our formula to give us a

temperature from the analog input, reading “a” as:

T = Beta/(ln(R/33) + (Beta/298)) — 273

and so finally we get:

T = Beta/(ln(((1025 × 33/a) — 33)/33) +

(Beta/298)) — 273

Phew, that’s a lot of math!

We will use this calculation in the next project

to create a temperature logger.

Project 13
USB Temperature Logger

This project is controlled by your computer, but

once given its logging instructions can be

disconnected and run on batteries to do its logging.

While logging, it stores its data, and then when the

logger is reconnected it will transfer its data back

over the USB connection, where it can be imported

into a spreadsheet. By default, the logger will

record 1 sample every five minutes, and can record

up to 255 samples.

To instruct the temperature logger from your

computer, we have to define some commands that

can be issued from the computer. These are shown

in Table 5-1.

78 30 Arduino Projects for the Evil Genius

Figure 5-18

TABLE 5-1 Temperature Logger Commands

R Read the data out of the logger as CSV

text

X Clear all data from the logger

C Centigrade mode

F Fahrenheit mode

1–9 Set the sample period in minutes from 1

to 9

G Go! start logging temperatures

? Reports the status of the device, number

of samples taken, etc.

This project just requires a thermistor and

resistor.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

R1 Thermistor, 33K at 25°C,

beta 4090 18

R2 33 KK 0.5W metal film resistor 10

■ If you cannot obtain a thermistor with the

correct value of beta, or resistance, you can

change these values in the sketch.

Hardware

The schematic diagram for Project 13 is shown in

Figure 5-18.

This is so simple that we can simply fit the

leads of the thermistor and resistor into the

Arduino board, as shown in Figure 5-19.

Software

The software for this project is a little more

complex than for some of our other projects (see

Listing Project 13). All of the variables that we

Schematic diagram for Project 13.

have used in our sketches so far are forgotten as

soon as the Arduino board is reset or disconnected

from the power. Sometimes we want to be able to

store data persistently so that it is there next time

we start up the board. This can be done by using

the special type of memory on the Arduino called

EEPROM, which stands for electrically erasable

programmable read-only memory. The Arduino

Duemilanove board has 1024 bytes of EEPROM.

This is the first project where we have used the

Arduino’s EEPROM to store values so that they

are not lost if the board is reset or disconnected

from the power. This means that once we have set

our data logging recording, we can disconnect it

from the USB lead and leave it running on

batteries. Even if the batteries go dead, our data

will still be there the next time we connect it.

You will notice that at the top of this sketch we

use the command #define for what in the past we

would have used variables for. This is actually a

more efficient way of defining constants—that is,

values that will not change during the running of

the sketch. So it is actually ideal for pin settings

and constants like beta. The command #define is

what is called a pre-processor directive, and what

happens is that just before the sketch is compiled,

Chapter 5 Sensor Projects 79 ■

Figure 5-19

A powered-up Arduino board with LED lit.

LISTING PROJECT 13

#include
<EEPROM.h>

#define

#define

#define

#define

#define

ledPin 13

analogPin 0

maxReadings 255

beta 4090

resistance 33

// from your thermistor's datasheet

float readings[maxReadings];

int lastReading =

EEPROM.read(0); boolean loggingOn

= false;

long period = 300;

long count = 0;

char mode = 'C';

void setup()

{

pinMode(ledPin, OUTPUT);

Serial.begin(9600);

Serial.println("Ready");

}

void loop()

{ (continued)

Chapter 5 Sensor Projects 81 ■

LISTING PROJECT 13 (continued)

if (Serial.available())

{

char ch = Serial.read();

if (ch == 'r' || ch == 'R')

{

sendBackdata();

}

else if (ch == 'x' || ch == 'X')

{

lastReading = 0;

EEPROM.write(0, 0);

Serial.println("Data cleared");

}

else if (ch == 'g' || ch == 'G')

{

loggingOn = true;

Serial.println("Logging started");

}

else if (ch > '0' && ch <= '9')

{

setPeriod(ch);

}

else if (ch == 'c' or ch == 'C')

{

Serial.println("Mode set to deg C");

mode = 'C';

}

else if (ch == 'f' or ch == 'F')

{

Serial.println("Mode set to deg F");

mode = 'F';

}

else if (ch == '?')

{

reportStatus();

}

}

if (loggingOn && count > period)

{

logReading();

count = 0;

}

count++;

delay(1000);

}

void sendBackdata()

{

loggingOn = false;

Serial.println("Logging stopped");

Serial.println("------ cut here ---------");

80 30 Arduino Projects for the Evil Genius

LISTING PROJECT 13 (continued)

Serial.print("Time (min)\tTemp (");

Serial.print(mode);

Serial.println(")");

for (int i = 0; i < lastReading; i++)

{

Serial.print((period * i) / 60);

Serial.print("\t");

float temp = getReading(i);

if (mode == 'F')

{

temp = (temp * 9) / 5 + 32;

}

Serial.println(temp);

}

Serial.println("------ cut here ---------");

}

void setPeriod(char ch)

{

int periodMins = ch - '0';

Serial.print("Sample period set to: ");

Serial.print(periodMins);

Serial.println(" mins");

period = periodMins * 60;

}

void logReading()

{

if (lastReading < maxReadings)

{

long a = analogRead(analogPin);

float temp = beta / (log(((1025.0 * resistance / a) - 33.0) / 33.0) +

(beta / 298.0)) - 273.0;

storeReading(temp, lastReading);

lastReading++;

}

else

{

Serial.println("Full! logging

stopped"); loggingOn = false;

}

}

void storeReading(float reading, int index)

{

EEPROM.write(0, (byte)index); // store the number of samples in byte 0

byte compressedReading = (byte)((reading + 20.0) * 4);

EEPROM.write(index + 1, compressedReading);

}

(continued)

82 30 Arduino Projects for the Evil Genius

LISTING PROJECT 13 (continued)

float getReading(int index)

{

lastReading = EEPROM.read(0);

byte compressedReading = EEPROM.read(index + 1);

float uncompressesReading = (compressedReading / 4.0) - 20.0;

return uncompressesReading;

}

void reportStatus()

{

Serial.println("----------------");

Serial.println("Status");

Serial.print("Sample period\t");

Serial.println(period / 60);

Serial.print("Num readings\t");

Serial.println(lastReading);

Serial.print("Mode degrees\t");

Serial.println(mode);

Serial.println("----------------");

}

all occurrences of its name anywhere in the sketch

are replaced by its value. It is very much a matter

of personal taste whether you use #define or a

variable.

Fortunately, reading and writing EEPROM

happens just one byte at a time. So if we want to

write a variable that is a byte or a char, we can just

use the functions EEPROM.write and

EEPROM.read, as shown in the example here:

char letterToWrite = 'A';

EEPROM.write(0, myLetter);

char letterToRead;

letterToRead = EEPROM.read(0);

The 0 in the parameters for read and write is the

address in the EEPROM to use. This can be any

number between 0 and 1023, with each address

being a location where one byte is stored.

In this project we want to store both the position

of the last reading taken (in the lastReading

variable) and all the readings. So we will record

lastReading in the first byte of EEPROM and then

the actual reading data in the 256 bytes that follow.

Each temperature reading is kept in a float, and

if you remember from Chapter 2, a float occupies

4 bytes of data. Here we had a choice: We could

either store all 4 bytes or find a way to encode the

temperature into a single byte. We decided to take

the latter route, as it is easier to do.

The way we encode the temperature into a

single byte is to make some assumptions about our

temperatures. First, we assume that any

temperature in Centigrade will be between –20 and

+40. Anything higher or lower would likely

damage our Arduino board anyway. Second, we

assume that we only need to know the temperature

to the nearest quarter of a degree.

With these two assumptions, we can take any

temperature value we get from the analog input,

add 20 to it, multiply it by 4, and still be sure that

we always have a number between 0 and 240.

Since a byte can hold a number between 0 and

255, that just fits nicely.

Chapter 5 Sensor Projects 83 ■

When we take our numbers out of EEPROM,

we need to convert them back to a float, which we

can do by reversing the process, dividing by 4 and

then subtracting 20.

Both encoding and decoding the values are

wrapped up in the functions storeReading and

getReading. So, if we decided to take a different

approach to storing the data, we would only have

to change these two functions.

Putting It All Together

Load the completed sketch for Project 13 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

Now open the Serial Monitor (Figure 5-20), and

for test purposes, we will set the temperature

logger to log every minute by typing 1 in the Serial

Monitor. The board should respond with the

message “Sample period set to: 1 mins.” If we

wanted to, we could then change the mode to

Fahrenheit by typing F into the Serial Monitor.

Now we can check the status of the logger by

typing ?.

In order to unplug the USB cable, we need to

have an alternative source of power, such as the

battery lead we made back in Project 6. You need

to have this plugged in and powered up at the same

time as the USB connector is connected if you

want the logger to keep logging after you

disconnect the USB lead.

Finally, we can type the G command to start

logging. We can then unplug the USB lead and

leave our logger running on batteries. After waiting

10 or 15 minutes, we can plug it back in and see

what data we have by opening the Serial Monitor

and typing the R command, the results of which

are shown in Figure 5-21. Select all the data,

including the Time and Temp headings at the top.

Copy the text to the clipboard (press CTRL-C on

Windows and LINUX, ALT-C on Macs), open a

spreadsheet in a program such as Microsoft Excel,

and paste it into a new spreadsheet (Figure 5-22).

Once in the spreadsheet, we can even draw a

chart using our data.

Summary

We now know how to handle various types of

sensors and input devices to go with our

knowledge of LEDs. In the next section we will

look at a number of projects that use light in

various ways and get our hands on some more

advanced display technologies, such as LCD text

panels and seven-segment LEDs.

Figure 5-20 Issuing commands through the Serial Monitor.

84 30 Arduino Projects for the Evil Genius

Figure 5-21 Data to copy and paste into a

spreadsheet.

 Figure 5-22 Temperature data imported into a spreadsheet.

Chapter 5 Sensor Projects 85 ■

C H A P T E R 6

Light Projects

IN THIS CHAPTER, we look at some more projects

based on lights and displays. In particular, we look

at how to use multicolor LEDs, seven-segment

LEDs, LED matrix displays, and LCD panels.

Project 14
Multicolor Light Display

This project uses a high-brightness, three-color

LED in combination with a rotary encoder.

Turning the rotary encoder changes the color

displayed by the LED.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 RGB LED (common anode) 31

R1-R3 100 K 0.5W metal film resistor 5

R4-6 100 KK 0.5W metal film

resistor 13

S1 Rotary encoder with switch 57

The LED lamp is interesting because it has three

LED lights in one four-pin package. The LED has

a common anode arrangement, meaning that the

positive connections of all three LEDs come out of

one pin (pin 2).

If you cannot find a four-pin RGB (Red, Green,

Blue) LED, you can use a six-pin device instead.

Simply connect the separate anodes together,

referring to the datasheet for the component.

Hardware

Figure 6-1 shows the schematic diagram for

Project 14 and Figure 6-2 the breadboard layout.

It’s a simple schematic diagram. The rotary

encoder has pull-down resistors for the direction

sensors and the push switch. For more detail on

rotary encoders and how they work, see Chapter 5.

Each LED has its own series resistor to limit the

current to about 30 mA per LED.

The LED package has a slight flatness to one

side. Pin 1 is the pin closest to that edge. The other

way to identify the pins is by length. Pin 2 is the

common anode and is the longest pin.

The completed project is shown in Figure 6-3.

Each of the LEDs (red, green, and blue) is

driven from a pulse width modulation (PWM)

output of the Arduino board, so that by varying the

output of each LED, we can produce a full

spectrum of visible light colors.

The rotary encoder is connected in the same

way as for Project 11: rotating it changes the color

and pressing it will turn the LED on and off.

85

86 30 Arduino Projects for the Evil Genius

Figure 6-1 Schematic diagram for Project 14.

Figure 6-2 Breadboard layout for Project 14.

Chapter 6 Light Projects 87 ■

Figure 6-3

Project 14. Multicolor Light Display.

Software

This sketch (Listing Project 14) uses an array to

represent the different colors that will be displayed

by the LED. Each of the elements of the array is a

long 32-bit number. Three of the bytes of the long

number are used to represent the red, green, and

blue components of the color, which correspond to

how brightly each of the red, green, or blue LED

elements should be lit. The numbers in the array

are shown in hexadecimal and correspond to the

hex number format used to represent 24-bit colors

on webpages. If there is a particular color that you

want to try and create, find yourself a web color

chart by typing web color chart into your favorite

search engine. You can then look up the hex value

for the color that you want.

LISTING PROJECT 14

int redPin = 9;

int greenPin = 10;

int bluePin = 11;

int aPin = 6;

int bPin = 7;

int buttonPin = 5;

boolean isOn = true;

int color = 0;

long colors[48]= {

0xFF2000, 0xFF4000, 0xFF6000, 0xFF8000, 0xFFA000, 0xFFC000, 0xFFE000, 0xFFFF00,

0xE0FF00, 0xC0FF00, 0xA0FF00, 0x80FF00, 0x60FF00, 0x40FF00, 0x20FF00, 0x00FF00,

0x00FF20, 0x00FF40, 0x00FF60, 0x00FF80, 0x00FFA0, 0x00FFC0, 0x00FFE0, 0x00FFFF,

0x00E0FF, 0x00C0FF, 0x00A0FF, 0x0080FF, 0x0060FF, 0x0040FF, 0x0020FF, 0x0000FF,

0x2000FF, 0x4000FF, 0x6000FF, 0x8000FF, 0xA000FF, 0xC000FF, 0xE000FF, 0xFF00FF,

(continued)

88 30 Arduino Projects for the Evil Genius

LISTING PROJECT 14 (continued)

0xFF00E0, 0xFF00C0, 0xFF00A0, 0xFF0080, 0xFF0060, 0xFF0040, 0xFF0020, 0xFF0000

};

void setup()

{

pinMode(aPin, INPUT);

pinMode(bPin, INPUT);

pinMode(buttonPin, INPUT);

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

}

void loop()

{

if (digitalRead(buttonPin))

{

isOn = ! isOn;

delay(200); // de-bounce

}

if (isOn)

{

int change = getEncoderTurn();

color = color + change;

if (color < 0)

{

color = 47;

}

else if (color > 47)

{

color = 0;

}

setColor(colors[color]);

}

else

{

setColor(0);

}

delay(1);

}

int getEncoderTurn()

{

// return -1, 0, or +1

static int oldA = LOW;

static int oldB = LOW;

int result = 0;

int newA = digitalRead(aPin);

int newB = digitalRead(bPin);

if (newA != oldA || newB != oldB)

{

Chapter 6 Light Projects 89 ■

LISTING PROJECT 14 (continued)

// something has changed

if (oldA == LOW && newA == HIGH)

{

result = -(oldB * 2 - 1);

}

}

oldA = newA;

oldB = newB;

return result;

}

void setColor(long rgb)

{

int red = rgb >> 16;

int green = (rgb >> 8) & 0xFF;

int blue = rgb & 0xFF;

analogWrite(redPin, 255 - red);

analogWrite(greenPin, 255 - green);

analogWrite(bluePin, 255 - blue);

}

The 48 colors in the array are chosen from just

such a table, and are a range of colors more or less

spanning the spectrum from red to violet.

Putting It All Together

Load the completed sketch for Project 14 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

Seven-Segment LEDs

There was a time when the height of fashion was

an LED watch. This required the wearer to press a

button on the watch for the time to magically

appear as four bright red digits. After a while, the

inconvenience of having to use both limbs to tell

the time overcame the novelty of a digital watch,

and the Evil Genius went out and bought an LCD

watch instead. This could only be read in bright

sunlight.

Seven-segment LEDs (see Figure 6-4) have

largely been superseded by backlit LCD displays

(see later in this chapter), but they do find uses

from time to time. They also add that “Evil

Genius” feel to a project.

Figure 6-5 shows the circuit for driving a single

seven-segment display.

Figure 6-4 Seven-segment LED display.

Chapter 6 Light Projects 91 ■

A single seven-segment LED is not usually a

great deal of use. Most projects will want two or

four digits. When this is the case, we will not have

enough digital output pins to drive each display

separately and so the arrangement of Figure 6-6 is

used.

Rather like our keyboard scanning, we are going

to activate each display in turn and set the

segments for that before moving on to the next

digit. We do this so fast that the illusion of all

displays being lit is created.

Each display could potentially draw the current

for eight LEDs at once, which could amount to

160 mA (at 20 mA per LED)—far more than we

can take from a digital output pin. For this reason,

we use a transistor that is switched by a digital

output to enable each display in turn.

The type of transistor we are using is called a

bipolar transistor. It has three connections: the

emitter, base, and collector. When a current flows

through the base of the transistor and out through

the emitter, it allows a much greater current to

flow through from the collector to the emitter. We

have met this kind of transistor before in Project 4,

where we used it to control the current to a high-

power Luxeon LED.

We do not need to limit the current that flows

through the collector to the emitter, as this is

already limited by the series resistors for the

LEDs. However, we do need to limit the current

flowing into the base. Most transistors will

multiply the current by a factor of 100 or more, so

we only need to allow about 2 mA to flow through

the base to fully turn on the transistor.

Transistors have the interesting property that

under normal use, the voltage between base and

emitter is a fairly constant 0.6V no matter how

much current is flowing. So, if our Arduino pin

supplies 5V, 0.6 of that will be across the

Figure 6-5 An Arduino board driving a seven-segment LED.

90 30 Arduino Projects for the Evil Genius

Figure 6-6

Driving more than one seven-segment LED from an Arduino board.

base/emitter of the transistor, meaning that our

resistor should have a value of about:

R = V/I

R = 4.4/2mA = 2.2 KK

In actual fact it would be just fine if we let 4 mA

flow because the digital output can cope with

about 40 mA, so let’s choose the nice standard

resistor value of 1 KK, which will allow us to be

sure that the transistor will act like a switch and

always turn fully on or fully off.

Project 15
Seven-Segment LED Double
Dice

In Project 9 we made a single dice using seven

separate LEDs. In this project we will use two

seven-segment LED displays to create a double

dice.

Hardware

The schematic for this project is shown in Figure

6-7.

The seven-segment LED module that we are

using is described as “common anode,” which

means that all the anodes (positive ends) of the

segment LEDs are connected together. So to

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 Two-digit, seven-segment

LED display (common anode) 33

R1 100 KK 0.5W metal film

resistor 13

R4-13 270 K 0.5W metal film resistor 6

R2, R3 1 KK 7

T1, T2 BC307 39

S1 Push switch 48

92 30 Arduino Projects for the Evil Genius

switch each display on in turn, we must control the

positive supply to each of the two common anodes

in turn. This is in contrast to how we controlled the

power to the Luxeon LED in Project 4, where we

controlled the power on the ground side of the

circuit. This all means that we are going to use a

different type of transistor. Instead of the NPN

(negative-positive-negative) transistor we used

before, we need to use a PNP (positive-negative-

positive) transistor. You will notice the different

position of the arrow in the circuit symbol for the

transistor to indicate this.

If we were using a common cathode seven-

segment display, then we would have an NPN

transistor, but at the bottom of the circuit rather

than at the top.

The breadboard layout and photograph of the

project are shown in Figures 6-8 and 6-9.

To reduce the number of wires required, the

seven-segment display is placed close to the

Arduino board so that the resistors can directly

connect between the Arduino board connectors and

the breadboard. This does mean that there are

relatively long and bare resistor leads, so take care

to ensure that none of them are touching each

other. This also accounts for the apparently random

allocation of Arduino pins to segments on the LED

display. They are arranged like that for ease of

connection.

Software

We use an array to contain the pins that are

connected to each of the segments “a” to “g” and

the decimal point. We also use an array to

determine which segments should be lit to display

any particular digit. This is a two-dimensional

array, where each row represents a separate digit (0

to 9) and each column a segment (see Listing

Project 15).

Figure 6-7 Schematic diagram for Project 15.

Chapter 6 Light Projects 93 ■

Figure 6-8 Breadboard layout for Project 15.

Figure 6-9 Project 15. Double seven-segment LED dice.

94 30 Arduino Projects for the Evil Genius

LISTING PROJECT 15

int segmentPins[] = {3, 2, 19, 16, 18, 4, 5, 17};

int displayPins[] = {10, 11};

int buttonPin = 12;

byte digits[10][8] = {

// a b c d e f g .

{ 1, 1, 1, 1, 1, 1, 0, 0}, // 0

{ 0, 1, 1, 0, 0, 0, 0, 0}, // 1

{ 1, 1, 0, 1, 1, 0, 1, 0}, // 2

{ 1, 1, 1, 1, 0, 0, 1, 0}, // 3

{ 0, 1, 1, 0, 0, 1, 1, 0}, // 4

{ 1, 0, 1, 1, 0, 1, 1, 0}, // 5

{ 1, 0, 1, 1, 1, 1, 1, 0}, // 6

{ 1, 1, 1, 0, 0, 0, 0, 0}, // 7

{ 1, 1, 1, 1, 1, 1, 1, 0}, // 8

{ 1, 1, 1, 1, 0, 1, 1, 0} // 9

};

void setup()

{

for (int i=0; i < 8; i++)

{

pinMode(segmentPins[i], OUTPUT);

}

pinMode(displayPins[0],

OUTPUT); pinMode(displayPins[0],

OUTPUT); pinMode(buttonPin,

INPUT);

}

void loop()

{

static int dice1;

static int dice2;

if (digitalRead(buttonPin))

{

dice1 = random(1,7);

dice2 = random(1,7);

}

updateDisplay(dice1, dice2);

}

void updateDisplay(int value1, int value2)

{

digitalWrite(displayPins[0],

HIGH); digitalWrite(displayPins[1],

LOW); setSegments(value1);

delay(5);

digitalWrite(displayPins[0],

LOW);

Chapter 6 Light Projects 95 ■

LISTING PROJECT 15 (continued)

digitalWrite(displayPins[1],

HIGH); setSegments(value2);

delay(5);

}

void setSegments(int n)

{

for (int i=0; i < 8; i++)

{

digitalWrite(segmentPins[i], ! digits[n][i]);

}

}

To drive both displays, we have to turn each

display on in turn, setting its segments

appropriately. So our loop function must keep the

values that are displayed in each display in

separate variables: dice1 and dice2.

To throw the dice, we use the random function,

and whenever the button is pressed, a new value

will be set for dice1 and dice2. This means that the

throw will also depend on how long the button is

pressed for, so we do not need to worry about

seeding the random number generator.

Putting It All Together

Load the completed sketch for Project 15 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

Project 16
LED Array

LED arrays are one of those components that just

look like they would be useful to the Evil Genius.

They consist of an array of LEDs (in this case, 8

by 8). These devices can have just a single LED at

each position; however, in the device that we are

going to use, each of these LEDs is actually a pair

of LEDs, one red and one green, positioned under

a single lens so that they appear to be one dot. We

can then light either one or both LEDs to make a

red, green, or orange color.

The completed project is shown in Figure 6-10.

This project makes use of one of these devices

and allows multicolor patterns to be displayed on it

over the USB connection. As projects go, this one

involves a lot of components and will use almost

every connection pin of the Arduino.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

8 by 8 LED array (two-color) 34

R1-16 100 K 0.5W metal film resistor 5

IC1 4017 decade counter 46

T1-8 2N7000 42

Extra large breadboard 72 x 2

Hardware

Figure 6-11 shows the schematic diagram for the

project. As you might expect, the LEDs are

organized in rows and columns with all the

negative leads for a particular column connected

96 30 Arduino Projects for the Evil Genius

together and a separate positive connection to each

LED in the row.

To drive the matrix, we have to do the same

kind of trick that we did with the two-digit,

seven-segment display in Project 15 and switch

between columns, each time setting the appropriate

row of LEDs on and off to create the illusion that

all the LEDs are lit at the same time. Actually,

only a maximum of 16 (8 red + 8 green) are on at

any instant.

There are 24 leads on the LED array, and only

17 pins on the Arduino that we can easily use (D2-

13 and A0-5). So we are going to use an integrated

circuit called a decade counter to control each of

the columns in turn.

The 4017 decade counter has ten output pins,

which take it in turn to go high whenever there is a

pulse at the “clock” pin. It also has a “reset” pin

that sets the count back to 0. So instead of needing

an Arduino board output for each row, we just

need two outputs: one for clock and one for reset.

Each of the outputs of the 4017 is connected to

a field effect transistor (FET). The only reason that

we have used an FET rather than a bipolar

transistor is that we can connect the gate of the

FET directly to an Arduino board output without

having to use a current-limiting resistor.

Note that we do not use the first output of the

4017. This is because this pin is on as soon as the

4017 is reset and this would lead to that column

being enabled for longer than it should be, making

that column appear brighter than the others.

To build this project on the breadboard, we

actually need a bigger breadboard than we have

Figure 6-10 Project 16. LED Array.

Chapter 6 Light Projects 97 ■

used so far. The layout for this is shown in Figure

6-12. Be careful to check every connection as you

plug your wires in because connections

accidentally swapped over produce very strange

and hard-to-debug results.

Software

The software for this project is quite short (Listing

Project 16), but the tricky bit is getting the timing

right, because if you do things too quickly, the 4017

will not have moved properly onto the next row

before the next column starts being set. This causes

a blurring of colors. On the other hand, if you do

things too slowly the display will flicker. This is the

reason for the calls to delayMicroseconds. This

Figure 6-11 Schematic diagram for Project 16.

98 30 Arduino Projects for the Evil Genius

Figure 6-12

Breadboard layout for Project 16.

LISTING PROJECT 16

int clockPin = 18;

int resetPin = 19;

int greenPins[8] = {2, 3, 4, 5, 6, 7, 8, 9};

int redPins[8] = {10, 11, 12, 13, 14, 15, 16, 17};

int row = 0;

int col = 0;

// colors off = 0, green = 1, red = 2, orange = 3

byte pixels[8][8] = {
{1, 1, 1, 1, 1, 1, 1, 1},
{1, 2, 2, 2, 2, 2, 2, 1},
{1, 2, 3, 3, 3, 3, 2, 1},
{1, 2, 3, 3, 3, 3, 2, 1},
{1, 2, 3, 3, 3, 3, 2, 1},
{1, 2, 3, 3, 3, 3, 2, 1},
{1, 2, 2, 2, 2, 2, 2, 1},
{1, 1, 1, 1, 1, 1, 1, 1}
};

Chapter 6 Light Projects 99 ■

LISTING PROJECT 16 (continued)

void setup()

{

pinMode(clockPin, OUTPUT);

pinMode(resetPin, OUTPUT);

for (int i = 0; i < 8; i++)

{

pinMode(greenPins[i], OUTPUT);

pinMode(redPins[i], OUTPUT);

}

Serial.begin(9600);

}

void loop()

{

if (Serial.available())

{

char ch = Serial.read();

if (ch == 'x')

{

clear();

}

if (ch >= 'a' and ch <= 'g')

{

col = 0;

row = ch - 'a';

}

else if (ch >= '0' and ch <= '3')

{

byte pixel = ch - '0';

pixels[row][col] = pixel;

col++;

}

}

refresh();

}

void refresh()

{

pulse(resetPin);

delayMicroseconds(2000);

for (int row = 0; row < 8; row++)

{

for (int col = 0; col < 8; col++)

{

int redPixel = pixels[col][row] & 2;

int greenPixel = pixels[col][row] & 1;

digitalWrite(greenPins[col],

greenPixel); digitalWrite(redPins[col],

redPixel);

}

pulse(clockPin);

(continued)

Chapter 6 Light Projects 101 ■

LISTING PROJECT 16 (continued)

delayMicroseconds(1500);

}

}

void clear()

{

for (int row = 0; row < 8; row++)

{

for (int col = 0; col < 8; col++)

{

pixels[row][col] = 0;

}

}

}

void pulse(int pin)

{

delayMicroseconds(20);

digitalWrite(pin, HIGH);

delayMicroseconds(50);

digitalWrite(pin, LOW);

delayMicroseconds(50);

}

function is like the delay function, but allows

shorter delays to be made.

Apart from that, the code is fairly

straightforward.

Putting It All Together

Load the completed sketch for Project 16 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

You can now try out the project. As soon as it is

connected to the USB port and has reset, you

should see a test pattern of a green outer ring with

a red ring inside that and then a block of orange in

the center.

Open the Arduino software’s Serial Monitor and

type x. This should clear the display. You can now

change each line of the display by entering a letter

for the row (a–h) followed immediately by eight

digits. Each digit will be 0 for off, 1 for green, 2

for red, and 3 for orange. So typing a12121212

will set the top row to alternating red and green.

When designing patterns to display, it is a good

idea to write out the lines in a text editor or word

processor and then paste the entire pattern into the

Serial Monitor.

You might like to try entering the following:

x

a11222211

b11222211

c11222211

d11111111

e11111111

f11222211

g11222211

h11111111

100 30 Arduino Projects for the Evil Genius

or

or

This is a really good project for the Evil Genius

to experiment with. You may like to try and

produce an animation effect by changing the pixels

array while in the loop.

LCD Displays

If our project needs to display more than a few

numeric digits, we likely want to use an LCD

display module. These have the advantage that

they come with built-in driver electronics, so a lot

of the work is already done for us and we do not

have to poll round each digit, setting each segment.

There is also something of a standard for these

devices, so there are lots of devices from different

manufacturers that we can use in the same way.

The devices to look for are the ones that use the

HD44780 driver chip.

LCD panels can be quite expensive from retail

electronic component suppliers, but if you look on

the Internet, they can often be bought for a few

dollars, particularly if you are willing to buy a few

at a time.

Figure 6-13 shows a module that can display

two rows of 16 characters. Each character is made

up of an array of 7 by 5 segments. So it is just as

well that we do not have to drive each segment

separately.

 Figure 6-13 2 by 16 LCD module.

x

a22222222

b12333321

c11211211

d11122111

e11233211

f12333321

g22222222

h11111111

x

a11111111

b22212221

c11212121

d22212121

e11212121

f22212221

g11111111

h11111111

102 30 Arduino Projects for the Evil Genius

The display module includes a character set so

that it knows which segments to turn on for any

character. This means we just have to tell it which

character to display where on the display.

We need just seven digital outputs to drive the

display. Four of these are data connections and

three control the flow of data. The actual details of

what is sent to the LCD module can be ignored, as

there is a standard library that we can use.

This is illustrated in the next project.

Project 17
USB Message Board

This project will allow us to display a message on

an LCD module from our computer. There is no

reason why the LCD module needs to be right next

to the computer, so you could use it on the end of a

long USB lead to display messages remotely—

next to an intercom at the door to the Evil Genius’s

lair, for example.

Hardware

The schematic diagram for the LCD display is

shown in Figure 6-14 and the breadboard layout in

Figure 6-15. As you can see, the only components

required are the LCD module itself and a resistor

to limit the current to the LED backlight.

The LCD module receives data four bits at a

time through the connections D4-7. The LCD

module also has connectors for D0-3, which are

only used for transferring data eight bits at a time.

To reduce the number of pins required, we do not

use these.

The easiest way to attach the LCD module to

the breadboard is to solder header pins into the

connector strip, and then the module can be

plugged directly into the breadboard.

Software

The software for this project is straightforward

(Listing Project 17). All the work of

communicating with the LCD module is taken

care of by the LCD library. This library is included

as part of the standard Arduino software

installation, so we do not need to download or

install anything special.

The loop reads any input and if it is a #

character clears the display. If it is a / character, it

moves to the second row; otherwise, it just

displays the character that was sent.

COMPONENTS AND EQUIPMENT

Description Appendix

 Arduino Diecimila or

Duemilanove board or clone

1

 LCD Module

(HD44780 controller)

58

R1 100 K 0.5W metal film resistor 5

 Strip of 0.1-inch header pins

(at least 16)

55

100 30 Arduino Projects for the Evil Genius

103

Figure 6-14 Schematic diagram for Project 17.

Figure 6-15 Breadboard layout for Project 17.

104 30 Arduino Projects for the Evil Genius

LISTING PROJECT 17

#include <LiquidCrystal.h>

// LiquidCrystal display with:

// rs on pin 12

// rw on pin 11

// enable on pin 10

// d4-7 on pins 5-2

LiquidCrystal lcd(12, 11, 10, 5, 4, 3, 2);

void setup()

{

Serial.begin(9600);

lcd.begin(2, 20);

lcd.clear();

lcd.setCursor(0,0);

lcd.print("Evil Genius");

lcd.setCursor(0,1);

lcd.print("Rules");

}

void loop()

{

if (Serial.available())

{

char ch = Serial.read();

if (ch == '#')

{

lcd.clear();

}

else if (ch == '/')

{

lcd.setCursor(0,1);

}

else

{

lcd.write(ch);

}

}

}

100 30 Arduino Projects for the Evil Genius

Chapter 6 ■ Light Projects 105

Putting It All Together

Load the completed sketch for Project 17 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

We can now try out the project by opening the

Serial Monitor and entering some text.

Later on in Project 22, we will be using the

LCD panel again with a thermistor and rotary

encoder to make a thermostat.

Summary

That’s all for LED- and light-related projects. In

the next chapter we will look at projects that use

sound in one way or another.

This page intentionally left blank

C H A P T E R 7

Sound Projects

AN ARDUINO BOARD can be used to both generate

sounds as an output and receive sounds as an input

using a microphone. In this chapter, we have

various “musical instrument” type projects and

also projects that process sound inputs.

Although not strictly a “sound” project, our first

project is to create a simple oscilloscope so that we

can view the waveform at an analog input.

Project 18
Oscilloscope

An oscilloscope is a device that allows you to see

an electronic signal so that it appears as a

waveform. A traditional oscilloscope works by

amplifying a signal to control the position of a dot

on the Y-axis (vertical axis) of a cathode ray tube

while a timebase mechanism sweeps left to right on

the X-axis and then flips back when it reaches the

end. The result will look something like Figure 7-1.

These days, cathode ray tubes have largely been

replaced by digital oscilloscopes that use LCD

displays, but the principles remain the same.

This project reads values from the analog input

and sends them over USB to your computer.

Rather than be received by the Serial Monitor, they

are received by a little program that displays them

in an oscilloscope-like manner. As the signal

changes, so does the shape of the waveform.

Note that as oscilloscopes go, this one is not

going to win any prizes for accuracy or speed, but

it is kind of fun.

107

Figure 7-1 50-Hz noise on oscilloscope.

Chapter 7 Sound Projects 109 ■

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

C1 220nF nonpolarized 21

C2, C3 100 F electrolytic 22

R1, R2 1 M 0.5W metal film resistor 15

R3, R4 1 K 0.5W metal film resistor 7

This is the first time we have used capacitors.

C1 can be connected either way round; however,

C2 and C3 are polarized and must be connected

the correct way round, or they are likely to be

damaged. As with LEDs, on polarized capacitors,

the positive lead (marked as the white rectangle on

the schematic symbol) is longer than the negative

lead. The negative lead also often has a – (minus)

or diamond shape next to the negative lead.

Hardware

Figure 7-2 shows the schematic diagram for

Project 18 and Figure 7-3 the breadboard layout.

There are two parts to the circuit. R1 and R2 are

high-value resistors that “bias” the signal going to

the analog input to 2.5V. They are just like a

voltage divider. The capacitor C1 allows the signal

to pass without any direct current (DC) component

to the signal (alternating current, or AC, mode in a

traditional oscilloscope).

R3, R4, C2, and C3 just provide a stable

reference voltage of 2.5V. The reason for this is so

that our oscilloscope can display both positive and

negative signals. So one terminal of our test lead is

fixed at 2.5V; any signal on the other lead will be

relative to that. A positive voltage will mean a

value at the analog input of greater than 2.5V, and

a negative value will mean a value at the analog

input of less than 2.5V.

Figure 7-4 shows the completed oscilloscope.

 Figure 7-2 Schematic diagram for Project 18.

108 30 Arduino Projects for the Evil Genius

Software

The sketch is short and simple (Listing Project 18).

Its only purpose is to read the analog input and

blast it out to the USB port as fast as possible.

The first thing to note is that we have increased

the baud rate to 115,200, the highest available. To

get as much data through the connection as

possible without resorting to complex compression

techniques, we are going to shift our raw ten-bit

value right two bits (>> 2); this has the effect

of dividing it by four and making it fit into a

single byte.

We obviously need some corresponding

software to run on our computer so that we can see

the data sent by the board (Figure 7-1). This can be

downloaded from www.arduinoevilgenius.com.

To install the software, you first need to install

the Ruby language on your computer. If you use a

Mac, you are in luck, because they come with

Ruby pre-installed. If you are using Windows or

Figure 7-3 Breadboard layout for Project 18.

Figure 7-4 Project 18. Oscilloscope.

http://www.arduinoevilgenius.com/

Chapter 7 Sound Projects 123 ■

To run the software, change directory in your

terminal or command prompt to the directory

where you downloaded scope.rb. Then just type:

A window like Figure 7-1 should then appear.

LINUX, please follow the instructions at

http://www.ruby-lang.org/en/downloads.

Once you have installed Ruby, the next step is

to install an optional Ruby module to communicate

with the USB port. To install this, open a

command prompt in Windows or a terminal for

Mac and Linux, and if using Windows type:

If you are using Mac or Linux, enter:

If everything has worked okay, you should see a

message like this:

Putting It All Together

Load the completed sketch for Project 18 from

your Arduino Sketchbook and download it to the

board (see Chapter 1). Install the software for your

computer as described previously, and you are

ready to go.

The easiest way to test the oscilloscope is to use

the one readily available signal that permeates

most of our lives and that is mains hum. Mains

electricity oscillates at 50 or 60Hz (depending on

where you live in the world), and every electrical

appliance emits electromagnetic radiation at this

frequency. To pick it up, all you have to do is

touch the test lead connected to the analog input

and you should see a signal similar to that of

Figure 7-1. Try waving your arm around near any

electrical equipment and see how this signal

changes.

As well as showing the waveform, the window

contains a small box with a number in it. This is

the number of samples per second. Each sample

represents one pixel across the window, and the

window is 600 pixels wide. A sample rate of 4700

samples per second means that each sample has a

duration of 1/4700 seconds and so the full width of

600 samples represents 600/4700 or 128

milliseconds. The wavelength in Figure 7-1 is

about 1/6th of that, or 21 milliseconds, which

equals a frequency of 1/0.021 or 47.6Hz. That’s

close enough to confirm that what we are seeing

there is a mains frequency hum of 50Hz.

ruby scope.rb

LISTING PROJECT 18

#define CHANNEL_A_PIN 0

void setup()

{

Serial.begin(115200);

}

void loop()

{

int value =

analogRead(CHANNEL_A_PIN);

value = (value >> 2) & 0xFF;

Serial.print(value, BYTE);

delayMicroseconds(100);

}

gem install ruby-serialport

sudo gem install ruby-serialport

Building native extensions. This could

take a while...

Successfully installed ruby-

serialport-0.7.0

1 gem installed

Installing ri documentation for

ruby-serialport-0.7.0...

Installing RDoc documentation for

ruby-serialport-0.7.0...

http://www.ruby-lang.org/en/downloads

110 30 Arduino Projects for the Evil Genius

The amplitude of the signal, as displayed in

Figure 7-1, has a resolution of one pixel per

sample step, there being 256 steps. So if you

connect the two test leads together, you should see

a horizontal line halfway across the window. This

corresponds to 0V and is 128 pixels from the top

of the screen, as the window is 256 pixels high.

This means that since the signal is about two-thirds

of the window, the amplitude of the signal is about

3V peak to peak.

You will notice that the sample rate changes

quite a lot, something that reinforces that this is the

crudest of oscilloscopes and should not be relied

on for anything critical.

To alter the timebase, change the value in the

delayMicroseconds function.

Sound Generation

You can generate sounds from an Arduino board by

just turning one of its pins on and off at the right

frequency. If you do this, the sound produced is

rough and grating. This is called a square wave. To

produce a more pleasing tone, you need a signal that

is more like a sine wave (see Figure 7-5).

Generating a sine wave requires a little bit of

thought and effort. A first idea may be to use the

analog output of one of the pins to write out the

waveform. However, the problem is that the analog

outputs from an Arduino are not true analog

outputs but PWM outputs that turn on and off very

rapidly. In fact, their switching frequency is at an

audio frequency, so without a lot of care, our

signal will sound as bad as a square wave.

A better way is to use a digital-to-analog

converter, or DAC as they are known. A DAC has a

number of digital inputs and produces an output

voltage proportional to the digital input value.

Fortunately, it is easy to make a simple DAC—all

you need are resistors.

Figure 7-6 shows a DAC made from what is

called an R-2R resistor ladder.

 Figure 7-5 Square and sine waves.

112 30 Arduino Projects for the Evil Genius

Figure 7-6

It uses resistors of a value R and twice R, so R

might be 5 KK and 2R 10 KK. Each of the digital

inputs will be connected to an Arduino digital

output. The four digits represent the four bits of

the digital number. So this gives us 16 different

analog outputs, as shown in Table 7-1.

Project 19
Tune Player

This project will play a series of musical notes

through a miniature loudspeaker using a DAC to

approximate a sine wave.

DAC using an R-2R ladder.

If you can get a miniature loudspeaker with

leads for soldering to a PCB, then this can be

plugged directly into the breadboard. If not, you

will either have to solder short lengths of solid-

core wire to the terminals or, if you do not have

access to a soldering iron, carefully twist some

wires round the terminals.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

C1 100nF non-polarized 20

C2 100 µF, 16V electrolytic 22

R1-5 10 KK 0.5W metal film resistor 9

R6-8 4.7 KK 0.5W metal film resistor 8

R9 1 MK 0.5W metal film resistor 15

R10 100 KK linear potentiometer 13

IC1 TDA7052 1W audio amplifier 47

Miniature 8 K loudspeaker 59

TABLE 7-1 Analog Output from Digital Inputs

D3 D2 D1 D0 Output

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

1 1 1 0 14

1 1 1 1 15

Chapter 7 Sound Projects 113 ■

Hardware

To try and keep the number of components to a

minimum, we have used an integrated circuit to

amplify the signal and drive the loudspeaker. The

TDA7052 IC provides 1W of power output in an

easy-to-use little eight-pin chip.

Figure 7-7 shows the schematic diagram for

Project 19 and the breadboard layout is shown in

Figure 7-8.

C1 is used to link the output of the ADC to the

input of the amplifier, and C2 is used as a

decoupling capacitor that shunts any noise on the

power lines to ground. This should be positioned

as close as possible to IC1.

R9 and the variable resistor R10 form a

potential divider to reduce the signal from the

resistor ladder by at least a factor of 10, depending

on the setting of the variable resistor.

Software

To generate a sine wave, the sketch steps through a

series of values held in the sin16 array. Theses

values are shown plotted on a chart in Figure 7-9.

It is not the smoothest sine wave in the world, but

is a definite improvement over a square wave (see

Listing Project 19).

The playNote function is the key to generating

the note. The pitch of the note generated is

controlled by the delay after each step of the signal.

The loop to write out the waveform is itself inside a

loop that writes out a number of cycles sufficient to

make each note about the same duration.

Figure 7-7 Schematic diagram for Project 19.

114 30 Arduino Projects for the Evil Genius

Figure 7-8

Breadboard layout for Project 19.

LISTING PROJECT 19

int dacPins[] = {2, 4, 7, 8};

int sin16[] = {7, 8, 10, 11, 12, 13, 14, 14, 15, 14, 14, 13, 12, 11,

10, 8, 7, 6, 4, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6};

int

//

int

//

lowToneDurations[] = {120, 105, 98, 89, 78, 74, 62};

A B C D

highToneDurations[] = { 54, 45, 42, 36, 28,

E F

26, 22

a b c d e f

G

};

g

// Scale

//char* song = "A B C D E F G a b c d e f g";

// Jingle Bells

//char* song = "E E EE E E EE E G C D EEEE F F F F F E E E E D D E DD GG E E EE

E E EE E G C D EEEE F F F F F E E E G G F D CCCC";

// Jingle Bells - Higher

char* song = "e e ee e e ee e g c d eeee f f f f f e e e e d d e dd gg e e ee e

e ee e g c d eeee f f f f f e e e g g f d cccc";

void setup()

{

for (int i = 0; i < 4; i++)

{

pinMode(dacPins[i],

OUTPUT);

}

}

void loop()

Chapter 7 Sound Projects 115 ■

LISTING PROJECT 19 (continued)

{

int i = 0;

char ch = song[0];

while (ch != 0)

{

if (ch == ' ')

{

delay(75);

}

else if (ch >= 'A' and ch <= 'G')

{

playNote(lowToneDurations[ch - 'A']);

}

else if (ch >= 'a' and ch <= 'g')

{

playNote(highToneDurations[ch - 'a']);

}

i++;

ch = song[i];

}

delay(5000);

}

void setOutput(byte value)

{

digitalWrite(dacPins[3], ((value & 8) > 0));

digitalWrite(dacPins[2], ((value & 4) > 0));

digitalWrite(dacPins[1], ((value & 2) > 0));

digitalWrite(dacPins[0], ((value & 1) > 0));

}

void playNote(int pitchDelay)

{

long numCycles = 5000 / pitchDelay + (pitchDelay / 4);

for (int c = 0; c < numCycles; c++)

{

for (int i = 0; i < 32; i++)

{

setOutput(sin16[i]);

delayMicroseconds(pitchDelay);

}

}

}

116 30 Arduino Projects for the Evil Genius

The playNote function calls setOutput to set the

value of the four digital pins connected to the

resistor ladder. The & (and) operator is used to

mask the value so that we only see the value of the

bit we are interested in.

Tunes are played from an array of characters,

each character corresponding to a note, and a space

corresponding to the silence between notes. The

main loop looks at each letter in the song variable

and plays it. When the whole song is played, there

is a pause of five seconds and then the song begins

again.

The Evil Genius will find this project useful for

inflicting discomfort on his or her enemies.

Putting It All Together

Load the completed sketch for Project 19 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

You might like to change the tune played from

“Jingle Bells.” To do this, just comment out the

line starting with “char* song =” by putting // in

front of it and then define your own array.

The notation works as follows. There are two

octaves, and high notes are lowercase “a” to “g”

and low notes “A” to “G.” For a longer duration

note, just repeat the note letter without putting a

space in between.

You will have noticed that the quality is not

great. It is still a lot less nasty than using a square

wave, but is a long way from the tunefulness of a

real musical instrument, where each note has an

“envelope” where the amplitude (volume) of the

note varies with the note as it is played.

Figure 7-9 A plot of the sin16 array.

Chapter 7 Sound Projects 117 ■

Project 20
Light Harp

This project is really an adaptation of Project 19

that uses two light sensors (LDRs): one that

controls the pitch of the sound, the other to control

the volume. This is inspired by the Theremin

musical instrument that is played by mysteriously

waving your hands about between two antennae. In

actual fact, this project produces a sound more like

a bagpipe than a harp, but it is quite fun.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

C1 100nF un-polarized 20

C2, C3 100 µF, 16V electrolytic 22

R1-5 10 KK 0.5W metal film

resistor 9

R6-8 4.7 KK 0.5W metal film

resistor 8

R9, R11 1 MK 0.5W metal film resistor 15

R10 100 KK 0.5W metal film

resistor 13

R12, R13 47 KK 0.5W metal film

resistor 11

R14, R15 LDR 19

IC1 TDA7052 1W audio amplifier 47

Miniature 8 K loudspeaker 59

If you can get a miniature loudspeaker with

leads for soldering to a PCB, then this can be

plugged directly into the breadboard. If not, you

will either have to solder short lengths of solid-

core wire to the terminals or, if you do not have

access to a soldering iron, carefully twist some

solid-core wires round the terminals.

Hardware

The volume of the sound will be controlled using a

PWM output (D6) connected to the volume control

input of the TDA7052. We want to eliminate all

traces of the PWM pulses so we can pass the

output through a low-pass filter consisting of R11

and C3. This allows only slow changes in the

signal to get past. One way to think of this is to

pretend that the capacitor C3 is a bucket that is

filled with charge from resistor R11. Rapid

fluctuations in the signal will have little effect, as

there is a smoothing (integration) of the signal.

Figures 7-10 and 7-11 show the schematic

diagram and breadboard layout for the project and

you can see the final project in Figure 7-12.

The LDRs, R14 and R15, are positioned at

opposite ends of the breadboard to make it easier

to play the instrument with two hands.

Software

The software for this project has a lot in common

with Project 19 (see Listing Project 20).

The main differences are that the pitchDelay

period is set by the value of the analog input 0.

This is then scaled to the right range using the map

function. Similarly, the volume voltage is set by

reading the value of analog input 1, scaling it using

map, and then writing it out to PWM output 6. It

would be possible to just use the LDR R14 to

directly control the output of the resistor ladder,

but this way gives us more control over scaling and

offsetting the output, and we wanted to illustrate

smoothing a PWM signal to use it for generating a

steady output.

118 30 Arduino Projects for the Evil Genius

Figure 7-10 Schematic diagram for Project 20.

Figure 7-11 Breadboard layout for Project 20.

Chapter 7 Sound Projects 119 ■

Figure 7-12

Project 20. Light harp.

LISTING PROJECT 20

int pitchInputPin = 0;

int volumeInputPin = 1;

int volumeOutputPin = 6;

int dacPins[] = {2, 4, 7, 8};

int sin16[] = {7, 8, 10, 11, 12, 13, 14, 14, 15, 14, 14, 13, 12, 11,

10, 8, 7, 6, 4, 3, 2, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6};

int count = 0;

void setup()

{

for (int i = 0; i < 4; i++)

{

pinMode(dacPins[i], OUTPUT);

}

pinMode(volumeOutputPin, OUTPUT);

}

(continued)

Chapter 7 Sound Projects 121 ■

LISTING PROJECT 20 (continued)

void loop()

{

int pitchDelay = map(analogRead(pitchInputPin), 0, 1023, 10, 60);

int volume = map(analogRead(volumeInputPin), 0, 1023, 10, 70);

for (int i = 0; i < 32; i++)

{

setOutput(sin16[i]);

delayMicroseconds(pitchDelay);

}

if (count == 10)

{

analogWrite(volumeOutputPin,

volume); count = 0;

}

count++;

}

void setOutput(byte value)

{

digitalWrite(dacPins[3], ((value & 8) > 0));

digitalWrite(dacPins[2], ((value & 4) > 0));

digitalWrite(dacPins[1], ((value & 2) > 0));

digitalWrite(dacPins[0], ((value & 1) > 0));

}

Putting It All Together

Load the completed sketch for Project 20 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

To play the “instrument,” use the right hand

over one LDR to control the volume of the sound

and the left hand over the other LDR to control the

pitch. Interesting effects can be achieved by

waving your hands over the LDRs.

Note that you may need to tweak the values in

the map functions in the sketch, depending on the

ambient light.

Project 21
VU Meter

This project (shown in Figure 7-13) uses LEDs to

display the volume of noise picked up by a

microphone. It uses an array of LEDs built into a

dual-in-line (DIL) package.

The push button toggles the mode of the VU

meter. In normal mode, the bar graph just flickers

up and down with the volume of sound. In

maximum mode, the bar graph registers the

maximum value and lights that LED, so the sound

level gradually pushes it up.

120 30 Arduino Projects for the Evil Genius

Figure 7-13

Project 21. VU meter.

Hardware

The schematic diagram for this project is shown in

Figure 7-14. The bar graph LED package has

separate connections for each LED. These are each

driven through a current-limiting resistor.

The microphone will not produce a strong

enough signal on its own to drive the analog input.

So to boost the signal, we use a simple single-

transistor amplifier. We use a standard arrangement

called collector-feedback bias, where a proportion

of the voltage at the collector is used to bias the

transistor on so that it amplifies in a loosely linear

way rather than just harshly switching on and off.

The breadboard layout is shown in Figure 7-15.

With so many LEDs, a lot of wires are required.

Software

The sketch for this project (Listing Project 21)

uses an array of LED pins to shorten the setup

function. This is also used in the loop function,

where we iterate over each LED deciding whether

to turn it on or off.

COMPONENTS AND EQUIPMENT

Description Appendix

 Arduino Diecimila or

Duemilanove board or

clone

1

R1, R3, R4 10 KK 0.5W metal film

resistor

9

R2 100 KK 0.5W metal film

resistor

13

R5-14 270 K 0.5W metal film

resistor

6

R10 10 KK 0.5W metal film

resistor

9

C1 100 nF 20

 10 Segment bar graph

display

35

S1 Push to make switch 48

 Electret microphone 60

122 30 Arduino Projects for the Evil Genius

Figure 7-14 Schematic diagram for Project 21.

Figure 7-15 Breadboard layout for Project 21.

Chapter 7 Sound Projects 123 ■

LISTING PROJECT 21

int ledPins[] = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12};

int switchPin = 2;

int soundPin = 0;

boolean showPeak = false;

int peakValue = 0;

void setup()

{

for (int i = 0; i < 10; i++)

{

pinMode(ledPins[i], OUTPUT);

}

pinMode(switchPin, INPUT);

}

void loop()

{

if (digitalRead(switchPin))

{

showPeak = ! showPeak;

peakValue = 0;

delay(200); // debounce switch

}

int value = analogRead(soundPin);

int topLED = map(value, 0, 1023, 0, 11) - 1;

if (topLED > peakValue)

{

peakValue = topLED;

}

for (int i = 0; i < 10; i++)

{

digitalWrite(ledPins[i], (i <= topLED || (showPeak && i == peakValue)));

}

}

At the top of the loop function, we check to see

if the switch is depressed; if it is, we toggle the

mode. The ! command inverts a value, so it will

turn true into false and false into true. For this

reason, it is sometimes referred to as the

“marketing operator.” After changing the mode, we

reset the maximum value to 0 and then delay for

200 milliseconds to prevent keyboard bounce from

changing the mode straight back again.

The level of sound is read from analog pin 0,

and then we use the map function to convert from

a range of 0 to 1023 down to a number between 0

and 9, which will be the top LED to be lit. This is

adjusted slightly by extending the range up to 0 to

11 and then subtracting 1. This prevents the two

bottom-most LEDs being permanently lit due to

the transistor bias.

124 30 Arduino Projects for the Evil Genius

We then iterate over the numbers 0 to 9 and use

a Boolean expression that returns true (and hence

lights the LED) if “i” is less than or equal to the

top LED. It is actually more complicated than that

because we also should display that LED if we are

in peak mode and that LED happens to be the

peakValue.

Putting It All Together

Load the completed sketch for Project 21 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

Summary

That project concludes our sound-based projects.

In the next chapter we go on to look at how we use

an Arduino board to control power—a topic always

close to the heart of the Evil Genius.

Chapter 7 Sound Projects 125 ■

C H A P T E R 8

Power Projects

HAVING LOOKED AT LIGHT and sound, the Evil

Genius now turns their attention to controlling

power. In essence, that means turning things on

and off and controlling their speed. This mostly

applies to motors and lasers and the long-awaited

Servo-Controlled Laser project.

Project 22
LCD Thermostat

The temperature in the Evil Genius’ lair must be

regulated, as the Evil Genius is particularly

susceptible to chills. This project uses an LCD

screen and a thermistor temperature sensor to both

display the current temperature and the set

temperature. It uses a rotary encoder to allow the

set temperature to be changed. The rotary

encoder’s button also acts as an override switch.

When the measured temperature is less than the

set temperature, a relay is activated. Relays are

old-fashioned electromagnetic components that

activate a mechanical switch when a current flows

through a coil of wire. They have a number of

advantages. First, they can switch high currents

and voltages, making them suitable for controlling

mains equipment. They also electrically isolate the

control side (the coil) from the switching side so

that the high and low voltages never meet, which is

definitely a good thing.

If the reader decides to use this project to switch

mains electricity, they should only do so if they

really know what they are doing and exercise

extreme caution. Mains electricity is very

dangerous and kills about 500 people a year in the

United States alone. Many more suffer painful and

damaging burns.

125

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

R1 33 KK thermistor beta = 4090 18

R2 33 KK 0.5W metal film resistor 10

R3-5 100 KK 0.5W metal film resistor 13

R6 270 K 0.5W metal film resistor 6

R7 1 KK 0.5W metal film resistor 7

D1 5-mm red LED 23

D2 1N4004 38

T1 BC548 40

5V relay 61

LCD module HD44780 58

Header pin strip 55

126 30 Arduino Projects for the Evil Genius

Hardware

The LCD module is connected up in exactly the

same way as Project 17. The rotary encoder is also

connected up in the same way as previous projects.

The relay will require about 70 mA, which is a

bit too much for an Arduino output to handle

unaided, so we use an NPN transistor to increase

the current. You will also notice that a diode is

connected in parallel with the relay coil. This is to

prevent something called back EMF (electromotive

force), which occurs when the relay is turned off.

The sudden collapse of the magnetic field in the

coil generates a voltage that can be high enough to

damage the electronics if the diode is not there to

effectively short it out if it occurs.

Figure 8-1 shows the schematic diagram for the

project.

The breadboard layout for the project is quite

cramped, as the LCD module uses a lot of the

space.

Check your datasheet for the relay, as the

connection pins can be quite counterintuitive and

there are several pin layouts, and your layout may

not be the same as the relay that the author used.

Figure 8-2 shows the breadboard layout for the

project.

You can also use a multimeter to find the coil

connections by putting it on resistance mode. They

will be the only pair of pins with a resistance of 40

to 100 K.

Figure 8-1 Schematic diagram for Project 22.

Chapter 8 Power Projects 127 ■

Figure 8-2

Breadboard layout for Project 22.

Software

The software for this project borrows heavily from

several of our previous projects: the LCD display,

the temperature data logger, and the traffic signal

project for use of the rotary encoder (see Listing

Project 22).

One thing that requires a bit of consideration

when designing a thermostat like this is that you

want to avoid what is called “hunting.” Hunting

LISTING PROJECT 22

#include <LiquidCrystal.h>

#define beta 4090 // from your thermistor's datasheet

#define resistance 33

// LiquidCrystal display with:

// rs on pin 12
// rw on pin 11
// enable on pin 10
// d4-7 on pins 5-2
LiquidCrystal lcd(12, 11, 10, 5, 4, 3, 2);

int ledPin = 15;

int relayPin = 16;
int aPin = 8;
int bPin = 7;
int buttonPin = 6;
int analogPin = 0;

float setTemp = 20.0;

float measuredTemp;
char mode = 'C'; // can be changed to F

 (continued)

128 30 Arduino Projects for the Evil Genius

LISTING PROJECT 22 (continued)

boolean override = false;

float hysteresis = 0.25;

void setup()

{

lcd.begin(2, 20);

pinMode(ledPin, OUTPUT);

pinMode(relayPin, OUTPUT);

pinMode(aPin, INPUT);

pinMode(bPin, INPUT);

pinMode(buttonPin, INPUT);

lcd.clear();

}

void loop()

{

static int count = 0;

measuredTemp = readTemp();

if (digitalRead(buttonPin))

{

override = ! override;

updateDisplay();

delay(500); // debounce

}

int change = getEncoderTurn();

setTemp = setTemp + change * 0.1;

if (count == 1000)

{

updateDisplay();

updateOutputs();

count = 0;

}

count ++;

}

int getEncoderTurn()

{

// return -1, 0, or +1

static int oldA = LOW;

static int oldB = LOW;

int result = 0;

int newA = digitalRead(aPin);

int newB = digitalRead(bPin);

if (newA != oldA || newB != oldB)

{

// something has changed

if (oldA == LOW && newA == HIGH)

Chapter 8 Power Projects 129 ■

LISTING PROJECT 22 (continued)

{

result = -(oldB * 2 - 1);

}

}

oldA = newA;

oldB = newB;

return result;

}

float readTemp()

{

long a = analogRead(analogPin);

float temp = beta / (log(((1025.0 * resistance / a) - 33.0) / 33.0) +

(beta / 298.0)) - 273.0;

return temp;

}

void updateOutputs()

{

if (override || measuredTemp < setTemp - hysteresis)

{

digitalWrite(ledPin, HIGH);

digitalWrite(relayPin, HIGH);

}

else if (!override && measuredTemp > setTemp + hysteresis)

{

digitalWrite(ledPin, LOW);

digitalWrite(relayPin, LOW);

}

}

void updateDisplay()

{

lcd.setCursor(0,0);

lcd.print("Actual: ");

lcd.print(adjustUnits(measuredTemp));

lcd.print(" o");

lcd.print(mode);

lcd.print(" ");

lcd.setCursor(0,1);

if (override)

{

lcd.print(" OVERRIDE ON ");

}

else

(continued)

Chapter 8 Power Projects 131 ■

LISTING PROJECT 22 (continued)

{

lcd.print("Set: ");

lcd.print(adjustUnits(setTemp));

lcd.print(" o");

lcd.print(mode);

lcd.print(" ");

}

}

float adjustUnits(float temp)

{

if (mode == 'C')

{

return temp;

}

else

{

return (temp * 9) / 5 + 32;

}

}

occurs when you have a simple on-off control

system. When the temperature falls below the set

point, the power is turned on and the room heats

until it is above the set point, and then the room

cools until the temperature is below the set point

again, at which point the heat is turned on again,

and so on. This may take a little time to happen,

but when the temperature is just balanced at the

switch-over temperature, this hunting can be

frequent. High-frequency switching like this is

undesirable because turning things on and off tends

to wear them out. This is true of relays as well.

One way to minimize this effect is to introduce

something called hysteresis, and you may have

noticed a variable called hysteresis in the sketch

that is set to a value of 0.25°C.

Figure 8-3 shows how we use a hysteresis value

to prevent high-frequency hunting.

As the temperature rises with the power on, it

approaches the set point. However, it does not turn

off the power until it has exceeded the set point

plus the hysteresis value. Similarly, as the

temperature falls, the power is not reapplied the

moment it falls below the set point, but only when

it falls below the set point minus the hysteresis

value.

We do not want to update the display

continuously, as any tiny changes in the reading

would result in the display flickering wildly. So

Figure 8-3 Hysteresis in control systems.

130 30 Arduino Projects for the Evil Genius

instead of updating the display every time round

the main loop, we just do it one time in 1000. This

still means it will update three or four times per

second. To do this, we use the technique of having

a counter variable that we increment each time

round the loop. When it gets to 1000, we update

the display and reset the counter to 0.

Using lcd.clear() each time we change the

display would also cause it to flicker. So we

simply write the new temperatures on top of the

old temperatures. This is why we pad the

“OVERRIDE ON” message with spaces so that

any text that was previously displayed at the edges

will be blanked out.

Putting It All Together

Load the completed sketch for Project 22 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

The completed project is shown in Figure 8-4.

To test the project, turn the rotary encoder, setting

the set temperature to slightly above the actual

temperature. The LED should be on. Then put your

finger onto the thermistor to warm it up. If all is

well, then when the set temperature is exceeded,

the LED should turn off and you will hear the

relay click.

You can also test the operation of the relay by

connecting a multimeter in continuity test (beep)

mode to the switched output leads.

I cannot stress enough that if you intend to use

your relay to switch mains electricity, first put this

project onto a properly soldered Protoshield.

Second, be very careful and check and double-

check what you are doing. Mains electricity kills.

You must only test the relay with low voltage

unless you are going to make a proper soldered

project from this design.

 Figure 8-4 Project 22. LCD thermostat.

132 30 Arduino Projects for the Evil Genius

Project 23
Computer-Controlled Fan

One handy part to reclaim from a dead PC is the

case fan (Figure 8-5). We are going to use one of

these fans to keep ourselves cool in the summer.

Obviously, a simple on/off switch would not be in

keeping with the Evil Genius’ way of doing things,

so the speed of the fan will be controllable from

our computer.

If you do not happen to have a dead computer

lying around, fear not, because you can buy new

cooling fans quite cheaply.

Hardware

We can control the speed of the fan using the

analog output (PWM) driving a power transistor to

pulse the motor. Since these computer fans are

usually 12V, we will use an external power supply

to provide the drive power for the fan.

Figure 8-6 shows the schematic diagram for the

project and Figure 8-7 the breadboard layout.

Software

This is a really simple sketch (Listing Project 23).

Essentially, we just need to read a digit 0 to 9 from

USB and do an analogWrite to the motorPin of

that value, multiplied by 28, to scale it up to a

number between 0 and 252.

Figure 8-5 Project 23. Computer-controlled fan.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

R1 270 K 0.5W metal film resistor 6

T1 BD139 power transistor 41

M1 12V computer cooling fan 63

12V 1 A power supply 62

Chapter 8 Power Projects 133 ■

Putting It All Together

Load the completed sketch for Project 23 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

There are so few components in this project that

you could twist a few wires together and fit them

directly into the Arduino board, thus doing away

with the breadboard altogether.

Figure 8-6 Schematic diagram for Project 23.

Figure 8-7 Breadboard layout for Project 23.

LISTING PROJECT 23

int motorPin = 11;

void setup()

{

pinMode(motorPin, OUTPUT);

analogWrite(motorPin, 0);

Serial.begin(9600);

}

void loop()

{

if (Serial.available())

{

char ch = Serial.read();

if (ch >= ‘0’ && ch <= ‘9’)

{

int speed = ch - ‘0’;

analogWrite(motorPin, speed

* 28);

}

}

}

134 30 Arduino Projects for the Evil Genius

H-Bridge Controllers

To change the direction in which a motor turns,

you have to reverse the direction in which the

current flows. To do this requires four switches or

transistors. Figure 8-8 shows how this works, using

switches in an arrangement that is, for obvious

reasons, called an H-bridge.

In Figure 8-8, S1 and S4 are closed and S2 and

S3 are open. This allows current to flow through the

motor with terminal A being positive and terminal B

being negative. If we were to reverse the switches so

that S2 and S3 are closed and S1 and S4 are open,

then B will be positive and A will be negative and

the motor will turn in the opposite direction.

However, you may have spotted a danger with

this circuit. That is, if by some chance S1 and S2

are both closed, then the positive supply will be

directly connected to the negative supply and we

will have a short-circuit. The same is true if S3 and

S4 are both closed at the same time.

In the following project, we will use transistors

in place of the switches to control an electric

motor.

+V

–V

Project 24
Hypnotizer

Mind control is one of the Evil Genius’ favorite

things. This project (see Figure 8-9) takes

complete control of a motor to not only control its

speed, but also to make it turn clockwise and

counterclockwise. Attached to the motor will be a

swirling spiral disk intended to mesmerize the

unfortunate victims.

Figure 8-9 Project 24. The hypnotizer.

Figure 8-8 An H-bridge.

A B

M

Chapter 8 Power Projects 135 ■

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

T2, T4 N-channel power

MOSFET. FQP33N10 43

T1, T3 P-channel power

MOSFET. FQP27P06 44

T4, T5 BC548 40

R1-6 10 KK 0.5W metal film

resistor 9

M1 6V motor 64

The motor that we used in this project was

reclaimed from a broken computer CD drive. An

alternative cheap source for a motor would be an

old motorized child’s toy. One with gears driving a

wheel would lend itself particularly well to having

the hypnotic disk attached.

Hardware

The schematic diagram for the hypnotizer is shown

in Figure 8-10. It uses a standard H-bridge

arrangement. Note that we are using metal oxide

semiconductor field effect transistors (MOSFETs)

rather than bipolar transistors for the main power

control. In theory, this will allow us to control

quite high-powered motors, but also has the

advantage in that the MOSFETs will barely even

get warm with our little motor and, therefore, we

will not need heatsinks.

The gate connections of the bottom MOSFETs

are cunningly connected to the outputs of their

diagonally opposite transistors, so when T1 turns

on, T4 will automatically turn on with it; when T3

turns on, T2 will turn on with it.

The resistors R1 to R4 ensure that the default

state of T1 to T4 is off by pulling the gates of the

P-channel MOSFETS high and the N-channel low.

 Figure 8-10 Schematic diagram for Project 24.

136 30 Arduino Projects for the Evil Genius

T5 and T6 are low-current bipolar transistors

that are used to turn on T1 and T3, respectively. In

this case, we could do without these transistors and

drive the gates of T1 and T3 directly from the

Arduino board. However, to do this, the logic

would be inverted (high at the gate would turn the

transistor off). We could cope with this in the

software, but the other reason for using these two

additional components is that with them, we could

use this circuit to control higher voltage motors,

simply by using a higher positive supply voltage. If

we were driving the MOSFETS directly, then the

positive output of the Arduino would have to go

higher than 5V to turn off the MOSFET if the

motor supply was 9V or more, something that is

not possible.

This does make the circuit overengineered, but

the Evil Genius may have big ambitions on the

motor front!

Finally, C1 smoothes out some of the pulses of

power use that you get when you drive a device

like a motor.

Figure 8-11 shows the breadboard layout for the

project.

Our hypnotizer needs a spiral pattern to work.

You may decide to photocopy Figure 8-12, cut it

out, and stick it to the fan. Alternatively, a more

colorful version of the spiral is available to print

out from www.arduinoevilgenius.com.

The spiral was cut out of paper and stuck onto

cardboard that was then glued on to the little cog

on the end of the motor.

Software

The key thing about this sketch (Listing Project

24) is to make it impossible for all the transistors

to be on at the same time. If this happens, there

will be a burning smell and something somewhere

will fizzle and die.

 Figure 8-11 Breadboard layout for Project 24.

Figure 8-12 Spiral for the hypnotizer.

http://www.arduinoevilgenius.com/

Chapter 8 Power Projects 137 ■

LISTING PROJECT 24

int t1Pin = 5;

int t3Pin = 6;

int speeds[] = {20, 40, 80, 120, 160, 180, 160, 120, 80, 40, 20,

-20, -40, -80, -120, -160, -180, -160, -120, -80, -40, -20};

int i = 0;

void setup()

{

pinMode(t1Pin, OUTPUT);

digitalWrite(t1Pin, LOW);

pinMode(t3Pin, OUTPUT);

digitalWrite(t3Pin, LOW);

}

void loop()

{

int speed = speeds[i];

i++;

if (i == 22)

{

i = 0;

}

drive(speed);

delay(1500);

}

void allOff()

{

digitalWrite(t1Pin, LOW);

digitalWrite(t3Pin, LOW);

delay(1);

}

void drive(int speed)

{

allOff();

if (speed > 0)

{

analogWrite(t1Pin, speed);

}

else if (speed < 0)

{

analogWrite(t3Pin, -speed);

}

}

138 30 Arduino Projects for the Evil Genius

Before turning any transistor on, all the

transistors are turned off using the allOff function.

In addition, the allOff function includes a slight

delay to ensure that the transistors are properly off

before anything is turned on.

The sketch uses an array, speeds, to control the

disk’s progression in speed. This makes the disk

spin faster and faster in one direction, and then

slow until it eventually reverses direction and then

starts getting faster and faster in that direction and

so on. You may need to adjust this array for your

particular motor. The speeds you will need to

specify in the array will vary from motor to motor,

so you will probably need to adjust these values.

Putting It All Together

Load the completed sketch for Project 24 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

Take care to check your wiring before applying

power on this project. You can test each path

through the H-bridge by connecting the control

wires that go to digital pins 5 and 6 to ground.

Then connect one of the leads to 5V and the motor

should turn one way. Connect that lead back to

ground and then connect the other lead to 5V and

the motor should rotate the other way.

Servo Motors

Servo motors are great little components that are

often used in radio-controlled cars to control

steering and the control surfaces on model aircraft.

They come in a variety of sizes for different types

of applications, and their wide use in models

makes them relatively inexpensive.

Unlike normal motors, they do not rotate

continuously; rather, you set them to a particular

angle using a PWM signal. They contain their own

control electronics to do this, so all you have to

provide them with is power (which, for many

devices, can be 5V) and a control signal that we

can generate from the Arduino board.

Over the years, the interface to servos has

become standardized. The servo must receive a

continuous stream of pulses at least every 20

milliseconds. The angle that the servo maintains is

determined by the pulse width. A pulse width of

1.5 milliseconds will set the servo at its midpoint,

or 90 degrees. A pulse of 1.75 milliseconds will

normally swing it round to 180 degrees, and a

shorter pulse of 1.25 milliseconds will set the

angle to 0 degrees.

Project 25
Servo-Controlled Laser

This project (see Figure 8-13) uses two servo

motors to aim a laser diode. It can move the laser

quite quickly, so you can “write” on distant walls

using it.

This is a real laser. It is not high-powered, only

3 mW, but nonetheless, do not shine the beam in

your own or anybody else’s eyes. To do so could

cause retina damage.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 3 mW red laser diode 32

M1, M2 9g servo motor 65

R1 100 K 0.5W metal film resistor 5

Arduino Protoshield (optional) 3

0.1-inch header strip (6 pins)

(optional) 55

0.1-inch socket strip

(2 sockets) (optional) 56

Chapter 8 Power Projects 139 ■

Hardware

The schematic diagram for the project is shown in

Figure 8-14. It is all quite simple. The servos have

just three leads. For each servo, the brown lead is

connected to ground, the red lead to +5V, and the

orange (control) lead to digital outputs 2 and 3.

The servos are terminated in sockets designed to fit

over a pin header. Solid-core wire can be used to

connect these to the breadboard.

The laser diode is driven just like an ordinary

LED from D4 via a current-limiting resistor.

The servos are usually supplied with a range of

“arms” that push onto a cogged drive and are

secured by a retaining screw. One of the servos is

glued onto one of these arms (see Figure 8-15).

Then the arm is attached to the servo. Do not fit

the retaining screw yet, as you will need to adjust

the angle. Glue the laser diode to a second arm and

attach that to the servo. It is a good idea to fix

some of the wire from the laser to the arm to

prevent strain on the wire where it emerges from

the laser. You can do this by putting a loop of

solid-core wire through two holes in the server arm

and twisting it round the lead. You can see this in

Figure 8-17.

You now need to attach the bottom servo to a

box or something that will provide support. In

Figure 8-15, you can see how it is attached to an

old project box. Make sure you understand how

the servo will move before you glue the bottom

servo to anything. If in doubt, wait until you have

installed the software and try the project out just

holding the bottom servo before you glue it in

place. Once you are sure everything is in the right

place, fit the retaining screws onto the servo arms.

You can see how the breadboard is used to

anchor the various wires in Figure 8-13. There are

no components except the resistor on the

breadboard.

Figure 8-13 Project 25. Servo-controlled laser.

Chapter 8 Power Projects 141 ■

Software

Fortunately for us, a servo library comes with the

Arduino library, so all we need to do is tell each

servo what angle to set itself at. There is obviously

more to it than that, as we want to have a means of

issuing our evil project with coordinates at which

to aim the laser.

To do this, we allow commands to be sent over

USB. The commands are in the form of letters.

R, L, U, and D direct the laser right, left, up, or

down, respectively, by five degrees. For finer

movements, r, l, u, and d move the laser by just

one degree. To pause and allow the laser to finish

moving, you can send the – (dash) character. (See

Project Listing 25.)

There are three other commands. The letter c

will center the laser back at its resting position,

and the commands 1 and 0 turn the laser on and

off, respectively.

Putting It All Together

Load the completed sketch for Project 25 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

Figure 8-14 Schematic diagram for Project 25.

Figure 8-15 Servo and laser assembly.

140 30 Arduino Projects for the Evil Genius

LISTING PROJECT 25

#include <Servo.h>

int laserPin = 4;

Servo servoV;

Servo servoH;

int x = 90;

int y = 90;

int minX = 10;

int maxX = 170;

int minY = 50;

int maxY = 130;

void setup()

{

servoH.attach(3);

servoV.attach(2);

pinMode(laserPin, OUTPUT);

Serial.begin(9600);

}

void loop()

{

char ch;

if (Serial.available())

{

ch = Serial.read();

if (ch == '0')

{

digitalWrite(laserPin, LOW);

}

else if (ch == '1')

{

digitalWrite(laserPin, HIGH);

}

else if (ch == '-')

{

delay(100);

}

else if (ch == 'c')

{

x = 90;

y = 90;

}

else if (ch == 'l' || ch == 'r' || ch == 'u' || ch == 'd')

{

(continued)

Chapter 8 Power Projects 143 ■

LISTING PROJECT 25 (continued)

moveLaser(ch, 1);

}

else if (ch == 'L' || ch == 'R' || ch == 'U' || ch == 'D')

{

moveLaser(ch, 5);

}

}

servoH.write(x);

servoV.write(y);

}

void moveLaser(char dir, int amount)

{

if ((dir == 'r' || dir == 'R') && x > minX)

{

x = x - amount;

}

else if ((dir == 'l' || dir == 'L') && x < maxX)

{

x = x + amount;

}

else if ((dir == 'u' || dir == 'U') && y < maxY)

{

y = y + amount;

}

else if ((dir == 'd' || dir == 'D') && x > minY)

{

y = y - amount;

}

}

Open up the Serial Monitor and type the

following sequence. You should see the laser trace

the letter A, as shown in Figure 8-16:

Making a Shield

Creating a shield is no problem at all for this

project. The bottom servo can be glued in place on

one edge of the board. The pin headers are

soldered in place near the 5V and GND lines that

run down the center of the shield so that they can

be connected easily to the positive and negative

pins on the servo connectors.

The top and bottom sides of the shield are

shown in Figures 8-17 and 8-18.

Summary

In the previous chapters we have built up our

knowledge to understand how to use light, sound,

and various sensors on the Arduino. We have also

learned how to control the power to motors and to

use relays. This covers nearly everything we are

likely to want to do with our Arduino board, so in

the next chapter, we can put all these things

together to create some wider-ranging projects.

1UUUUUU—RRRR—DDDDDD—0UUU—1LLLL—0DDD

142 30 Arduino Projects for the Evil Genius

Figure 8-18

Bottom side of the servo laser

shield.

Figure 8-17 Servo laser shield. Figure 8-16 Writing the letter A with the laser.

Chapter 8 Power Projects 143 ■

This page intentionally left blank

C H A P T E R 9

Miscellaneous Projects

THIS CHAPTER IS JUST a collection of projects that

we can build. They do not illustrate any particular

point except that Arduino projects are great fun to

make.

Project 26
Lie Detector

How can an Evil Genius be sure that their

prisoners are telling the truth? By using a lie

detector, of course. This lie detector (see Figure

9-1) uses an effect known as galvanic skin

response. As a person becomes nervous—for

example, when telling a lie—their skin resistance

decreases. We can measure this resistance using an

analog input and use an LED and buzzer to

indicate an untruth.

We use a multicolor LED that will display red

to indicate a lie, green to indicate a truth, and blue

to show that the lie detector should be adjusted by

twiddling the variable resistor.

145

Figure 9-1 Project 26. Lie detector.

146 30 Arduino Projects for the Evil Genius

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

R1-3 100 K 0.5W metal film resistor 5

R4 470 KK 0.5W metal film resistor 14

R5 100 KK variable resistor 17

D1 RGB LED (common anode) 31

S1 Piezotransducer

(without driver electronics) 67

There are two types of piezobuzzers. Some are

just a piezoelectric transducer, while some also

include the electronic oscillator to drive them. In

this project we want the former type without the

electronics, as we are going to generate the

necessary frequency from the Arduino board itself.

Hardware

The subject’s skin resistance is measured by using

the subject as one resistor in a potential divider and

a fixed resistor as the other. The lower their

resistance, the more analog input 0 will be pulled

towards 5V. The higher the resistance, the closer to

GND it will become.

The piezobuzzer, despite the level of noise these

things generate, is actually quite low in current

consumption and can be driven directly from an

Arduino digital pin.

This project uses the same multicolor LED as

Project 14. In this case, however, we are not going

to blend different colors but just turn one of the

LEDs on at a time to display red, green, or blue.

Figure 9-2 shows the schematic diagram for the

project and Figure 9-3 the breadboard layout.

 Figure 9-2 Schematic diagram for Project 26.

Chapter 9 Miscellaneous Projects 147 ■

Figure 9-3

Breadboard layout for Project 26.

The variable resistor is used to adjust the set

point of resistance, and the touch pads are just two

metal thumbtacks pushed into the breadboard.

Software

The script for this project (Listing Project 26) just

has to compare the voltage at A0 and A1. If they

are about the same, the LED will be set to green. If

the voltage from the finger sensor (A0) is

significantly higher than A1, the variable resistor

will indicate a fall in skin resistance, the LED will

change to red, and the buzzer will sound. On the

other hand, if A0 is significantly lower than A1,

the LED will turn blue, indicating a rise in skin

resistance.

The buzzer requires a frequency of about 5KHz

or 5000 cycles per second to drive it. We

accomplish this with a simple for loop with

commands to turn the appropriate pin on and off

with delays in between.

Putting It All Together

Load the completed sketch for Project 26 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

LISTING PROJECT 26

int redPin = 9;

int greenPin = 10;

int bluePin = 11;

int buzzerPin = 7;

int potPin = 1;

int sensorPin = 0;

long red = 0xFF0000;

long green = 0x00FF00;

long blue = 0x000080;

int band = 10;

// adjust for sensitivity

void setup()

{

pinMode(potPin, INPUT);

pinMode(sensorPin, INPUT);

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

pinMode(bluePin, OUTPUT);

pinMode(buzzerPin, OUTPUT);

}

void loop()

{

(continued)

148 30 Arduino Projects for the Evil Genius

To test the lie detector, you really need a test

subject, as you will need one hand free to adjust

the knob.

First, get your subject to place two adjoining

fingers on the two metal thumbtacks. Then turn the

knob on the variable resistor until the LED turns

green.

You may now interrogate your victim. If the

LED changes to either red or blue, you should

adjust the knob until it changes to green again and

then continue the interrogation.

Project 27
Magnetic Door Lock

This project (Figure 9-4) is based on Project 10,

but extends it so that when the correct code is

entered, it lights a green LED in addition to

operating a small solenoid. The sketch is also

improved so that the secret code can be changed

without having to modify and install a new script.

The secret code is stored in EEPROM, so if the

power is disconnected, the code will not be lost.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1 Red 5-mm LED 23

D2 Green 5-mm LED 25

R1-3 270 K 0.5W metal film resistor 6

K1 4 x 3 keypad 54

0.1-inch header strip 55

T1 BC548 40

5V solenoid (< 100 mA) 66

D3 1N4004 38

LISTING PROJECT 26 (continued)

int gsr

int pot

if (gsr

{

=

=

>

analogRead(sensorPin);

analogRead(potPin);

pot + band)

setColor(red);

beep();

}

else if (gsr < pot - band)

{

setColor(blue);

}

else

{

setColor(green);

}

}

void setColor(long rgb)

{

int red = rgb >> 16;

int green = (rgb >> 8) & 0xFF;

int blue = rgb & 0xFF;

analogWrite(redPin, 255 - red);

analogWrite(greenPin, 255 -

green); analogWrite(bluePin, 255 -

blue);

}

void beep()

{

// 5 Khz for 1/5th second

for (int i = 0; i < 1000; i++)

{

digitalWrite(buzzerPin, HIGH);

delayMicroseconds(100);

digitalWrite(buzzerPin, LOW);

delayMicroseconds(100);

}

}

Chapter 9 Miscellaneous Projects 149 ■

When powered, the solenoid will strongly

attract the metal slug in its center, pulling it into

place. When the power is removed, it is free to

move.

Hardware

The schematic diagram (see Figure 9-5) and

breadboard layout (see Figure 9-6) are much the

same as Project 10, but with additional

 Figure 9-5 Schematic diagram for Project 27.

Figure 9-4 Project 27. Magnetic door lock.

Chapter 9 Miscellaneous Projects 151 ■

Figure 9-6

Breadboard layout for Project 27.

components. Like relays, the solenoid is an

inductive load and therefore liable to generate a

back EMF, which diode D3 protects against.

The solenoid is controlled by T1, so be careful

to select a solenoid that will not draw more than

100 mA, which is the maximum collector current

of the transistor.

We are using a very low power solenoid, and

this would not keep intruders out of the Evil

Genius’ lair. If you are using a more substantial

solenoid, a BD139 transistor would be better.

If the solenoid can be mounted on the

breadboard, this is all well and good. If not, you

will need to attach leads to it that connect it to the

breadboard.

Software

The software for this project is, as you would

expect, similar to that of Project 10 (see Project

Listing 27).

LISTING PROJECT 27

#include <Keypad.h>

#include <EEPROM.h>

char* secretCode = "1234";

int position = 0;

boolean locked = true;

const byte rows = 4;

const byte cols = 3;

char keys[rows][cols] = {

{'1','2','3'},

{'4','5','6'},

{'7','8','9'},

{'*','0','#'}

};

byte rowPins[rows] = {2, 7, 6, 4};

byte colPins[cols] = {3, 1, 5};

150 30 Arduino Projects for the Evil Genius

LISTING PROJECT 27 (continued)

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, rows, cols);

int redPin = 9;

int greenPin = 8;

int solenoidPin = 10;

void setup()

{

pinMode(redPin, OUTPUT);

pinMode(greenPin, OUTPUT);

loadCode();

flash();

updateOutputs();

}

void loop()

{

char key = keypad.getKey();

if (key == '*' && ! locked)

{

// unlocked and * pressed so change code

position = 0;

getNewCode();

updateOutputs();

}

if (key == '#')

{

locked = true;

position = 0;

updateOutputs();

}

if (key == secretCode[position])

{

position ++;

}

if (position == 4)

{

locked = false;

updateOutputs();

}

delay(100);

}

void updateOutputs()

{

if (locked)

{

digitalWrite(redPin, HIGH);

digitalWrite(greenPin, LOW);

digitalWrite(solenoidPin, HIGH);

}

else

(continued)

152 30 Arduino Projects for the Evil Genius

LISTING PROJECT 27 (continued)

{

digitalWrite(redPin, LOW);

digitalWrite(greenPin, HIGH);

digitalWrite(solenoidPin, LOW);

}

}

void getNewCode()

{

flash();

for (int i = 0; i < 4; i++)

{

char key;

key = keypad.getKey();

while (key == 0)

{

key = keypad.getKey();

}

flash();

secretCode[i] = key;

}

saveCode();

flash();flash();

}

void loadCode()

{

if (EEPROM.read(0) == 1)

{

secretCode[0] = EEPROM.read(1);

secretCode[1] = EEPROM.read(2);

secretCode[2] = EEPROM.read(3);

secretCode[3] = EEPROM.read(4);

}

}

void saveCode()

{

EEPROM.write(1,

secretCode[0]); EEPROM.write(2,

secretCode[1]); EEPROM.write(3,

secretCode[2]); EEPROM.write(4,

secretCode[3]); EEPROM.write(0,

1);

}

void flash()

{

digitalWrite(redPin, HIGH);

digitalWrite(greenPin, HIGH);

delay(500);

digitalWrite(redPin, LOW);

digitalWrite(greenPin, LOW);

}

Chapter 9 Miscellaneous Projects 153 ■

Since we can now change the secret code, we

have changed the loop function so that if the * key

is pressed while the lock is in its unlocked state,

the next four keys pressed will be the new code.

Since each character is exactly one byte in

length, the code can be stored directly in the

EEPROM memory. We use the first byte of

EEPROM to indicate if the code has been set. If it

has not been set, the code will default to 1234.

Once the code has been set, the first EEPROM

byte will be given a value of 1.

Putting It All Together

Load the completed sketch for Project 27 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

We can make sure everything is working by

powering up our project and entering the code

1234, at which point, the green LED should light

and the solenoid release. We can then change the

code to something a little less guessable by

pressing the * key and then entering four digits for

the new code. The lock will stay unlocked until we

press the # key.

If you forget your secret code, unfortunately,

turning the power to the project on and off will not

reset it to 1234. Instead, you will have to comment

out the line:

in the setup function, so that it appears as shown

here:

Now reinstall the sketch and the secret code will

be back to 1234. Remember to change your sketch

back after setting the code to something that you

will remember.

Project 28
Infrared Remote

This project (see Figure 9-7) allows the Evil

Genius to control any household devices with an

infrared remote control directly from their

computer. With it, the Evil Genius can record an

infrared message from an existing remote control

and then play it back from their computer.

 Figure 9-7 Project 28. Infrared remote.

loadCode();

// loadCode();

154 30 Arduino Projects for the Evil Genius

We use the EEPROM memory to store the

remote control codes so that they are not lost when

the Arduino board is disconnected.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

R1 100 K 0.5W metal film resistor 5

D1 IR LED sender 26

IC1 IR remote control receiver 37

Hardware

The IR remote receiver is a great little module that

combines an infrared photodiode, with all the

amplification filtering and smoothing needed to

produce a digital output from the IR message. This

output is fed to digital pin 9. The schematic

diagram (see Figure 9-8) shows how simple this

package is to use, with just three pins, GND, +V,

and the output signal.

The IR transmitter is an IR LED. These work

just like a regular red LED, but in the invisible IR

end of the spectrum. On some devices, you can see

a slight red glow when they are on.

Figure 9-9 shows the breadboard layout for this

project.

Software

Ken Shirriff has created a library that you can use

to do just about anything you would want to with

an IR remote. We are going to use this library

rather than reinvent the wheel.

We first looked at installing a library in Chapter

5. To make use of this library, we must first

download it from http://arcfn.com/2009/08/

multi-protocol-infrared-remote-library.html.

Download the file IRRemote.zip and unzip it. If

you are using Windows, you right-click and choose

Extract All and then save the whole folder into

C:\Program Files\Arduino\Arduino-0017\hardware\

libraries.

 Figure 9-8 Schematic diagram for Project 28.

http://arcfn.com/2009/08/

Chapter 9 Miscellaneous Projects 155 ■

On LINUX, find the Arduino installation

directory and copy the folder into

hardware/libraries.

On a Mac, you do not put the new library into

the Arduino installation. Instead, you create a

folder called “libraries” in Documents/Arduino and

put the whole library folder in there.

Once we have installed this library into our

Arduino directory, we will be able to use it with

any sketches that we write.

Ken’s library is essentially the last word in

decoding and sending IR commands. It will

attempt to match the different protocol standards

from different manufacturers. Our sketch actually

only uses a small part of the library concerned

with capturing and sending the raw pulses of data.

(See Listing Project 28.)

Infrared remote controls send a series of pulses

at a frequency of between 36 and 40kHz. Figure

9-10 shows the trace from an oscilloscope.

A bit value of 1 is represented by a pulse of

square waves at 36 to 40kHz and a 0 by a pause in

which no square waves are sent.

 Figure 9-10 Infrared code from an oscilloscope.

Figure 9-9 Breadboard layout for Project 28.

156 30 Arduino Projects for the Evil Genius

LISTING PROJECT 28

#include <EEPROM.h>

#include <IRremote.h>

int irRxPin = 9;

int f = 38; // 40, 36, 38

IRrecv irrecv(irRxPin);

IRsend irsend;

decode_results results;

int codeLength = 0;

int currentCode = 0;

void setup()

{

Serial.begin(9600);

Serial.println("0-9 to set code memory, s - to send");

irrecv.enableIRIn();

setCodeMemory(0);

}

void loop()

{

if (Serial.available())

{

char ch = Serial.read();

if (ch >= '0' && ch <= '9')

{

setCodeMemory(ch - '0');

}

else if (ch == 's')

{

sendIR();

}

}

if (irrecv.decode(&results))

{

storeCode();

irrecv.resume();

}

}

void setCodeMemory(int x)

{

currentCode = x;

Serial.print("Set current code memory to: ");

Chapter 9 Miscellaneous Projects 157 ■

LISTING PROJECT 28 (continued)

Serial.println(currentCode);

irrecv.resume();

}

void storeCode()

{

// write the code to EEPROM, first byte is length

int startIndex = currentCode * (RAWBUF + 1);

int len = results.rawlen - 1;

EEPROM.write(startIndex, (unsigned

byte)len); for (int i = 0; i < len; i++)

{

if (results.rawbuf[i] > 255)

{

EEPROM.write(startIndex + i + 1, 255);

}

else

{

EEPROM.write(startIndex + i + 1, results.rawbuf[i]);

}

}

Serial.print("Saved code, length: ");

Serial.println(len);

}

void sendIR()

{

// construct a buffer from the saved data in EEPROM and send it

int startIndex = currentCode * (RAWBUF + 1);

int len =

EEPROM.read(startIndex); unsigned

int code[RAWBUF];

for (int i = 0; i < len; i++)

{

int pulseLen = EEPROM.read(startIndex + i + 2);

if (i % 2)

{

code[i] = pulseLen * USECPERTICK + MARK_EXCESS;

}

else

{

code[i] = pulseLen * USECPERTICK - MARK_EXCESS;

}

}

irsend.sendRaw(code, len, f);

Serial.print("Sent code length: ");

Serial.println(len);

}

158 30 Arduino Projects for the Evil Genius

The IRRemote library requires the IR LED to

be driven from digital pin 3. Hence, we only

specify the receiving pin at the top of the sketch

(irRxPin).

In the setup function, we start serial

communications and write instructions for using

the project back to the Serial Console. It is from

the Serial Console that we are going to control the

project. We also set the current code memory to

memory 0.

The loop function follows the familiar pattern of

checking for any input through the USB port. If it

is a digit between 0 and 9 it makes the

corresponding memory the current memory. If an

“s” character is received from the Serial Monitor, it

sends the message in the current message memory.

The function then checks to see if any IR signal

has been received; if it has, the function writes it to

EEPROM using the storeCode function. It stores

the length of the code in the first byte and then the

number of 50-microsecond ticks for each

subsequent pulse in bytes that follow. RAWBUF is

a constant defined in the library as the maximum

message length.

Note that as part of the process of sending the

code in the sendIR function an array of pulse

timing integers is created from the stored bytes, the

timings of the pulses are then in microseconds

rather than ticks, and are adjusted by an offset

MARK_EXCESS to compensate for the hardware

that reads the IR signals. This tends to make marks

slightly longer than they should be and spaces

slightly shorter.

We also use an interesting technique in

storeCode and sendIR when accessing the

EEPROM that lets us use it rather like an array for

the message memories. The start point for

recording or reading the data from EEPROM is

calculated by multiplying the currentCode by the

length of each code (plus the byte that says how

long it is).

Putting It All Together

Load the completed sketch for Project 28 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

To test the project, find yourself a remote and

the bit of equipment that it controls. Then power

up the project.

Open the Serial Monitor, and you should be

greeted by the following message:

By default, any message we capture will be

recorded into memory 0. So aim the remote at the

sensor, press a button (turning power on or ejecting

the tray on a DVD player are impressive actions).

You should then see a message like:

Now point the IR LED at the appliance and type

s into the Serial Monitor. You should receive a

message like this:

More importantly, the appliance should respond

to the message from the Arduino board.

Note that the IR LED may not be very bright in

its signal, so if it does not work, try moving it

around and putting it closer to the appliance’s IR

sensor.

You can now try changing the memory slot by

entering a different digit into the Serial Monitor

and recording a variety of different IR commands.

Note that there is no reason why they need to be

for the same appliance.

0-9 to set code memory, s - to send

Set current code memory to: 0

Saved code, length: 67

Sent code length: 67

Chapter 9 Miscellaneous Projects 159 ■

Project 29
Lilypad Clock

The Arduino Lilypad works in much the same way

as the Duemilanove board, but instead of a boring

rectangular circuit board, the Lilypad is circular

and designed to be stitched into clothing using

conductive thread. Even an Evil Genius appreciates

beauty when they see it. So this project is built into

a photo frame to show off the natural beauty of the

electronics (see Figure 9-11). A magnetic reed

switch is used to adjust the time.

This is a project where you have to use a

soldering iron.

Hardware

We have an LED and series resistor attached to

almost every connection of the Lilypad in this

project.

The reed switch is a useful little component that

is just a pair of switch contacts in a sealed glass

envelope. When a magnet comes near to the

switch, the contacts are pulled together and the

switch is closed.

We use a reed switch rather than an ordinary

switch so that the whole project can be mounted

behind glass in a photo frame. We will be able to

adjust the time by holding a magnet close to the

switch.

Figure 9-12 shows the schematic diagram for

the project.

Each LED has a resistor soldered to the shorter

negative lead. The positive lead is then soldered to

the Arduino Lilypad terminal and the lead from the

resistor passes under the board, where it is

connected to all the other resistor leads.

Figure 9-13 shows a close-up of the LED and

resistor, and the wiring of the leads under the

board is shown in Figure 9-14. Note the rough disc

of paper protecting the back of the board from the

soldered resistor leads.

Figure 9-11 Project 29. Lilypad binary clock.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Lilypad and

USB programmer 2

R1-16 100 K 0.5W metal film resistor 5

D1-4 2-mm red LEDs 27

D5-10 2-mm blue LEDs 29

D11-16 2-mm green LEDs 28

R17 100 KK 0.5W metal film resistor 13

S1 Miniature reed switch 9

7 × 5 inch picture frame 70

5V power supply 71

Chapter 9 Miscellaneous Projects 161 ■

Figure 9-13

Close-up of LED attached to a

resistor.

Figure 9-12 Schematic diagram for Project 29.

Figure 9-14 Bottom side of Lilypad board.

160 30 Arduino Projects for the Evil Genius

A 5V power supply is used, as a significant

amount of power is used when all the LEDs are lit

and so batteries would not last long. The power

wires extend from the side of the picture frame,

where they are soldered to a connector.

The author used a redundant cell phone power

supply. Be sure to test that any supply you are

going to use provides 5V at a current of at least

500 mA. You can test the polarity of the power

supply using a multimeter.

Software

This is another project in which we make use of a

library. This library makes dealing with time easy

and can be downloaded from www.arduino.cc/

playground/Code/Time.

Download the file Time.zip and unzip it. If you

are using Windows, right-click and choose Extract

All and then save the whole folder into C:\Program

Files\Arduino\Arduino-0017\hardware\libraries.

On LINUX, find the Arduino installation

directory and copy the folder into hardware/

libraries.

On a Mac, you do not put the new library into

the Arduino installation. Instead, you create a

folder called “libraries” in Documents/Arduino and

put the whole library folder in there.

Once we have installed this library into our

Arduino directory, we will be able to use it with

any sketches that we write. (See Listing Project

29.)

Arrays are used to refer to the different sets of

LEDs. These are used to simplify installation and

also in the setOutput function. This function sets

the binary values of the array of LEDs that is to

display a binary value. The function also receives

arguments of the length of that array and the value

to be written to it. This is used in the loop function

to successively set the LEDs for hours, minutes,

and seconds. When passing an array into a

LISTING PROJECT 29

#include <Time.h>

int hourLEDs[] = {1, 2, 3, 4};

// least significant bit first

int minuteLEDs[] = {10, 9, 8, 7, 6,

5};

int secondLEDs[] = {17, 16, 15, 14,

13, 12};

int loopLEDs[] = {17, 16, 15, 14, 13,

12, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

int switchPin = 18;

void setup()

{

for (int i = 0; i < 4; i++)

{

pinMode(hourLEDs[i], OUTPUT);

}

for (int i = 0; i < 6; i++)

{

pinMode(minuteLEDs[i], OUTPUT);

}

for (int i = 0; i < 6; i++)

{

pinMode(secondLEDs[i], OUTPUT);

}

setTime(0);

}

void loop()

{

if (digitalRead(switchPin))

{

adjustTime(1);

}

else if (minute() == 0 && second()

== 0)

{

spin(hour());

}

updateDisplay();

delay(1);

}

(continued)

http://www.arduino.cc/

162 30 Arduino Projects for the Evil Genius

function like this, you must prefix the argument in

the function definition with a *.

An additional feature of the clock is that every

hour, on the hour, it spins the LEDs, lighting each

one in turn. So at 6 o’clock, for example, it will

spin six times before resuming the normal pattern.

If the reed relay is activated, the adjustTime

function is called with an argument of 1 second.

Since this is in the loop function with a one-

millisecond delay, the seconds are going to pass

quickly.

Putting It All Together

Load the completed sketch for Project 29 from

your Arduino Sketchbook and download it to the

board. On a Lilypad, this is slightly different to

what we are used to. You will have to select a

different board type and serial port from the

Arduino software before downloading.

Assemble the project, but test it connected to

the USB programmer before you build it into the

picture frame.

Try to choose a picture frame that has a thick

card insert that will allow a sufficient gap into

which the components can fit between the backing

board and the glass.

You may wish to design a paper insert to

provide labels for your LEDs to make it easier to

tell the time. A suitable design can be found at

www.arduinoevilgenius.com.

To read the time from the clock, you look at

each section (Hours, Minutes, and Seconds) in turn

and add the values next to the LEDs that are lit.

So, if the hour LEDs next to 8 and 2 are lit, then

the hour is 10. Then do the same for the minutes

and seconds.

LISTING PROJECT 29 (continued)

void updateDisplay()

{

time_t t = now();

setOutput(hourLEDs, 4,

hourFormat12(t));

setOutput(minuteLEDs, 6,

minute(t));

setOutput(secondLEDs, 6,

second(t));

}

void setOutput(int *ledArray, int

numLEDs, int value)

{

for (int i = 0; i < numLEDs; i++)

{

digitalWrite(ledArray[i],

bitRead(value, i));

}

}

void spin(int count)

{

for (int i = 0; i < count; i++)

{

for (int j = 0; j < 16; j++)

{

digitalWrite(loopLEDs[j],

HIGH);

delay(50);

digitalWrite(loopLEDs[j],

LOW);

}

}

}

http://www.arduinoevilgenius.com/

Chapter 9 Miscellaneous Projects 163 ■

Project 30
Evil Genius Countdown Timer

No book on projects for an Evil Genius should be

without the Bond-style countdown timer, complete

with a rat’s nest of colored wires (see Figure 9-15).

This timer also doubles as an egg timer, because

there is nothing that annoys the Evil Genius more

than an overcooked soft-boiled egg!

For optimal loudness, the piezobuzzer used is

the kind that has integrated electronics so all that is

necessary to make it sound is to provide it with 5V.

Be careful to connect it in the correct way.

Hardware

The project is similar to Project 15, but with the

extra seven-segment display and associated

transistors. We also have a rotary encoder that we

will use to set the time to count down from. We

have used both components before; for more

information on rotary encoders, see Chapter 6.

The schematic diagram for the project is shown

in Figure 9-16 and the breadboard layout in Figure

9-17.

Software

The sketch for this project (Project Listing 30) is

mostly concerned with keeping the display up-to-

date and creating the illusion that all four displays

are lit at the same time, when in fact, only one will

ever be lit. The way this is accomplished is

described in Project 15.

 Figure 9-15 Project 30. Evil Genius countdown timer.

COMPONENTS AND EQUIPMENT

Description Appendix

Arduino Diecimila or

Duemilanove board or clone 1

D1-4 2-digit, 7-segment LED

display (common anode) 33

R1-3 100 KK 0.5W metal film

resistor 13

R4-7 1 KK 0.5W metal film resistor 7

R8-15 100 K 0.5W metal film resistor 5

T1-4 BC307 39

Rotary encoder 57

Piezobuzzer

(integrated electronics) 68

164 30 Arduino Projects for the Evil Genius

Figure 9-16 Schematic diagram for Project 30.

Figure 9-17 A powered-up Arduino board with LED lit.

Chapter 9 Miscellaneous Projects 165 ■

LISTING PROJECT 30

#include <EEPROM.h>

int segmentPins[] = {3, 2, 19, 16, 18, 4, 5, 17};

int displayPins[] = {14, 7, 15, 6};

int times[] = {5, 10, 15, 20, 30, 45, 100, 130, 200, 230, 300, 400, 500, 600,

700, 800, 900, 1000, 1500, 2000, 3000};

int numTimes = 19;

byte selectedTimeIndex;

int timerMinute;

int timerSecond;

int buzzerPin = 11;

int aPin = 8;

int bPin = 10;

int buttonPin = 9;

boolean stopped = true;

byte digits[10][8] = {

// a b c d e f g .

{ 1, 1, 1, 1, 1, 1, 0, 0}, // 0

{ 0, 1, 1, 0, 0, 0, 0, 0}, // 1

{ 1, 1, 0, 1, 1, 0, 1, 0}, // 2

{ 1, 1, 1, 1, 0, 0, 1, 0}, // 3

{ 0, 1, 1, 0, 0, 1, 1, 0}, // 4

{ 1, 0, 1, 1, 0, 1, 1, 0}, // 5

{ 1, 0, 1, 1, 1, 1, 1, 0}, // 6

{ 1, 1, 1, 0, 0, 0, 0, 0}, // 7

{ 1, 1, 1, 1, 1, 1, 1, 0}, // 8

{ 1, 1, 1, 1, 0, 1, 1, 0} // 9

};

void setup()

{

for (int i=0; i < 8; i++)

{

pinMode(segmentPins[i], OUTPUT);

}

for (int i=0; i < 4; i++)

{

pinMode(displayPins[i], OUTPUT);

}

pinMode(buzzerPin, OUTPUT);

pinMode(buttonPin, INPUT);

pinMode(aPin, INPUT);

pinMode(bPin, INPUT);

selectedTimeIndex = EEPROM.read(0);

timerMinute = times[selectedTimeIndex] / 100;

timerSecond = times[selectedTimeIndex] % 100;

(continued)

166 30 Arduino Projects for the Evil Genius

LISTING PROJECT 30 (continued)

}

void loop()

{

if (digitalRead(buttonPin))

{

stopped = ! stopped;

digitalWrite(buzzerPin, LOW);

while (digitalRead(buttonPin)) {};

EEPROM.write(0, selectedTimeIndex);

}

updateDisplay();

}

void updateDisplay() // mmss

{

int minsecs = timerMinute * 100 + timerSecond;

int v = minsecs;

for (int i = 0; i < 4; i ++)

{

int digit = v % 10;

setDigit(i);

setSegments(digit);

v = v / 10;

process();

}

setDigit(5); // all digits off to prevent uneven illumination

}

void process()

{

for (int i = 0; i < 100; i++) // tweak this number between flicker and blur

{

int change = getEncoderTurn();

if (stopped)

{

changeSetTime(change);

}

else

{

updateCountingTime();

}

}

if (timerMinute == 0 && timerSecond == 0)

{

digitalWrite(buzzerPin, HIGH);

}

}

void changeSetTime(int change)

Chapter 9 Miscellaneous Projects 167 ■

LISTING PROJECT 30 (continued)

{

selectedTimeIndex += change;

if (selectedTimeIndex < 0)

{

selectedTimeIndex = numTimes;

}

else if (selectedTimeIndex > numTimes)

{

selectedTimeIndex = 0;

}

timerMinute = times[selectedTimeIndex] / 100;

timerSecond = times[selectedTimeIndex] % 100;

}

void updateCountingTime()

{

static unsigned long lastMillis;

unsigned long m = millis();

if (m > (lastMillis + 1000) && (timerSecond > 0 || timerMinute > 0))

{

digitalWrite(buzzerPin, HIGH);

delay(10);

digitalWrite(buzzerPin, LOW);

if (timerSecond == 0)

{

timerSecond = 59;

timerMinute —;

}

else

{

timerSecond —;

}

lastMillis = m;

}

}

void setDigit(int digit)

{

for (int i = 0; i < 4; i++)

{

digitalWrite(displayPins[i], (digit != i));

}

}

void setSegments(int n)

{

for (int i = 0; i < 8; i++)

{

digitalWrite(segmentPins[i], ! digits[n][i]);

(continued)

168 30 Arduino Projects for the Evil Genius

LISTING PROJECT 30 (continued)

}

}

int getEncoderTurn()

{

// return -1, 0, or +1

static int oldA = LOW;

static int oldB = LOW;

int result = 0;

int newA = digitalRead(aPin);

int newB = digitalRead(bPin);

if (newA != oldA || newB != oldB)

{

// something has changed

if (oldA == LOW && newA == HIGH)

{

result = -(oldB * 2 - 1);

}

}

oldA = newA;

oldB = newB;

return result;

}

The timer will always be in one of two states. It

will either be stopped, in which case, turning the

rotary encoder will change the time, or it can be

running, in which case it will be counting down.

Pressing the button on the rotary encoder will

toggle between the two states.

Rather than make the rotary encoder change the

time one second per rotation step, we have an

array of standard times that fit with the egg-

cooking habits of the Evil Genius. This array can

be edited and extended, but if you change its

length, you must alter the numTimes variable

accordingly.

The EEPROM library is used to store the last

used time so that each time the project is powered

up, it will remember the last time used.

The project makes a little chirp as each second

ticks by. You may wish to disable this. You will

find the relevant lines of code to comment out or

delete this in the updateCountTime function.

Putting It All Together

Load the completed sketch for Project 30 from

your Arduino Sketchbook and download it to the

board (see Chapter 1).

Summary

This is the final chapter containing projects. The

author hopes that in trying the projects in this

book, the Evil Genius’ appetite for experimentation

and design has been stirred and they will have the

urge to design some projects of their own.

The next chapter sets out to help you in the

process of developing your own projects.

Chapter 9 Miscellaneous Projects 169 ■

C H A P T E R 1 0

Your Projects

SO, YOU HAVE TRIED your hand at some of the

author’s projects and hopefully learned something

along the way. Now it’s time to start developing

your own projects using what you have learned.

You will be able to borrow bits of design from the

projects in this book, but to help you along, this

chapter gets you started with some design and

construction techniques.

Circuits

The author likes to start a project with a vague

notion of what he wants to achieve and then start

designing from the perspective of the electronics.

The software usually comes afterwards.

The way to express an electronic circuit is to

use a schematic diagram. The author has included

schematic diagrams for all the projects in this

book, so even if you are not very familiar with

electronics, you should now have seen enough

schematics to understand roughly how they relate

to the breadboard layout diagrams also included.

Schematic Diagrams

In a schematic diagram, connections between

components are shown as lines. These connections

will use the connective strips beneath the surface

of the breadboard and the wires connecting one

breadboard strip to another. For the kinds of

projects in this book, it does not normally matter

how the connection is made. The arrangement of

the actual wires does not matter as long as all the

points are connected.

Schematic diagrams have a few conventions that

are worth pointing out. For instance, it is common

to place GND lines near the bottom of the diagram

and higher voltages near the top of the diagram.

This allows someone reading the schematic to

visualize the flow of charge through the system

from higher voltages to lower voltages.

Another convention in schematic diagrams is to

use the little bar symbol to indicate a connection to

GND where there is not enough room to draw all

the connections.

Figure 10-1, originally from Project 5, shows

three resistors, all with one lead connected to the

GND connection of the Arduino board. In the

corresponding breadboard layout (Figure 10-2),

you can see that the connections to GND go

through three wires and three strips of breadboard

connector block.

There are many different tools for drawing

schematic diagrams. Some of them are integrated-

electronics CAD (computer-aided design) products

that will go on to lay out the tracks on a printed

circuit board for you. By and large, these create

fairly ugly-looking diagrams, and the author

prefers to use pencil and paper or general-purpose

drawing software. All the diagrams for this book

169

Chapter 10 Your Projects 179 ■

 Figure 10-2 Example breadboard layout.

Figure 10-1 A schematic diagram example.

170 30 Arduino Projects for the Evil Genius

were created using Omni Group’s excellent but

strangely named OmniGraffle software, which is

only available for Apple Macs. OmniGraffle

templates for drawing breadboard layouts and

schematic diagrams are available for download

from www.arduinoevilgenius.com.

Component Symbols

Figure 10-3 shows the circuit symbols for the

electronic components that we have used in this

book.

There are various different standards for circuit

diagrams, but the basic symbols are all

recognizable between standards. The set used in

this book does not closely follow any particular

standard. I have just chosen what I consider to be

the most easy-to-read approach to the diagrams.

Components

In this section we look at the practical aspects of

components: what they do and how to identify,

choose, and use them.

Datasheets

All component manufacturers produce datasheets

for their products. These act as a specification for

how the component will behave. They are not of

much interest for resistors and capacitors, but are

much more useful for semiconductors and

transistors, but especially integrated circuits. They

will often include application notes that include

example schematics for using the components.

These are all available on the Internet. However,

if you search for “BC158 datasheet” in your

favorite search engine, you will find many of the

top hits are for organizations cashing in on the fact

that people search for datasheets a lot. These

organizations surround the datasheets with

pointless advertising and pretend that they add

some value to looking up datasheets by

subscribing to their service. These websites usually

just lead to a frustration of clicking and should be

ignored in favor of any manufacturer’s websites.

So scan through the search results until you see a

URL like www.fairchild.com.

Alternatively, many of the component retail

suppliers such as Farnell provide free-of-charge

and nonsense-free datasheets for practically every

component they sell, which is to be much

applauded. It also means that you can compare

prices and buy the components while you are

finding out about them.

 Figure 10-3 Circuit symbols.

http://www.arduinoevilgenius.com/
http://www.fairchild.com/

172 30 Arduino Projects for the Evil Genius

Resistors

Resistors are the most common and cheap

electronic components around. Their most

common uses are

■ To prevent excessive current flowing (see any

projects that use an LED)

■ In a pair or as a variable resistor to divide a

voltage

Chapter 2 explained Ohm’s Law and used it to

decide on a value of series resistor for an LED.

Similarly, in Project 19, we reduced the signal

from our resistor ladder using two resistors as a

potential divider.

Resistors have colored bands around them to

indicate their value. However, if you are unsure of

a resistor, you can always find its resistance using

a multimeter. Once you get the hang of it, it’s easy

to read the values using the colored bands.

Each band color has a value associated with it,

as shown in Table 10-1.

TABLE 10-1 Resistor Color Codes

Black 0

Brown 1

Red 2

Orange 3

Yellow 4

Green 5

Blue 6

Violet 7

Gray 8

White 9

There will generally be three of these bands

together starting at one end of the resistor, a gap,

and then a single band at the other end of the

resistor. The single band indicates the accuracy of

the resistor value. Since none of the projects in this

book require accurate resistors, there is no need to

select your resistors on this basis.

Figure 10-4 shows the arrangement of the

colored bands. The resistor value uses just the

three bands. The first band is the first digit, the

second the second digit, and the third “multiplier”

band is how many zeros to put after the first two

digits.

So a 270 K resistor will have first digit 2 (red),

second digit 7 (violet), and a multiplier of 1

(brown). Similarly, a 10K K resistor will have

bands of brown, black, and orange (1, 0, 000).

Most of our projects use resistors in a very low-

power manner. A quick calculation can be used to

work out the current flowing through the resistor,

and multiplying it by the voltage across it will tell

you the power used by the resistor. The resistor

burns off this surplus power as heat, and so

resistors will get warm if a significant amount of

current flows through them.

You only need to worry about this for low-value

resistors of less than 100 K or so, because higher

values will have such a small current flowing

through them.

As an example, a 100 K resistor connected

directly between 5V and GND will have a current

through it of I = V/R, or 5/100, or 0.05 Amps. The

power it uses will be IV or 0.05 × 5 = 0.25W.

A standard power rating for resistors is 0.5W or

0.6W, and unless otherwise stated in projects,

0.5W metal film resistors will be fine.

Figure 10-4 A color-coded resistor.

Chapter 10 Your Projects 173 ■

Figure 10-5

Transistors

Browse through any component catalog and you

will find literally thousands of different transistor

types. In this book, the list has been simplified to

what’s shown in Table 10-2.

The basic switch circuit for a transistor is shown

in Figure 10-5.

The current flowing from base to emitter (b to

e) controls the larger current flowing from the

collector to emitter. If no current flows into the

base, then no current will flow through the load. In

most transistors, if the load had zero resistance, the

current flowing into the collector would be 50 to

200 times the base current. However, we are going

to be switching our transistor fully on or fully off,

so the load resistance will always limit the

collector current to the current required by the

load. Too much base current will damage the

transistor and also rather defeat the objective of

controlling a bigger current with a smaller one, so

the base will have a resistor connected to it.

When switching from an Arduino board, the

maximum current of an output is 40 mA, so we

could choose a resistor that allows about 30 mA to

flow when the output pin is high at 5V. Using

Ohm’s Law:

Basic transistor switch circuit.

R = V/I

R = (5 — 0.6)/30 = 147 K

The – 0.6 is because one characteristic of

bipolar transistors is that there is always a voltage

of about 0.6V between base and emitter when a

transistor is turned on.

Therefore, using a 150 K base resistor, we could

control a collector current of 40 to 200 times

30 mA, or 1.2 A to 6 A, which is more than

TABLE 10-2 Transistors Used in This Book

Transistor Type Purpose

BC548 Bipolar NPN Switching small loads greater than 40 mA

BD139 Bipolar NPN power Switching higher-load currents (e.g., Luxeon LED).

See Project 6.

BC307 Bipolar PNP Switching common anode LED displays where total

current is too much for Arduino output (40 mA)

2N7000 N-channel FET Low-power switching with very low ‘on’ resistance.

See Project 7.

FQP33N10 N-channel power MOSFET High-power switching.

FQP27P06 P-channel power MOSFET High-power switching.

174 30 Arduino Projects for the Evil Genius

enough for most purposes. In practice, we would

probably use a resistor of 1 KK or perhaps 270 K.

Transistors have a number of maximum

parameter values that should not be exceeded or

the transistor may be damaged. You can find these

by looking at the datasheet for the transistor. For

example, the datasheet for a BC548 will contain

many values. The ones of most interest to us are

summarized in Table 10-3.

Other Semiconductors

The various projects have introduced a number of

different types of components, from LEDs to

temperature sensors, Table 10-4 provides some

pointers into the various projects. If you want to

develop your own project that senses temperature

or whatever, first read about the projects developed

by the author that use these components.

It may even be worth building the project and

then modifying it to your own purposes.

Modules and Shields

It does not always make sense to make everything

from scratch. That is, after all, why we buy an

Arduino board rather than make our own. The

same is true of some modules that we may want to

use in our projects.

For instance, the LCD display module that we

used in Projects 17 and 22 contains the driver chip

needed to work the LCD itself, reducing both the

amount of work we need to do in the sketch and

the number of pins we need to use.

Other types of modules are available that you

may wish to use in your projects. Suppliers such as

Sparkfun are a great source of ideas and modules.

A sample of the kinds of modules that you can get

from such suppliers includes

■ GPS

■ Wi-Fi

■ Bluetooth

■ Zigbee wireless

■ GPRS cellular modem

You will need to spend time reading through

datasheets, planning, and experimenting, but that is

what being an Evil Genius is all about.

Slightly less challenging than using a module

from scratch is to buy an Arduino shield with the

module already installed. This is a good idea when

the components that you would like to use will not

go on a breadboard (such as surface mount

TABLE 10-4 The Use of Specialized

Components in Pprojects

Component Project

Single-color LEDs Almost every project

Multicolor LEDs 14

LED matrix displays 16

7-segment LEDs 15, 30

Audio amplifier chip 19, 20

LDR (light sensor) 20

Thermistor (temperature sensor) 13

Variable voltage regulator 7

TABLE 10-3 Transistor Datasheet

Property Value What It Means

Ic 100 mA The maximum current

that can flow through the

collector without the

transistor being damaged.

h
FE

110-800 DC current gain. This is

 the ratio of collector

 current to base current,

 and as you can see, could

 be anything between 110

 and 800 for this

 transistor.

Chapter 10 Your Projects 175 ■

devices). A ready-made shield can give you a real

leg up with a project.

New shields become available all the time, but

at the time of this writing, you can buy Arduino

shields for:

■ Ethernet (connect your Arduino to the Internet)

■ XBee (a wireless data connection standard

used in home automation, among other things)

■ Motor driver

■ GPS

■ Joystick

■ SD card interface

■ Graphic LCD touch screen display

■ Wi-Fi

Buying Components

Thirty years ago, the electronic enthusiast living in

even a small town would be likely to have the

choice of several radio/TV repair and spare stores

where they could buy components and receive

friendly advice. These days, there are a few retail

outlets that still sell components, like RadioShack

in the United States and Maplins in the UK, but the

Internet has stepped in to fill the gap, and it is now

easier and cheaper than ever to buy components.

With international component suppliers such as

RS and Farnell you can fill a virtual shopping

basket online and have the components arrive in a

day or two. Shop around, because prices vary

considerably between suppliers for the same

components.

You will find eBay to be a great source of

components. If you don’t mind waiting a few

weeks for your components to arrive, there are

great bargains to be had from China. You often

have to buy large quantities, but may find it

cheaper to get 50 of a component from China than

5 locally. That way, you have some spares for your

component box.

Tools

When making your own projects, there are a few

tools that you will need at a bare minimum. If you

do not intend to do any soldering, then you will

need

■ Solid-core wire in a few different colors,

something around 0.6 mm (23 swg) wire

diameter

■ Pliers and wire snips, particularly for making

jumper wires for the breadboard

■ Breadboard

■ Multimeter

If you intend to solder, then you will also need

■ Soldering iron (duh)

■ Lead-free alloy solder

Component Box

When you first start designing your own projects,

it will take you some time to gradually build up

your stock of components. Each time you are

finished with a project, a few more components

will find their way back to your stock.

It is useful to have a basic stock of components

so that you do not have to keep ordering things

when you just need a different value resistor. You

will have noticed that most of the projects in this

book tend to use values of resistor, like 100 K,

1 KK, 10 KK, etc. You actually don’t need that

many different components to cover most of the

bases for a new project.

A good starting kit of components is listed in

the appendix.

Boxes with compartments that can be labeled

save a lot of time in selecting components,

especially resistors that do not have their value

written on them.

176 30 Arduino Projects for the Evil Genius

Snips and Pliers

Snips are for cutting, and pliers are for holding

things still (often while you cut them).

Figure 10-6 shows how you strip the insulation

off wire. Assuming you are right-handed, hold

your pliers in your left hand and the snips in the

right. Grip the wire with the pliers close to where

you want to start stripping the wire from and then

gently pinch round the wire with the snips and

then pull sideways to pull the insulation away.

Sometimes, you will pinch too hard and cut or

weaken the wire, and other times you will not

pinch hard enough and the insulation will remain

intact. It’s all just a matter of practice.

You can also buy an automatic wire stripper that

grips and removes insulation in one action. In

practice, these often only work well for one

particular wire type and sometimes just plain

don’t work.

Soldering

You do not have to spend a lot of money to get a

decent soldering iron. Temperature-controlled

solder stations, such as the one shown in Figure

10-7, are better, but a fixed-temperature mains

electricity iron is fine. Buy one with a fine tip, and

make sure it is intended for electronics and not

plumbing use.

Use narrow lead-free solder. Anyone can solder

things together and make them work; however,

some people just have a talent for neat soldering.

Don’t worry if your results do not look as neat as

a robot-made printed circuit. They are never

going to.

Soldering is one of those jobs that you really

need three hands for: one hand to hold the

soldering iron, one to hold the solder, and one to

hold the thing you are soldering. Sometimes the

thing you are soldering is big and heavy enough to

stay put while you solder it; on other occasions,

you will need to hold it down. Heavy pliers are

good for this, as are mini vises and “helping hand”

type holders that use little clips to grip things.

 Figure 10-6 Snips and pliers.

Chapter 10 Your Projects 177 ■

Practice soldering any old bits of wire together

or wires to an old bit of circuitboard before

working on the real thing.

Multimeter

The basic steps for soldering are

1. Wet the sponge in the soldering iron stand.

2. Allow the iron to come up to temperature.

3. Tin the tip of the iron by pressing the solder

against it until it melts and covers the tip.

4. Wipe the tip on the wet sponge—this

produces a satisfying sizzling sound, but also

cleans off the excess solder. You should now

have a nice bright silver tip.

5. Touch the iron to the place where you are

going to solder to heat it; then after a short

pause (a second or two), touch the solder to

the point where the tip of the iron meets the

thing you are soldering. The solder should

flow like a liquid, neatly making a joint.

6. Remove the solder and the soldering iron,

putting the iron back in its stand, being very

careful that nothing moves in the few seconds

that the solder will take to solidify. If

something does move, then touch the iron to it

again to reflow the solder; otherwise, you can

get a bad connection called a dry joint.

Above all, try not to heat sensitive (or

expensive) components any longer than necessary,

especially if they have short leads.

A big problem with electrons is that you cannot

see the little monkeys. A multimeter allows you to

see what they are up to. It allows you to measure

voltage, current, resistance, and often other

features too like capacitance and frequency. A

cheap $10 multimeter is perfectly adequate for

almost any purpose. The professionals use much

more solid and accurate meters, but that’s not

necessary for most purposes.

Multimeters, such as the one shown in Figure

10-8, can be either analog or digital. You can tell

more from an analog meter than you can a digital,

as you can see how fast a needle swings over and

how it jitters, something that is not possible with a

digital meter, where the numbers just change.

However, for a steady voltage, it is much easier to

read a digital meter, as an analog meter will have a

number of scales, and you have to work out which

scale you should be looking at before you take the

reading.

You can also get autoranging meters, which,

once you have selected whether you are measuring

current or voltage, will automatically change

ranges for you as the voltage or current increases.

This is useful, but some would argue that thinking

about the range of voltage before you measure it is

actually a useful step.

To measure voltage using a multimeter:

1. Set the multimeter range to voltage (start at a

range that you know will be higher than the

voltage you are about to measure).

2. Connect the black lead to GND. A crocodile

clip on the negative lead makes this easier.

3. Touch the red lead to the point whose voltage

you want to measure. For instance, to see if an

Arduino digital output is on or off, you can

Figure 10-7 Soldering iron and solder.

178 30 Arduino Projects for the Evil Genius

touch the red lead to the pin and read the

voltage, which should be either 5V or 0V.

Measuring current is different from measuring

voltage because you want to measure the current

flowing through something and not the voltage at

some point. So you put the multimeter in the path

of the current that you are measuring. This means

that when the multimeter is set to a current setting,

there will be a very low resistance between the two

leads, so be careful not to short anything out with

the leads.

Figure 10-9 shows how you could measure the

current flowing through an LED.

To measure current:

1. Set the multimeter range to a current range

higher than the expected current. Note that

multimeters often have a separate high-current

connector for currents as high as 10 A.

2. Connect the positive lead of the meter to the

more positive side from which the current

will flow.

3. Connect the negative lead of the meter to the

more negative side. Note that if you get this

the wrong way round, a digital meter will just

indicate a negative current; however,

connecting an analog meter the wrong way

round may damage it.

4. In the case of an LED, the LED should still

light as brightly as before you put the meter

into the circuit and you will be able to read

the current consumption.

Another feature of a multimeter that is

sometimes useful is the continuity test feature.

This will usually beep when the two test leads are

connected together. You can use this to test fuses,

Figure 10-9 Measuring current.

Figure 10-8 A multimeter.

Chapter 10 Your Projects 179 ■

etc., but also to test for accidental short circuits on

a circuit board or broken connections in a wire.

Resistance measurement is occasionally useful,

particularly if you want to determine the resistance

of an unmarked resistor, for instance.

Some meters also have diode and transistor test

connections, which can be useful to find and

discard transistors that have burned out.

Oscilloscope

In Project 18, we built a simple oscilloscope. They

are an indispensable tool for any kind of

electronics design or test where you are looking at

a signal that changes over time. They are a

relatively expensive bit of equipment, and there are

various types. One of the most cost-effective types

is similar in concept to Project 19. That

oscilloscope just sends its readings across to a

computer that is responsible for displaying them.

Entire books have been written about using an

oscilloscope effectively, and every oscilloscope is

different, so we will just cover the basics here.

As you can see from Figure 10-10, the screen

showing the waveform is displayed over the top of

a grid. The vertical grid is in units of some fraction

of volts, which on this screen is 2V per division.

So the voltage of the square wave in total is 2.5 ×

2, or 5V.

The horizontal axis is the time axis, and this

is calibrated in seconds—in this case, 500

microseconds (mS) per division. So the length of

one complete cycle of the wave is 1000 mS, that

is, 1 millisecond, indicating a frequency of 1KHz.

Project Ideas

The Arduino Playground on the main Arduino

website (www.arduino.cc) is a great source of

ideas for projects. Indeed, it even has a section

specifically for project ideas, divided into easy,

medium, or difficult.

If you type “Arduino project” into your favorite

search engine or YouTube, you will find no end of

interesting projects that people have embarked on.

 Figure 10-10 An oscilloscope.

180 30 Arduino Projects for the Evil Genius

Another source of inspiration is the component

catalog, either online or on paper. Browsing

through, you might come across an interesting

component and wonder what you could do with it.

Thinking up a project is something that should be

allowed to gestate in the mind of the Evil Genius.

After exploring all the options and mulling

everything over, the Evil Genius’ project will start

to take shape!

180 30 Arduino Projects for the Evil Genius

A P P E N D I X

Components and Supplies

ALL OF THE PARTS USED in this book are readily

available through the Internet. However, sometimes

it is a little difficult to track down exactly what you

are looking for. For this reason, this appendix lists

the components along with some order codes for

various suppliers. This is information that will

become inaccurate with time, but the big suppliers

like Farnell and RS will usually list an item as “no

longer stocked” and offer alternatives.

Suppliers

There are so many component suppliers out there

that it feels a little unfair to list the few that the

author knows. So have a look around on the

Internet, as prices vary considerably between

suppliers.

I have listed order codes for Farnell and RS

because they are international, but also carry a

fantastically broad range of stock. There is very

little that you cannot buy from them. They can be

surprisingly cheap for common components, like

resistors and semiconductors, but for unusual

components like laser diode modules, their prices

can be ten times what you can find elsewhere on

the Internet. Their main role is to supply to

professionals.

Some smaller suppliers specialize in providing

components for home constructors building

microcontroller projects like ours. They do not

have the range of components, but do often have

more exotic and fun components at reasonable

prices. A prime example of this is Sparkfun

Electronics, but there are many others out there.

Sometimes, when you find you just need a

couple of components, it’s great to be able to go to

a local store and pick them up. RadioShack in the

United States and Maplins in the UK stock a range

of components, and are great for this purpose.

The sections that follow list components by

type, along with some possible sources and order

codes where available.

181

182 30 Arduino Projects for the Evil Genius

Arduino and Clones

Code Description RS

1 Arduino Duemilanove 696-1655

2 Arduino Lilypad —

3 Arduino Shield Kit 696-1673

Other suppliers to check include eBay, Sparkfun, Robotshop.com, and Adafruit.

Resistors

Code Description

Farnell

RS

4 39 K 0.5W metal film 9338756 683-3601

5 100 K 0.5W metal film 9339760 683-3257

6 270 K 0.5W metal film 9340300 148-360A

7 1 KK 0.5W metal film 9339779 477-7928

8 4.7 KK 0.5W metal film 9340629 683-3799

9 10 KK 0.5W metal film 9339787 683-2939

10 33 KK 0.5W metal film 9340424 683-3544

11 47 KK 0.5W metal film 9340637 506-5434

12 56 KK 0.5W metal film 9340742 683-4206

13 100 KK 0.5W metal film 9339795 683-2923

14 470 KK 0.5W metal film 9340645 683-3730

15 1 MK 0.5W metal film 9339809 683-4159

16 4 K 1W 1155042 683-5477

17 100 KK linear potentiometer 1227589 249-9266

18 Thermistor, NTC, 33K at 25C, beta 4090 1672317RL

(note, beta

=

3950)

188-5278

(note R = 30K,

beta = 4100)

19 LDR 7482280 596-141

Capacitors

Code Description Farnell RS

20 100nF nonpolarized 1200414 538-1203A

21 220nF nonpolarized 1216441 107-029

22 100 µF electrolytic 1136275 501-9100

Appendix Components and Supplies 183 ■

Semiconductors

Code Description

Farnell RS Other

23 5-mm red LED 1712786 247-1151 Local store

24 5-mm yellow LED 1612434 229-2554

25 5-mm green LED 1461633 229-2548

26 5-mm IR LED sender 940 nm 1020634 455-7982

27 3-mm red LED 7605481 654-2263

28 3-mm green LED 1142523 619-2852

29 3-mm blue LED 1612441 247-1561

30 1W white Luxeon LED 1106587 467-7698 eBay

31 RGB LED (common anode) 1168585 247-1505

 (note: this has (note: this has eBay

 separate leads separate leads

 rather than rather than

 common anode) common anode)

32 3mW red laser diode module $$$ $$$ eBay or

 salvage from

 cheap laser

 pointer

33 2-digit, 7-segment LED display

(common anode)

 1003316 195-136

34 8 x 8 LED array (2 color) — — Sparkfun

35 10-segment bar graph display 1020492 —

36 IR phototransistor 935 nm 1497882 195-530

37 IR remote control receiver 940 nm 4142822 315-387

38 1N4004 diode 9109595 628-9029

39 BC307/ BC556 transistor 1611157 544-9309A

40 BC548 transistor 1467872 625-4584

41 DB139 transistor 1574350 —

42 2N7000 FET 9845178 671-4733

43 N-channel power

MOSFET. FQP33N10

 9845534 671-5095

44 P-channel power

MOSFET. FQP27P06

 9846530 671-5064

45 LM317 voltage regulator 1705990 686-9717

46 4017 decade counter 1201278 519-0120

47 TDA7052 1W audio amplifier 526198 658-485A

Other suppliers to check, especially for LEDs, etc., include eBay, Sparkfun, Robotshop.com, and Adafruit.

184 30 Arduino Projects for the Evil Genius

Other

Code Description Farnell RS Other

48 Miniature push switch 1448152 102-406

49 2.1-mm Power plug 1200147 455-132 Local store

50 9V battery clip 1650667 489-021A Local store

51 Regulated 15V 1.5A power supply 1354828 238-151

52 3-way screw terminal 1641933 220-4276

53 Perf board 1172145 206-8648 Local store

54 4 x 3 keypad 1182232 115-6031

55 0.1-inch header strip 1097954 668-9551

56 0.1-inch socket strip 1218869 277-9584

57 Rotary encoder with push switch 1520815 —

58 LCD module (HD44780 controller) 1137380 532-6408 eBay,

Sparkfun

59 Miniature 8 K loudspeaker 1300022 628-4535 Local store

60 Electret microphone 1736563 —

61 5V relay 9913734 499-6595 Local store

62 12V 1A power supply 1279478 234-238 Local store

63 12V computer cooling fan 1755867 668-8842 Local store

64 6V motor 599128 238-9721 Salvage

65 9g servo motor — — eBay

66 5V solenoid (< 100 mA) 9687920 533-2217

67 Piezotransducer

(without driver electronics)

1675548 511-7670 Local store

68 Piezobuzzer

(integrated electronics)

1192513 — Local store

69 Miniature reed switch 1435590 289-7884

70 7 x 5 inch picture frame Supermarket

71 5V power supply 1297470 234-222 Salvaged

phone

charger

72 Breadboard 4692597 — Local store

Local stores like RS and Maplins allow you to see components before you buy, and are good for components like

power supplies and computer fans, which will usually be cheaper than the big professional suppliers.

Appendix Components and Supplies 185 ■

Starter Kit of Components

It’s good to have a bit of a stock of common

components. The following list gives some

components that you are likely to find yourself

using over and over again.

■ Resistors: 0.5W metal film, 100 K, 270 K,

1 KK, 10 KK, 100 KK

■ 5-mm red LEDs

■ Transistors: BC548, BD139

186 30 Arduino Projects for the Evil Genius

This page intentionally left blank

Index

References to figures are in italics.

! command, 123

A

allOff function, 138

amplification, 36

analog inputs, 18

analog meters, 177

analog output from digital inputs, 112

Arduino Diecimila board

powering up, 1

selecting, 6, 7

suppliers, 182

Arduino Duemilanove board, 2

powering up, 1

selecting, 6, 7

suppliers, 182

Arduino Lilypad, 20

suppliers, 182

Arduino Mega, 20

Arduino Playground, 179

Arduino Protoshield, 37, 38–40

arrays, 30–32

ATmega168, 20

ATmega328, 19–20

autoranging meters, 177

B

back EMF, 126, 150

bipolar transistors, 90–91

Blink program, 1

modifying, 8–11

board components, 16

analog inputs, 18

digital connections, 18–19

microcontrollers, 19–20

oscillator, 20

power connections, 16–18

power supply, 16

Reset switch, 20

serial programming connector, 20

USB interface chip, 20

breadboards, 11–13

Brevig, Alexander, 64

buying components, 175

C

C language, 21

arithmetic, 23–24

arrays, 30–32

bumpy case, 21–22

conditional statements, 24–25

constants, 23

data types, 23, 24

example, 21–23

functions, 22

integers, 22

logical expressions, 25

logical operators, 25

loops, 23, 29–30

parameters, 23

semicolon, 22

Strings, 24

variables, 22, 23

capacitors, 108

suppliers, 182

circuits

circuit symbols, 171

schematic diagrams, 169–171

clones, 182

code, 8

187

Index 189

collector-feedback bias, 121

common anodes, 91–92

component box, 175

components

buying, 175

starter kit, 185

suppliers, 181–184

computer-controlled fan (Project 23), 132–133

conditional statements, 24–25

configuring the Arduino environment, 6, 7

constants, 23

continuity test, 178–179

countdown timer (Project 30), 163–168

current, measuring, 178

D

DAC, 111

data types, 23, 24

datasheets, 171

decade counter, 96

dice, 55–59, 91–95

Diecimila. See Arduino Diecimila board

digital connections, 18–19

digital inputs and outputs, 41

analog output from digital inputs, 112

digital meters, 177

digital-to-analog converters, 111

disk images, 5

downloading project software, 6–8

Duemilanove. See Arduino Duemilanove board

E

EEPROM, 20, 78, 82, 153

electromotive force, 126

EMF, 126

EPROM, 15

Evil Genius countdown timer (Project 30),

163–168

Extraction Wizard, 2–3

F

FETs, 48, 96

MOSFETs, 135–136

field effect transistors, 48, 96

flashing LED (Project 1), 8–11

Flashing LED (Project 1), breadboard, 12

Found New Hardware Wizard, 3, 4

functions, 22

G

getEncoderTurn function, 69

GND, 17

lines in schematic diagrams, 169

H

H-bridge controllers, 134

high-brightness Morse code translator (Project 4),

35–38

making a shield for, 38–40

high-powered strobe light (Project 8), 52–55

hunting, 127–130

hypnotizer (Project 24), 134–138

hysteresis, 130

I

ideas for projects, 179–180

infrared remote (Project 28), 153–158

inputs, 15

analog, 18

digital, 41

installing software, 1–2

on LINUX, 5–6

on Mac OS X, 4–5

on Windows, 2–4

integers, 22

K

keypad security code (Project 10), 61–67

L

lasers, servo-controlled laser (Project 25),

138–143

LCD displays, 101–102

LCD thermostat (Project 22), 125–131

LDRs, 72

leaky integration, 75

LED array (Project 16), 95–101

LED dice (Project 9), 55–59

ledPin, 21, 22

LEDs

1W Luxeon, 35

adding an external LED, 10–11

188 30 Arduino Projects for the Evil Genius

flashing LED (Project 1), 8–11

high-brightness Morse code translator (Project 4),

35–40

high-powered strobe light (Project 8), 52–55

LED array (Project 16), 95–101

LED dice (Project 9), 55–59

model traffic signal (Project 5), 41–44

Morse code S.O.S. flasher (Project 2), 27–31

Morse code translator (Project 3), 31–35

S.A.D. light (Project 7), 47–52

seven-segment LED double dice (Project 15),

91–95

seven-segment LEDs, 89–91

strobe light (Project 6), 44–47

libraries, installing into Arduino software, 64, 65,

154–155, 161

lie detector (Project 26), 145–148

light harp (Project 20), 117–120

light-dependent resistors, 72

lights

LED array (Project 16), 95–101

multicolor light display (Project 14), 85–89

seven-segment LED double dice (Project 15),

91–95

strobe light (high-powered—Project 8), 52–55

strobe light (Project 6), 44–46

USB message board (Project 17), 102–105

Lilypad. See Arduino Lilypad

Lilypad clock (Project 29), 159–162

LINUX, installing software on, 5–6

logical expressions, 25

logical operators, 25

loops, 23, 29–30

M

Mac OS X, installing software on, 4–5

magnetic door lock (Project 27), 148–153

mains electricity, 110, 125

mains hum, 110

marketing operator, 123

measuring current, 178

measuring resistance, 179

measuring temperature, 77

measuring voltage, 177–178

memory, 15, 19–20

message board, 102–105

metal oxide semiconductor field effect transistors,

135–136

microcontrollers, 15, 19–20

model traffic signal (Project 5), 41–44

model traffic signal using a rotary encoder

(Project 11), 68–72

modules, 174–175

Morse code letters, 32

Morse code S.O.S. flasher (Project 2), 27–29

Morse code translator (high-brightness—Project 4),

35–38

making a shield for, 38–40

Morse code translator (Project 3), 31–35

MOSFETs, 135–136

multicolor light display (Project 14), 85–89

multimeter, 177–179

O

Ohm’s Law, 17–18

OmniGraffle, 171

operators, 25

marketing operator, 123

oscillator, 20

oscilloscope (Project 18), 107–111

oscilloscopes, 179

outputs, 15

analog output from digital inputs, 112

digital, 41

P

parameters, 23

PCBs. See Protoshield circuit boards

perf board, 48

layout, 50

photoresistors, 72

phototransistors, 72, 73–74

piezobuzzers, 146–147

playNote function, 113–116

pliers, 176

PNP transistors, 92

power

computer-controlled fan (Project 23), 132–133

hypnotizer (Project 24), 134–138

LCD thermostat (Project 22), 125–131

servo-controlled laser (Project 25), 138–143

power connections, 16–18

Index 191

power jumper, 1

power supply, 16

pre-processor directives, 78

programs, 8

projects

computer-controlled fan, 132–133

Evil Genius countdown timer, 163–168

flashing LED, 8–11

high-brightness Morse code translator, 35–38

high-powered strobe light, 52–55

hypnotizer, 134–138

ideas, 179–180

infrared remote, 153–158

keypad security code, 61–67

LCD thermostat, 125–131

LED array, 95–101

LED dice, 55–59

lie detector, 145–148

light harp, 117–120

Lilypad clock, 159–162

magnetic door lock, 148–153

model traffic signal, 41–44

model traffic signal using a rotary encoder,

68–72

Morse code S.O.S. flasher, 27–29

Morse code translator, 31–35

multicolor light display, 85–89

oscilloscope, 107–111

pulse rate monitor, 73–77

S.A.D. light, 47–52

servo-controlled laser, 138–143

seven-segment LED double dice, 91–95

strobe light, 44–47

tune player, 112–116

USB message board, 102–105

USB temperature logger, 77–83

VU meter, 120–124

Protoshield circuit boards, 39

pulse rate monitor (Project 12), 73–77

Pulse Width Modulation, 48

PWM, 48

R

R-2R resistor ladder, 111, 112

RAM, 15

random function, 55

random number generation, 55

randomSeed function, 55

reed switches, 159

Reset button, 1

Reset connector, 16–17

Reset switch, 20

resistance measurement, 179

resistors, 10, 172

color codes, 172

light-dependent resistors, 72

suppliers, 182

values, 19

variable resistors, 45, 46, 47, 147

rotary encoders, 67, 68

Ruby language, installing, 109–110

S

S.A.D. light (Project 7), 47–52

schematic diagrams, 169–171

See also individual projects

semiconductors, suppliers, 183

sensors

keypad security code (Project 10), 61–67

model traffic signal using a rotary encoder

(Project 11), 68–72

pulse rate monitor (Project 12), 73–77

USB temperature logger (Project 13), 77–83

Serial Monitor, 34–35, 75

serial port, settings, 6, 7

serial programming connector, 20

servo motors, 138

servo-controlled laser (Project 25), 138–143

seven-segment LED double dice (Project 15), 91–95

seven-segment LEDs, 89–91

See also LEDs

shields, 38–40, 47, 142, 174–175

Shirriff, Ken, 154

sine waves, 111

sketches, 8

snips, 176

software

Blink sketch, 8–9

downloading project software, 6–8

installing, 3–6

soldering, 176–177

solenoid, 148–150, 153

190 30 Arduino Projects for the Evil Genius

sound

generation, 111–112

light harp (Project 20), 117–120

oscilloscope (Project 18), 107–111

tune player (Project 19), 112–116

VU meter (Project 21), 120–124

square waves, 111

Stanley, Mark, 64

starter kit of components, 185

Strings, 24

strobe light (high-powered—Project 8), 52–55

strobe light (Project 6), 44–46

making a shield for, 47

suppliers, 181–184

T

temperature

LCD thermostat, 125–131

measuring, 77

temperature logger, 77–83

Theremin, 117

thermistors, 77

USB temperature logger (Project 13), 77–

83

thermostat, 125–131

timer, 163–168

tools, 175

component box, 175

multimeter, 177–179

oscilloscopes, 179

snips and pliers, 176

soldering, 176–177

transistors, 173–174

bipolar transistors, 90–91

datasheet, 174

FETs, 48, 96

MOSFETs, 135–136

NPN bipolar transistor, 36

PNP transistors, 92

used in this book, 173

Transistor-Transistor Logic, 16

TTL, 16

tune player (Project 19), 112–116

U

updates, 3

USB drivers, installing, 3–4

USB interface chip, 20

USB lead, type A-to-type B, 1

USB message board (Project 17), 102–105

USB temperature logger (Project 13), 77–83

V

variable resistors, 45, 46, 47, 147

variables, 22, 23

voltage, measuring, 177–178

voltage regulator, 16

VU meter (Project 21), 120–124

W

web color chart, 87

website, 2

Windows, installing software on, 2–4

wire stripper, 176

