PICBASIC
" PROJECTS

30 PROJECTS
USING PICBASIC AND
PICBASIC PRO

DOGAN IBRAHIM

e,

Herwrins

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007
For Evaluation Only.

PIC BASIC PROYECTOS

This page intentionally left blank

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007
For Evaluation Only.

PIC BASIC Projects

30 proyectos usando PIC BASICy
PROFESIONAL BASICO PIC

By

Dogan Ibrahim

- < AMSTERDAM * BOSTON * HEIDELBERG * LONDON * NEW YORK ¢ OXFORD
ELSEVIER PARIS SAN DIEGO * SAN FRANCISCO * SINGAPORE ¢ SYDNEY * TOKYO

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007

This eBook does not include ancillary OhEvaUAI00 0Nl 0 vrar wn

printed version of the book.

Linacre House, Jordan Hill, Oxford OX2 8DP, UK
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Copyright © 2006

No part of this publication may be reproduced, stored in aretrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher

Permissions may be sought directly from Elsevier's Science & Technology Rights
Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333;
email: permissions@el sevier.com. Alternatively you can submit your request online by
visiting the Elsevier web site at http://el sevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice

No responsibility is assumed by the publisher for any injury and/or damage to persons or
property as a matter of products liahility, negligence or otherwise, or from any use or operation
of any methods, products, instructions or ideas contained in the material herein. Because of rapid
advances in the medical sciences, in particular, independent verification of diagnoses and drug
dosages should be made

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006927674

ISBN-10: 0-75-066879-2

For information on all publications visit our web site at
http://books.elsevier.com

Trademarks/Registered Trademarks
PIC isaregistered trademark of Microchip Technology Inc.

All brand names mentioned in this book are protected by their respective trademarks
and are acknowledged

Typeset by Charon Tec Ltd, Chennai, India
www.charontec.com

Printed and bound in Great Britain, by MPG Books Ltd.

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID q,hie Foundation

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007
For Evaluation Only.

Contents

>3

Preface

1 sistemas de microontrolador es
1.1 Introduction
1.2 Microcontroller systems

121 RAM
122 ROM
123 EPROM

124 EEPROM
1.25 Flash EEPROM

1.3 Caracteristicas de microcontroladores
131 voltge de aprovisionamiento
132 Elreqj
1.3.3 Temporizadores
134 Perroguardian
135 Restablecimiento de entrada
1.3.6 Interruptores
1.3.7 Detector de apagamiento parcial
1.3.8 Convertidor ANALOGICO-DIGITAL
139 Seidl/O
1.3.10 EEPROM memoriade datos
1.3.11 LCD conductores

OO O OVWWOWWOWWWWMWONNNNODOOOOODOOITN - B

1.3.12 Comparador analogico 1

1.3.13 Reloj detiempo red 1

1.3.14 Modo de suefio 1
1.3.15 Power-on reset 10
1.3.16 Low power operation 10
1.3.17 Current sink/source capability 10
1.4 Microcontroller architectures 11
141 RISCandCISC 11
1.5 Exercises 11
2 ThePIC microcontroller family 13
2.1 12-bit instruction word 15
2.2 14-bit instruction word 17
2.3 16-hit instruction word 21
2.4 Inside a PIC microcontroller 21
24.1 Program memory (Flash) 21

24.2 Datamemory (RAM) 22

vi Contents

2.4.3 Register file map and special function registers 22
24.4 Oscillator circuits 34
245 Reset circuit 40
2.4.6 |Interrupts 41
2.4.7 The configuration word 42
24.8 1/Ointerface 42

2.5 Exercises 47
3 PIC microcontroller project development 49
3.1 Required hardware tools 49
311 PC 49
3.1.2 PIC microcontroller programmer device 50
3.1.3 Solderless breadboard 52
3.1.4 PIC microcontroller and minimum support components 53
3.1.5 Power supply 58

3.2 Required software tools 60
3.21 Text editor 60
3.2.2 PicBasic and PicBasic Pro compilers 65
3.2.3 Programmer device software 67

3.3 Bundled development systems 69
3.4 Experimenter boards 71
3.5 Example project development 73
3.6 Other useful development tools 77
3.6.1 Simulators 77
3.6.2 InCircuit Emulators (ICE) 77

3.7 Exercises 78
3.8 Linksto useful web sites 78
4 PicBasic and PicBasic Pro programming 80
4.1 PicBasic language 80
411 PicBasicvariables 80
4.1.2 PicBasic mathematical and logical operations 85
4.1.3 PicBasic program flow control commands 86
4.1.4 Other PicBasic commands 90
4.1.5 Recommended PicBasic program structure 101

4.2 PicBasic Prolanguage 101
4.2.1 PicBasic Provariables 102
4.2.2 Constants 103
4.2.3 Comments 103
4.2.4 Multi-statement lines 103
425 INCLUDE 104
426 DEFINE 104
4.2.7 Lineextension 104

4.2.8 Accessing ports and other registersin PicBasic Pro 104

Contents vii

4.2.9 Arithmetic operators 105
4.2.10 PicBasic Pro commands 107

4.3 Liquid crystal display (LCD) interface and commands 113
4.3.1 Pardlel LCDs 114
4.3.2 Serial LCDs 120

4.4 |nterrupts 124
4.5 Recommended PicBasic Pro program structure 125
4.6 Using stepping motors 126
4.7 Using servomotors 128
4.8 Exercises 129
5 PicBasic and PicBasic Pro projects 131
Project 1 — Simpleflashing LED 132
Project 2 — Complex flashing LED 138
Project 3 — Flashing LED warning lights 142
Project 4 — Turning on odd numbered LEDs 144
Project 5 — Binary counting LEDs 148
Project 6 — Left scrolling LEDs 152
Project 7 — Right scrolling LEDs 156
Project 8 — Right-left scrolling LEDs 160
Project 9 — LED dice 165
Project 10 — 7-segment LED display counter 172
Project 11 — 7-segment LED dice 182
Project 12 — Dual 7-segment LED display 189
Project 13 — Dua 7-segment LED display counter 198
Project 14 — Dual 7-segment LED event counter 204
Project 15 — 4-digit display with serial driver — counter project 210
Project 16 — 4-digit LED with serial driver —counter project with leading zeroesblanked 227
Project 17 — 4-digit externd interrupt-driven event counter 236
Project 18 — 4-digit timer interrupt-driven chronograph 241
Project 19 — Car park control system 248
Project 20 — Seconds counter with LCD display 260
Project 21 — LCD-based clock with hours—minutes—seconds display 271
Project 22 — L CD-based chronometer 280
Project 23 — L CD-based voltmeter using A/D converter 288
Project 24 — L CD-based thermometer using A/D converter 300
Project 25 — Serial LCD-based thermometer with external EEPROM memory 306
Project 26 — Programmabl e thermometer with RS232 serial output 315
Project 27 — Electronic organ 331
Project 28 — Unipolar stepping motor control 337
Project 29 — Unipolar stepping motor control using UCN5804B 344
Project 30 — Servomotor-based mobile robot control 348
About the CDROM 359

Index 361

This page intentionally left blank

Preface

Microcontrollers are single-chip computers consisting of CPU (central processing unit), dataand
program memory, serial and parallel I/O (input/output), timers, external and internal interrupts,
all integrated into a single chip that can be purchased for as little as $2.00. Microcontrollers are
intelligent electronic devices used to control and monitor devicesin the real world. Today micro-
controllers are used in most commercial and industrial equipment. About 40% of microcontroller
applications are in office automation, such as PCs, laser printers, fax machines, intelligent tele-
phones, and so forth. About one-third of microcontrollers are found in consumer electronics
goods. Products such as CD players, hi-f- equipment, video games, washing machines and cook-
ersfall into this category. The communications market, automotive market, and the military share
the rest of the application areas.

Microcontrollers are programmed devices. A program is a sequence of instructions that tell the
microcontroller what to do. Microcontrollers have traditionally been programmed using the low-
level assembly language of the target processor. This consists of a series of instructions in the
form of mnemonics. The biggest disadvantage of assembly language isthat microcontrollersfrom
different manufacturers have different assembly languages and the user is forced to learn a new
language every time a new processor is chosen. Assembly language is also difficult to work with,
especially during the development, testing, and maintenance of complex projects. The solution to
this problem has been to use a high-level language to program microcontrollers. A high-level lan-
guage consists of easy to understand, more meaningful series of instructions. This approach makes
the programs more readabl e and also portable. The same high-level language can usually be used
to program different types of microcontrollers. Testing and the maintenance of microcontroller-based
projects are also easier when high-level languages are used.

Thisbook is about programming microcontrollers using a high-level language. The PIC family of
microcontrollersis chosen as the target microcontroller. PIC is currently one of the most popular
microcontrollers used by many engineers, technicians, students, and hobbyists. PIC microcon-
trollers are manufactured in different sizes and in varying complexity. These microcontrollers
incorporate a RISC (reduced instruction set computer) architecture and there is only a small set
of instructions that the user has to learn. Also, the power consumption of PIC microcontrollersis
very low and this is one of the reasons which make these microcontrollers popular in portable
hand-held applications.

In this book, PicBasic and PicBasic Pro languages are used to program PIC microcontrollers.
BASIC is one of the oldest and widely known high-level programming languages. Both PicBasic
and PicBasic Pro have been devel oped by MicroEngineering Labs Inc. PicBasic isalow-cost com-
piler and is aimed at the lower end of the market, mainly for students and the hobby market.

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2004 - 2007

X Preface For Evaluation Only.

PicBasic Proismore expensive and it is asophisticated professional compiler with many extrafea-
tures. This compiler is aimed for engineers and other professional users of PIC microcontrollers.

This book will help technicians, engineers, and to those who chose electronics as a hobby. No previ-
ous experience with microcontrollers is assumed, and the PIC family of microcontrollers is intro-
duced in detail. The book ispractical and is supplied with many working hardware projects where the
reader can experiment easily using a smple breadboard type experiment kit and a few components.
The circuit diagram, flow diagram, and the code for each project are given and explained in detail.

Chapter 1 provides areview of the basic architecture of microcontrollers. Various microcontroller
concepts are described in this chapter.

Chapter 2 is about the common features of PIC microcontrollers and describes in detail the archi-
tecture of varioustypes of commonly used PIC microcontrollersand their usein electronic devices.

A microcontroller-based system devel opment requires both hardware and software devel opment
tools. Chapter 3 describes the various commercially available PIC microcontroller devel opment
tools and gives a brief overview of how they can be used in project development.

PicBasic and PicBasic Pro languages are discussed in detail in Chapter 4. A brief description of
each statement is given with an example.

Finaly, in Chapter 5, many tested and working projects are given. These projects are organized in
increasing complexity and the reader is recommended to follow this chapter in the given order.

Dogan Ibrahim

1
Microcontroller systems

1.1 Introduction

In 1969, Bob Noyce and Gordon Maoore set up the Intel Corporation to manufacture memory chips
for the mainframe computer industry. Later in 1971, the first microprocessor chip 4040 was manu-
factured by Intel for a consortium of two Japanese companies. These chips were basically designed
for a calculator named Busicom which was one of the first portable calculators. This was a very
simple calculator which could only add and subtract numbers, 4 bits (a nibble) at a time. 4040
chip was so successful that it was soon followed by Intel’s 8-bit 8008 microprocessor. Thiswas a
simple microprocessor with limited resources, poorly implemented interrupt mechanisms, and
multiplexed address and data busses. Thefirst really powerful 8-bit microprocessor appeared in early
1974 as the Intel 8080 chip. This microprocessor had separate address and data busses with 64 K
byte of address space which was enormous in 1975 standards. 8080 microprocessor was the first
microprocessor used in homes as a personal computer named Altair. 8080 has been avery success-
ful microprocessor but soon other companies began producing microprocessor chips. Motorola
introduced the 8-bit 6800 chip which had a different architecture to the 8080 but has also been very
popular. In 1976, Zilog introduced the Z80 microprocessor which was much more advanced than the
8080. Theinstruction set of Z80 was downward compatible with the 8080 and this made Z80 to be
one of the most successful microprocessors of the time. Z80 was used in many microprocessor-
based applications, including home computers and games consoles. In 1976, Motorola crested a
microprocessor chip called 6801 which replaced a 6800 chip plus some of the chips required to
make a complete computer system. This was a major step in the evolution of the microcontrollers
which are basically computers consisting of only one chip. In later years, we see many other micro-
controller chipsin the market, such as Intel 8048, 8049, 8051, Motorola 6809, Atmel 89C51, etc.

The term microcomputer is used to describe a system that includes a minimum of a microprocessor,
program memory, data memory, and input—output (1/0O). Some microcomputer systems include
additional components such as timers, counters, analogue-to-digital converters, and so on. Thus,
amicrocomputer system can be anything from alarge computer having hard disks, floppy disks,
and printers, to a single-chip embedded controller.

In thisbook we are going to consider only the type of microcomputersthat consists of asinglesil-
icon chip. Such microcomputer systems are also called microcontrollers and they are used in
many household goods such as microwave ovens, TV remote control units, cookers, hi-fi equip-
ment, CD players, persona computers, fridges, etc.

2 PIC BASC projects

1.2 Microcontroller systems

A microcontroller is a single chip computer (see Figure 1.1). Micro suggests that the device is
small, and controller suggests that the device can be used in control applications. Another term
used for microcontrollersis embedded controller, since most of the microcontrollers are built into
(or embedded in) the devices they control.

A microprocessor differs from amicrocontroller in many ways. The main difference is that amicro-
processor requires several other components for its operation, such as program memory and data
memory, 1/O devices, and external clock circuit. A microcontroller on the other hand has all the sup-
port chipsincorporated inside the same chip. All microcontrollers operate on aset of instructions (or
the user program) stored in their memory. A microcontroller fetches the instructions from its pro-
gram memory one by one, decodes these ingtructions, and then carries out the required operations.

Microcontrollers have traditionally been programmed using the assembly language of the target
device. Although the assembly language is fast, it has several disadvantages. An assembly pro-
gram consists of mnemonics and it is difficult to learn and maintain a program written using the
assembly language. Also, microcontrollers manufactured by different firms have different assem-
bly languages and the user is required to learn a new language every time a new microcontroller
is used. Microcontrollers can also be programmed using a high-level language, such as BASIC,
PASCAL, and C. High-level languages have the advantage that it is much easier to learn a high-
level language than the assembler. Also, very large and complex programs can easily be devel oped
using a high-level language. In this book we shall be learning the programming of PIC micro-
controllers using the popular PicBasic and PicBasic Pro compilers.

In general, asingle chip is al that is required to have a running microcontroller system. In prac-
tical applications additional components may be required to allow a microcomputer to interface
to its environment. With the advent of the PIC family of microcontrollers the development time
of an electronic project has reduced to several hours. Developing a PIC microcontroller-based
project simply takes no more than five or six steps.

Type the program into a PC

Assemble (or compile) the program
Optionally simulate the program on a PC

L oad the program into PIC’s program memory
Design and construct the hardware

Test the project.

ok~ wWwbNE

Basically, amicrocomputer executes auser program which isloaded inits program memory. Under
the control of this program datais received from external devices (inputs), manipulated and then
sent to external devices (outputs). For example, in a microcontroller-based oven temperature con-
trol system the temperature is read by the microcomputer using a temperature sensor. The micro-
computer then operates a heater or afan to control and keep the temperature at the required value.
Figure 1.2 shows the block diagram of our simple oven temperature control system.

Microcontroller systems 3

Figure1.1 Some PIC microcontrollers

Microcontroller

Output » Heater
Output » Fan
Input

Figure1.2 Microcontroller-based oven temperature control system

The system shown in Figure 1.2 isavery simplified temperature control system. In amore sophis-
ticated system we may have akeypad to set the temperature, and aliquid crystal display (LCD) to
display the current temperature. Figure 1.3 shows the block diagram of this more sophisticated
temperature control system.

We can make our design even more sophisticated (see Figure 1.4) by adding an audible alarm to
inform usif the temperature is outside the required values. Also, the temperature readings can be
sent to a PC every second for archiving and further processing. For example, a graph of the daily
temperature can be plotted on the PC. Asyou can see, because the microcontrollers are program-
mable it is very easy to make the final system as simple or as complicated as we like.

4 PIC BASC projects

LCD

Output

Output » Heater

Output Fan

Inputs

. A
Microcontroller

god
ooad

oo

Keypad
Figure 1.3 Temperature control system with a keypad and LCD

A microcontroller is a very powerful tool that allows a designer to create sophisticated 1/O data
manipulation under program control. Microcontrollers are classified by the number of bits they
process. 8-bit microcontrollers are the most popular ones and are used in most microcontroller-
based applications; 16- and 32-bit microcontrollers are much more powerful, but usually more
expensive and not required in many small- to medium-size general-purpose applications where
microcontrollers are generally used.

As shown in Figure 1.5, the simplest microcontroller architecture consists of a microprocessor,
memory, and 1/O. The microprocessor consists of a central processing unit (CPU) and the control
unit (CU). The CPU isthe brain of the microcontroller and this is where all of the arithmetic and
logic operations are performed. The CU controls the internal operations of the microprocessor and
sends out control signalsto other parts of the microcontroller to carry out the required instructions.

Memory is an important part of a microcontroller system. Depending upon the type used we can
classify memories into two groups: program memory and data memory. Program memory stores
the program written by the programmer and this memory is usually non-volétile, i.e. datais not
lost after the removal of power. Data memory is where the temporary data used in a program are
stored and this memory is usually volatile, i.e. dataislost after the removal of power.

There are basically five types of memories as summarised below.

Microcontroller systems 5

LCD

Microcontroller

Output

Output » Heater
Output Fan
Output —»‘ Buzzer

Input
Input Output

ooao
o0ao

gdgao
Keypad | |

Figure 1.4 More sophisticated temperature controller

CPU

Memory Input—Output | «——> External devices
CuU

Figure1.5 The simplest microcontroller architecture

1.2.1 RAM

RAM means Random Access Memory. It is a general-purpose memory which usually stores the
user data used in a program. RAM is volatile, i.e. data is lost after the removal of power. Most
microcontrollers have some amount of internal RAM. 256 bytes is a common amount, although
some microcontrollers have more, some less. In general it is possible to extend the memory by
adding external memory chips.

6 PIC BASIC projects

1.2.2 ROM

ROM isRead Only Memory. Thistype of memory usually holds program or fixed user data. ROM
memories are programmed at factory during the manufacturing process and their contents cannot
be changed by the user. ROM memoriesare only useful if you have devel oped a program and wish
to order several thousand copies of it.

1.2.3 EPROM

EPROM is erasable Programmable Read Only Memory. Thisis similar to ROM, but the EPROM
can be programmed using a suitable programming device. EPROM memories have a small clear
glass window on top of the chip where the data can be erased under UV light. Many devel opment
versions of microcontrollers are manufactured with EPROM memories where the user program
can be stored. These memories are erased and re-programmed until the user is satisfied with the
program. Some versions of EPROMSs, known as OTP (One Time Programmable), can be pro-
grammed using a suitable programmer device but these memories cannot be erased. OTP mem-
ories cost much less than the EPROMs. OTP is useful after a project has been developed
completely and it is required to make many copies of the program memory.

1.2.4 EEPROM

EEPROM isElectrically Erasable Programmable Read Only Memory, which isanon-volatile mem-
ory. These memories can be erased and al so be programmed under program control. EEPROMs are
used to save configuration information, maximum and minimum values, identification data, etc.
Some microcontrollers have built-in EEPROM memories (e.g. PIC16F84 contains a 64-byte EEP-
ROM memory where each byte can be programmed and erased directly by software). EEPROM
memories are usually very slow.

1.2.5 Flash EEPROM

This is another version of EEPROM-type memory. This memory has become popular in micro-
controller applications and is used to store the user program. Flash EEPROM is non-volatile and
isusually very fast. The datais erased and then re-programmed using a programming device. The
entire contents of the memory should be erased and then re-programmed.

1.3 Microcontroller features

Microcontrollers from different manufacturers have different architectures and different capa-
bilities. Some may suit aparticular application while others may betotally unsuitable for the same
application. The hardware features of microcontrollersin general are described in this section.

Microcontroller systems 7

1.3.1 Supply voltage

Most microcontrollers operate with the standard logic voltage of +5V. Some microcontrollers
can operate at as low as +2.7V and some will tolerate +6V without any problems. You should
check the manufacturers' data sheets about the allowed limits of the power supply voltage.

A voltage regulator circuit is usually used to obtain the required power supply voltage when the
deviceisto be operated from amains adaptor or batteries. For example, a5V regulator isrequired
if the microcontroller isto be operated from a5V supply using a9V battery.

1.3.2 The clock

All microcontrollers require a clock (or an oscillator) to operate. The clock is usualy provided by
connecting external timing devices to the microcontroller. Most microcontrollerswill generate clock
signalswhen acrystal and two small capacitors are connected. Some will operate with resonators or
external resistor—capacitor pair. Some microcontrollers have built-in timing circuits and they do not
require any external timing components. If your application is not time-sensitive you should use
external or internal (if available) resi stor—capacitor timing components for simplicity and low cost.

Aninstruction is executed by fetching it from the memory and then decoding it. Thisusually takes
severa clock cycles and is known asthe instruction cycle. In PIC microcontrollers an instruction
cycletakesfour-clock periods. Thus, the microcontroller isactually operated at aclock rate which
isaquarter of the actual oscillator frequency.

1.3.3 Timers

Timers are important parts of any microcontroller. A timer is basically a counter which is driven
either from an external clock pulse or from the internal oscillator of the microcontroller. A timer
can be 8-bits or 16-bits wide. Data can be loaded into atimer under program control and the timer
can be stopped or started by program control. Most timers can be configured to generate an inter-
rupt when they reach a certain count (usually when they overflow). The interrupt can be used by
the user program to carry out accurate-timing-related operations inside the microcontroller.

Some microcontrollers offer capture and compare facilities where atimer value can be read when
an external event occurs, or the timer value can be compared to a preset value and an interrupt can
be generated when this value is reached.

It istypical to have at |east one timer in every microcontroller. Some microcontrollers may have
two, three, or even more timers where some of the timers can be cascaded for longer counts.

1.3.4 Watchdog

Most microcontrollers have at |east one watchdog facility. The watchdog is basically atimer which
isrefreshed by the user program and areset occursif the program failsto refresh the watchdog. The

8 PIC BASIC projects

watchdog timer is used to detect a system problem, such as the program being in an endless |oop.
A watchdog is a safety feature that prevents runaway software and stops the microcontroller from
executing meaningless and unwanted code. Watchdog facilities are commonly used in real-time
systemswhereit isrequired to regularly check the successful termination of one or more activities.

1.3.5 Resetinput

A reset input is used to reset a microcontroller. Resetting puts the microcontroller into a known
state such that the program execution starts from address O of the program memory. An external
reset action isusually achieved by connecting a push-button switch to the reset input such that the
microcontroller can be reset when the switch is pressed.

1.3.6 Interrupts

Interrupts are very important concepts in microcontrollers. An interrupt causes the microcon-
troller to respond to external and internal (e.g. atimer) events very quickly. When an interrupt
occurs the microcontroller leaves its normal flow of program execution and jumps to a special
part of the program, known as the Interrupt Service Routine (ISR). The program code inside the
ISR is executed and upon return from the | SR the program resumes its normal flow of execution.

The ISR starts from a fixed address of the program memory. This address is also known as the
interrupt vector address. For example, in a PIC16F84 microcontroller the ISR starting addressis
4 in the program memory. Some microcontrollers with multi-interrupt features have just one
interrupt vector address, while some others have unique interrupt vector addresses, one for each
interrupt source. Interrupts can be nested such that a new interrupt can suspend the execution of
another interrupt. Another important feature of a microcontroller with multi-interrupt capability
isthat different interrupt sources can be given different levels of priority.

1.3.7 Brown-out detector

Brown-out detectors are also common in many microcontrollers and they reset a microcontroller
if the supply voltagefalls below anominal value. Brown-out detectors are saf ety features and they
can be employed to prevent unpredictable operation at |ow voltages, especially to protect the con-
tents of EEPROM-type memories.

1.3.8 Analogue-to-digital converter

An analogue-to-digital converter (A/D) is used to convert an analogue signal such asvoltageto a
digital form so that it can be read by a microcontroller. Some microcontrollers have built-in A/D
converters. It isalso possible to connect an external A/D converter to any type of microcontroller.
A/D converters are usualy 8-bits, having 256 quantisation levels. Some microcontrollers have
10-bit A/D converters with 1024 quantisation levels. Most PIC microcontrollers with A/D features
have multiplexed A/D converters where more than one analogue input channel is provided.

Microcontroller systems 9

TheA/D conversion process must be started by the user program and it may take several hundreds
of microseconds for a conversion to complete. A/D converters usually generate interrupts when a
conversion is complete so that the user program can read the converted data quickly.

A/D converters are very useful in control and monitoring applications since most sensors (e.g.
temperature sensor, pressure sensor, force sensor, etc.) produce analogue output voltages.

1.3.9 Serial I/0

Serial communication (also called RS232 communication) enables a microcontroller to be con-
nected to another microcontroller or to a PC using a serial cable. Some microcontrollers have
built-in hardware called USART (Universal Synchronous—Asynchronous Receiver—Transmitter)
to implement a serial communication interface. The baud rate and the data format can usually be
selected by the user program. If any serial 1/O hardware is not provided, it is easy to develop soft-
ware to implement serial data communication using any 1/O pin of amicrocontroller. We shall see
in Chapter 4 how to use the PicBasic and PicBasic Pro statements to send and receive serial data
from any pin of a PIC microcontroller.

Some microcontrollers incorporate SPI (Serial Periphera Interface) or 1°C (Integrated Inter
Connect) hardware bus interfaces. These enable amicrocontroller to interface to other compatible
devices easily.

1.3.10 EEPROM data memory

EEPROM type datamemory is also very common in many microcontrollers. The advantage of an
EEPROM memory is that the programmer can store non-volatile datain such a memory, and can
also change this data whenever required. For example, in a temperature monitoring application
the maximum and the minimum temperature readings can be stored in an EEPROM memory.
Then, if the power supply is removed for whatever reason, the values of the latest readings will
still be available in the EEPROM memory.

PicBasic and PicBasic Pro languages provide specia instructions for reading and writing to the
EEPROM memory of amicrocontroller which has such memory built-in.

Some microcontrollers have no built-in EEPROM memory, some provide only 16 bytes of
EEPROM memory, while some others may have as much as 256 bytes of EEPROM memories.

1.3.11 LCD drivers

LCD drivers enable a microcontroller to be connected to an external LCD display directly.
These drivers are not common since most of the functions provided by them can be implemented
in software.

10 PIC BASIC projects

1.3.12 Analogue comparator

Analogue comparators are used where it is required to compare two anal ogue voltages. Although
these circuits are implemented in most high-end PIC microcontrollers they are not common in
other microcontrollers.

1.3.13 Real-time clock

Real-time clock enables a microcontroller to have absolute date and time information continu-
oudly. Built-in real-time clocks are not common in most microcontrollers since they can easily be
implemented by either using a dedicated real -time clock chip, or by writing a program.

1.3.14 Sleep mode

Some microcontrollers (e.g. PIC) offer built-in sleep modes where executing thisinstruction puts
the microcontroller into a mode where the internal oscillator is stopped and the power consump-
tion is reduced to an extremely low level. The main reason of using the sleep mode isto conserve
the battery power when the microcontroller is not doing anything useful. The microcontroller usu-
ally wakes up from the sleep mode by external reset or by a watchdog time-out.

1.3.15 Power-on reset

Some microcontrollers (e.g. PIC) have built-in power-on reset circuits which keep the microcon-
troller in reset state until all the internal circuitry has been initialised. This feature is very useful
asit starts the microcontroller from aknown state on power-up. An external reset can also be pro-
vided where the microcontroller can be reset when an external button is pressed.

1.3.16 Low power operation

Low power operation is especialy important in portable applications where the microcontroller-
based equipment is operated from batteries. Some microcontrollers (e.g. PIC) can operate with
less than 2mA with 5V supply, and around 15 pA at 3V supply. Some other microcontrollers,
especially microprocessor-based systems where there could be several chips may consume sev-
eral hundred milliamperes or even more.

1.3.17 Current sink/source capability

Thisisimportant if the microcontroller isto be connected to an external device which may draw
large current for its operation. PIC microcontrollers can source and sink 25mA of current from
each output port pin. This current is usually sufficient to drive LEDs, small lamps, buzzers, small
relays, etc. The current capability can be increased by connecting externa transistor switching
circuits or relays to the output port pins.

Microcontroller systems 11

1.4 Microcontroller architectures

Usually two types of architectures are used in microcontrollers (see Figure 1.6): Von Neumann
architecture and Harvard architecture. Von Neumann architecture is used by alarge percentage of
microcontrollers and here al memory space is on the same bus and instruction and data use the
same bus. In the Harvard architecture (used by the PIC microcontrollers), code and data are on
separate busses and this allows the code and data to be fetched simultaneously, resulting in an
improved performance.

Data cPU Program cPU Program
memory memory memory

Figure1.6 Von Neumann and Harvard architectures

1.4.1 RISC and CISC

RISC (Reduced Instruction Set Computer) and CISC (Complex Instruction Computer) refer to
the instruction set of a microcontroller. In an 8-bit RISC microcontroller, data is 8-bits wide but
the instruction words are more than 8-bits wide (usually 12, 14, or 16-bits) and the instructions
occupy one word in the program memory. Thus, the instructions are fetched and executed in one
cycle, resulting in an improved performance. PIC microcontrollers are RISC-based devices and
they have no more than 35 instructions.

In aClISC microcontroller both data and instructions are 8-bitswide. CISC microcontrollers usually
have over 200 instructions. Dataand code are on the same bus and cannot be fetched simultaneoudly.

1.5 Exercises

1. What isamicrocontroller? What is a microprocessor? Explain the main differences between
amicroprocessor and a microcontroller.

. Give some example applications of microcontrollers around you.

. Where would you use an EPROM memory?

. Where would you use a RAM memory?

. Explain what type of memories are usually used in microcontrollers.

. What isan 1/0O port?

What is an analogue-to-digital converter? Give an example use for this converter.

NOoOUAWN

12 PIC BASC projects

©

Explain why awatchdog timer could be useful in areal-time system.

9. What is serial 1/0? Where would you use serial communication?
10. Why isthe current sinking/sourcing important in the specification of an output port pin?
11. What isaninterrupt? Explain what happenswhen aninterrupt is recognised by amicrocontroller.
12. Why is brown-out detection important in real-time systems?
13. Explain the differences between a RI SC-based microcontroller and a Cl SC-based microcon-
troller. What type of microcontroller is PIC?

2
The PIC microcontroller family

The PIC microcontroller family of microcontrollers is manufactured by Microchip Technology
Inc. Currently they are one of the most popular microcontrollers used in many commercial and
industrial applications. Over 120 million devices are sold each year.

The PIC microcontroller architectureis based on amodified Harvard RISC (Reduced Instruction
Set Computer) instruction set with dual-bus architecture, providing fast and flexible design with
an easy migration path from only 6 pinsto 80 pins, and from 384 bytes to 128 kbytes of program
memory.

PIC microcontrollers are available with many different specifications depending on:

® Memory Type
. Flash
... OTP (One-time-programmable)
. ROM (Read-only-memory)
. ROMless
® |nput...Output (I/O) Pin Count
... 4...18 pins
... 20...28 pins
... 32...44 pins
... 45 and above pins
® Memory Size
... 05...1K
.. 2...4K
... 8...16K
... 24...32K
. 48...64K
... 96...128K
® Specia Features
... CAN
... USB
.. LCD
... Motor Control
. Radio Frequency

14 PIC BASC projects

Although there are many models of PIC microcontrollers, the nice thing is that they are upward
compatible with each other and a program developed for one model can very easily, and in many
cases with no modifications, be run on other models of the family. The basic assembler instruction
set of PIC microcontrollers consists of only 33 instructions and most of the family members (except
the newly devel oped devices) use the same instruction set. Thisiswhy a program devel oped for one
model can run on another model with similar architecture without any changes.

All PIC microcontrollers offer the following features:

RISC instruction set with only a handful of instructions to learn

Digital 1/0 ports

On-chip timer with 8-bit prescaler

Power-on reset

Watchdog timer

Power saving SLEEP mode

High source and sink current

Direct, indirect, and relative addressing modes
External clock interface

RAM data memory

EPROM or Flash program memory

Some devices offer the following additional features:

Some even more complex devicesin the family offer the following additional features:

Although there are several hundred models of PIC microcontrollers, choosing a microcontroller
for an application is not a difficult task and requires taking into account these factors:

Analogue input channels

Analogue comparators

Additional timer circuits

EEPROM data memory

External and internal interrupts
Internal oscillator

Pulse-width modulated (PWM) output
USART serid interface

CAN businterface
I2C bus interface

SPI bus interface
Direct LCD interface
USB interface

Motor control

Number of 1/0 pins required
Required peripherals (e.g. USART, USB)

The PIC microcontroller family 15

® The minimum size of program memory

® The minimum size of RAM

® \Whether or not EEPROM non-volatile data memory is required

° Speed

® Physical size

® Cost.

The important point to remember isthat there could be many models which satisfy all of the above
requirements. You should always try to find the model which satisfies your minimum require-
ments and the one which does not offer more than you may need. For example, if you require a
microcontroller with only 8 1/O pins and if there are two identical microcontrollers, one with 8
and the other one with 16 1/0 pins, you should select the one with 8 I/O pins.

Although there are several hundred models of PIC microcontrollers, the family can be broken
down into three main groups, which are:

® 12-hit instruction word (e.g. 12C5X X, 16C5X)
® 14-hit instruction word (e.g. 16F8X, 16F87X)
® 16-hit instruction word (e.g. 17C7XX, 18C2XX).

All three groups share the same RISC architecture and the same instruction set, with a few add-
itiona instructions available for the 14-bit, and many more instructions available for the 16-bit
models. Instructions occupy only one word in memory, thus increasing the code efficiency and
reducing the required program memory. Instructions and data are transferred on separate buses,
thus the overall system performance isincreased.

The features of some microcontrollersin each group are given in the following sections.

2.1 12-bit instruction word

Table 2.1 lists some of the devices in this group. Because of the simplicity of their architecture
these devices are not supported by the PicBasic compiler. PicBasic Pro compiler providesalimited
support for these devices. But, asthe prices of 14-bit devices have declined, therereally isno need
anymore to use a 12-bit device, except for their smaller physical sizes.

PIC12C508: Thisis alow-cost, 8-pin device with 512 X 12 EPROM program memory, and 25
bytes of RAM data memory. The device can operate at up to 4MHz clock input and the instruc-
tion set consists of only 33 instructions. The device features 6 1/O ports, 8-bit timer, power-on
reset, watchdog timer, and internal 4 MHz oscillator capability. One of the major disadvantages of
this microcontroller isthat the program memory is EPROM-based and it cannot be erased or pro-
grammed using the standard programming devices. The program memory has to be erased using
an EPROM eraser device (an ultraviolet light source).

The FZ version of this family (e.g. PIC12F508) is based on flash program memory which can be
erased and re-programmed using the standard PIC programmer devices. Similarly, the «CEZ version of
the family (e.g. PIC12CE518) offers an additiona 16-byte non-volatile EEPROM data memory.

16 PIC BASC projects

Table2.1 Some 12-bit PIC microcontrollers

Microcontroller Program Data Max speed 1/0 A/D
Memory RAM (MH2z) Ports Converter
12C508 512 X 12 25 4 6
16C54 384 X 12 25 20 12
16C57 2048 X 12 72 20 20
16C505 1024 x 12 41 4 12
16C58A 2048 X 12 73 20 12

Figure 2.1 shows the pin configuration of the PIC12F508 microcontroller.

vDD —»[]1 % 8[J«——vss
GP5/OSC1/CLKIN +—>»{]2 § 7 [Jl«—> GPO/ICSPDAT
GP4/0SC2 «—»{|3 LSL. 6[J«—> GP1/ICSPCLK
GP3/MCLR/VPP —»[|4 E 5[J¢«—> GP2/TOCKI

Figure2.1 PIC12F508 microcontroller

PIC16C5X: Thisis one of the earliest PIC microcontrollers. The deviceis 18-pin with a384 X 12
EPROM program memory, 25 bytes of RAM data memory, 12 1/0O ports, a timer, and a watchdog.
Some other members in the family, e.g. PIC16C56 have the same architecture but more program
memory (1024 X 12). PIC16C58A hasmore program memory (2048 X 12) and also more datamem-
ory (73 bytes of RAM). Figure 2.2 shows the pin configuration of the PIC16C56 microcontroller.

1\
RA2 «—»[].1 20[Je—>» RAL
RA3 «—[]2 19[Jle— RAO
Tockl —»{]3 18[J¢—— OSC1/CLKIN
MCLR/VPP —[|4 vouuuo V7 [—> osc2/cLKouT

vss—[|5 222220 16[J¢— VDD

DYDY DD
vss—]6 S22 28 % 15[l¢—— VoD

SR RGESRG
RBO+—[|7 ©® < *» 14[l«—>»RB7
RB1 «—»[]8 13[J«—> RB6
RB2 «—»[]|9 12[J«—> RB5
RB3 «—»{]10 11[J«—>» RB4

Figure2.2 PIC16C56 microcontroller

The PIC microcontroller family 17

2.2 14-bit instruction word

Thisisabig family including many models of PIC microcontrollers. These devices are supported
by both the PicBasic and PicBasic Pro compilers. Most of the devices in this family can operate
at up to 20MHz clock rate. The instruction set consists of 35 instructions. These devices offer
advanced features such as internal and external interrupt sources. Table 2.2 lists some of the
microcontrollersin this group.

Table2.2 Some 14-bit microcontrollers

Microcontroller Program Data Max speed 1/0 A/D
Memory RAM (MH2z) Ports Converter
16C554 512 X 14 80 20 13
16C64 2048 X 14 128 20 33
16F84 1024 X 14 36 10 13
16F627 1024 x 14 224 20 16
16F628 2048 X 14 224 20 16
16F676 1024 X 14 64 20 12 8
16F73 4096 X 14 192 20 22 5
16F876 8192 X 14 368 20 22 5
16F877 8192 X 14 368 20 33 8

PIC16C554: This microcontroller has similar architecture to the PIC16C54 but the instructions
are 14 bits wide. The program memory is 512 X 14 and the data memory is 80 bytes of RAM.
There are 13 /O pins where each pin can source or sink 25mA current. Additionally, the device
contains atimer and a watchdog.

Pl C16F84: This has been one of the most popular PIC microcontrollersfor avery long time. This
is an 18-pin device and it offers 1024 X 14 flash program memory, 36 bytes of data RAM,
64 bytes of non-volatile EEPROM data memory, 13 I/O pins, atimer, awatchdog, and internal and
external interrupt sources. The timer is 8-bits wide but can be programmed to generate internal
interrupts for timing purposes. PIC16F84 can be operated from acrystal or aresonator for accur-
ate timing. A resistor-capacitor can also be used as atiming device for applications where accur-
atetiming is not required.

Wewill be using the PIC16F84 in some of the projectsin thisbook. Figure 2.3 shows the pin con-
figuration of this microcontroller. The pin descriptions are given in Table 2.3.

PIC16F877: This microcontroller is a 40-pin device and is one of the popular microcontrollers
used in complex applications. The device offers 8192 X 14 flash program memory, 368 bytes of
RAM, 256 bytes of non-volatile EEPROM memory, 33 I/O pins, 8 multiplexed A/D converters
with 10-bits resolution, PWM generator, 3 timers, analogue capture and comparator circuit,
USART, and internal and external interrupt facilities.

18 PIC BASC projects

RA2 «—»[]-1 ~ 18[J¢«—> RA1
RA3 «—»[]2 17[J«—> RAO
RA4/TOCKI «—»{]3 16| J¢—— OSC1/CLKIN
MCLR —»[]4 2 15[}—> Osc2/CLKOUT
vss —»[|5 § 14[J¢«—— VDD
RBO/INT «—»[]6 § 13[Je—>» RB7
RB1 «—»[]|7 12[}J«—> RB6
RB2 «—»[]8 11[Je—> RB5
RB3 «—»[]9 10[J«—> RB4

Figure2.3 PIC16F84 microcontroller pin configuration

Table2.3 PIC16F84 microcontroller pin descriptions

Pin Description Pin Description
1 RA2 ... PORTA hit 2 10 RB4 ... PORTB hit 4
2 RA3 ... PORTA bit 3 11 RB5 ... PORTB hit 5
3 RA4/TOCK1 ... PORTA bit 4/Counter clk 12 RB6 ... PORTB bit 6
4 MCLR ... Master clear 13 RB7 ... PORTB hit 7
5 Vss... Gnd 14 Vdd ..+V supply
6 RBO/INT ... PORTB bit 0 15 osc2
7 RB1 ... PORTB bit 1 16 0OSC1
8 RB2 ... PORTB hit 2 17 RAO ... PORTA bit 0
9 RB3 ... PORTB bit 3 18 RA1 ... PORTA bit 1

We will be using the PIC16F877 in some of the projects in this book. Figure 2.4 shows the pin
configuration of this microcontroller.

PIC16F627: This is an 18-pin microcontroller with 1024 X 14 flash program memory. The
device offers 224 bytes of RAM, 128 bytes of non-volatile EEPROM memory, 16 1/O pins, two
8-hit timers, one 16-bit timer, awatchdog, and comparator circuits. This microcontroller is simi-
lar to PIC16F84, but offers more 1/0O pins, more program memory, and alot more RAM. In addi-
tion, PIC16F627 is more suited to applications which require more than one timer.

We will be using the PIC16F627 in some of the projects in this book. Figure 2.5 shows the pin
configuration of this microcontroller.

PIC16F676: Thisis a 14-pin microcontroller which is becoming very popular. The device offers
1024 X 14 flash program memory, 64 bytes of RAM, 12 |/O pins, 128 bytes of EEPROM, 8

The PIC microcontroller family

19

MCLR/VPP —»[|1 ~ 40 [Je—>» RB7/PGD
RAO/ANO +—[]2 39[Je—» RB6/PGC
RA1/AN1 «—[]3 38[Je—» RB5
RA2/AN2/VREF—/CVREF +—>»[|4 37[J¢—> RB4
RA3/AN3/VREF+ «—»[|5 36| l«—> RB3/PGM
RA4/TOCKI/C1OUT «—>»{|6 35[l¢«—> RB2
RA5/AN4/SS/C20UT «—»[]|7 34[]e—>RB1
REO/RD/AN5 «—»{]8 < 38 [J«—> RBO/INT
RE1/WR/AN6 «—>»[]9 K 32[J¢«— VoD
RE2/CS/AN7 «—»[]10 ':fr 31[Je——vss
vobo —»[]11 g 30[J&—> RD7/PSP7
vss —[]12 O 29[]«—>» RD6/PSP6
0SC1/CLKI —»[]13 * 28[J¢«—>» RD5/PSP5
0SC2/CLKO «—]14 27 [Jle—> RD4/PSP4
RCO/T10SO/T1CKI «—»[]15 26 [J¢—» RC7/RX/DT
RC1/T10SI/CCP2 «—»[]16 25[J¢— RC6/TX/CK
RC2/CCP1 +—»[]|17 24 J&—> RC5/SDO
RC3/SCK/SCL «——»{|18 23[J¢—> RC4/SDI/SDA
RDO/PSP0O «—»{]19 22[}¢—>» RD3/PSP3
RD1/PSP1 «—»{]20 21[}¢—» RD2/PSP2
Figure2.4 PIC16F877 microcontroller pin configuration
RA2/AN2/VREF <—>[C1) ~ 18[Je—>» RAL/AN1
RA3/AN3/CMP1 «—»{]2 17| J&—> RAO/ANO
RA4/ITOCKI/ICMP2 +—»[|3 § 16| J&—>» RA7/OSC1/CLKIN
RA5/MCLR/VPP —»[|4 % 15[J«—>» RAB/OSC2/CLKOUT
vss —»[]|5 % 14| }«—— VDD
RBO/INT «—{]6 § 13[J«—> RB7/T10SI/PGD
RB1/RX/DT «—[]|7 § 12[J&«—>» RB6/T10SO/T1CKI/PGC
RB2/TX/ICK «—[]8 E 11[}J«—> RB5
RB3/CCP1 «—»[]9 10[le—>» RB4/PGM

Figure25 PIC16F627 microcontroller pin configuration

20 PICBASC projects

multiplexed A/D converters, each with 10-bit resolution, one 8-bit timer, one 16-bit timer, and a
watchdog. One of the advantages of this microcontroller is the built-in A/D converter.

Figure 2.6 Shows the pin configuration of this microcontroller.

vbb —[]|1 ~ 14[Je——vVss
RAS5/T1CKI/OSC1/CLKIN «—{]2 13[J¢— RAO/ANO/CIN+/ICSPDAT
RA4/TIG/OSC2/AN3/CLKOUT «—{|3 g 12 [J¢— RA1/AN1/CIN—/VREF/ICSPCLK
RA3/MCLR/VPP —»[|4 § 11 [Je— RA2/AN2/COUT/TOCK/INT
RC5 «—»[]|5 § 10 [l¢—> RCO/AN4
RC4 «—|6 9[Je—> RC1/AN5
RC3/AN7 «—[]7 8[J¢«—> RC2/ANG

Figure2.6 PIC16F676 microcontroller pin configuration

PIC16F73: Thisisapowerful 28-pin microcontroller with 4096 X 14 flash program memory, 192
bytes of RAM, 22 1/O pins, 5 multiplexed 8-bit A/D converters, two 8-bit timers, one 16-bit timer,
watchdog, USART, and I%C bus compatibility. This device combines A/D converter, digital 1/0,
and serial 1/0 capability in a 28-pin medium size package.

Wewill be using the PIC16F73 in some of the projectsin thisbook. Figure 2.7 shows the pin con-

figuration of this microcontroller.

MCLR/VPP — (]
RAO/ANO +—>[]
RA1/AN1 +«—>»[]
RA2/AN2 +—{]

RA3/AN3/VREF +—>{]
RA4/TOCKI +—{]
RAS5/AN4/SS «—»{]

Vss —»]

OSC1/CLKIN —{]
OSC2/CLKOUT +—]
RCO/T10SO/T1CKI +—»[]
RCL/T10SI/CCP2 +—{]
RC2/CCP1 +—»[]
RC3/SCK/SCL +—»{]

|\

PIC16F76/73

28
27
26
25
24
23
22

[l«—> RB7/PGD

| J¢—> RB6/PGC

[J¢—>» RB5

[J—> RB4

[J—> RB3/PGM
[Je—> RB2

[Je—> RB1

[Je—> RBO/INT

[J&——VvbD

[J&——Vvss

| J&—> RC7/RX/DT
[Je—> RC6/TX/CK
| J«—> RC5/SDO

[le—> RC4/SDI/SDA

21
20
19
18
17
16
15

Figure2.7

PIC16F73 microcontroller pin configuration

The PIC microcontroller family 21

2.3 16-bit instruction word

16-bit microcontrollers are at the high-end of the PIC microcontroller family. These microcon-
trollers cannot be used with the PicBasic compiler, but the PicBasic Pro can be used to program
them. Most of the devicesin thisgroup can operate at up to 40 MHz, have 33 1/0O pins, and 3 timers.
They have 23 instructions in addition to the 35 instructions found on the 14-bit microcontrollers.
Table 2.4 lists some of the devices in this family. We will not be using any of the 16-bit micro-
controllersinthe projectsin thisbook, and | wonet spend more time to describe the features of this
group. Interested readers can look at the Microchip web site at www.microchip.com.

Table2.4 Some 16-bit microcontrollers

Microcontroller Program Data Max speed 1/0 A/D
Memory RAM (MH2z) Ports Converter
17C43 4096 X 16 454 33 33
17C752 8192 X 16 678 33 50 12
18C242 8192 X 16 512 40 23 5
18C252 16384 X 16 1536 40 23 5
18C452 16384 X 16 1536 40 34

All memory for the PIC microcontroller family isinternal and it is usually not very easy to extend
this memory externally. No special hardware or software features are provided for extending either
the program memory or the data memory. The program memory is usually sufficient for small to
medium size projects. But the data memory is generally small and may not be enough for medium
to large projects unless a bigger and more expensive member of the family is chosen. For some
large projects even this may not be enough and the designer may have to sacrifice the I/O ports to
interface an external data memory, or to choose a microcontroller from a different manufacturer.

2.4 Inside a PIC microcontroller

Although there are many models of microcontrollersin the PIC family, they all share some com-
mon features, such as program memory, data memory, 1/O ports, and timers. Some devices have
additional features such as A/D converters, USART and so on. Because of these common fea-
tures, we can look at these attributes and cover the operation of most devicesin the family.

2.4.1 Program memory (Flash)

The program memory is where your PicBasic or PicBasic Pro program resides. In early micro-
processors and microcontrollers the program memory was EPROM which meant that it had to be
erased using UV light before it could be re-programmed. Most PIC microcontrollers nowadays are
based on the flash technol ogy where the memory chip can be erased or re-programmed using apro-
grammer device. Most PIC microcontrollers can also be programmed without removing them from
their circuits. This process (called in-circuit seria programming, or | SP) speeds up the devel opment
cycle and lowers the devel opment costs. Although the program memory is mainly used to store a
program, there is no reason why it cannot be used to store constant data used in programs.

22 PICBASC projects

PIC microcontrollers can have program memories from 0.5 to over 16 K. A PicBasic program can
have several pages of code and still fitinsidea 1K of program memory. The width of a 14-bit pro-
gram memory isactually 14 bitswide. It isinteresting to note that PICs are known as 8-bit micro-
controllers. This is actually true as far as the width of the data memory is concerned, which is
8-bits wide. Microchip calls the 14-bits aword, even though aword is actually 16-bits wide.

Although the size of the program memory can be larger than 2K, PicBasic compiler can only
work with the first 2K which can be alimiting factor in large projects. PicBasic Pro compiler can
use al the available program memory space.

When power is applied to the microcontroller or when the MCLR input islowered to logic O, exe-
cution start from the Reset Vector, which isthe first word of the program memory. Thus, the first
instruction executed after areset isthe one located at address O of the program memory. When the
program is written in assembler language the programmer has to use special instructions (called
ORG) so that the first executable instruction is loaded into address O of the program memory.
High-level languages such as PicBasic or PicBasic Pro compile your program such that the first
executable statement in your program is loaded into the first location of the program memory.

2.4.2 Data memory (RAM)

The data memory is used to store al of your program variables. Thisis a RAM which means that
all the dataislost when power is removed. The width of the data memory is 8-bits wide and this
iswhy the PIC microcontrollers are called 8-bit microcontrollers.

The data memory in a PIC microcontroller consists of banks where some models may have only
2 banks, some models 4 banks, and so on. A required bank of the data memory can be selected
under program control.

2.4.3 Register file map and special function registers

Register File Map (RFM) is alayout of al the registers available in a microcontroller and thisis
extremely useful when programming the device, especially when using an assembler language.
The RFM is divided into two parts: the Special Function Registers (SFR), and the General
Purpose Registers (GPR). For example, on a PIC16F84 microcontroller there are 68 GPR regis-
ters and these are used to store temporary data. We shall see later on when programming in
PicBasic or PicBasic Pro that these registers are used to store the variables declared in a program.

SFR is a collection of registers used by the microcontroller to control the internal operations of
the device. Depending upon the complexity of the devices the number of registers in the SFR
varies. It isimportant that the programmer understands the functions of the SFR registers fully
since they are used both in assembly language and in high-level languages.

Depending on the model of PIC microcontroller used there could be other registers. You need not
know the operation of some of the registers since PicBasic and PicBasic Pro compiler |oads these
registers automatically. For example, writing and reading from the EEPROM are controlled by

The PIC microcontroller family 23

SFR registersEECON1, EECON2, EEADR, and EEDATA. But fortunately, PicBasic and PicBasic
Pro compilers provide simple high-level instructions for writing to and reading from the EEPROM
and thus you do not need to know how to load these registers.

Some of the important SFR registers that you may need to configure while programming using a
high-level language are

OPTION register

I/O registers

Timer registers
INTCON register

A/D converter registers

The functions and the bit definitions of these registers are described in detail in the following
sections.

OPTION register

This register is used to setup various internal features of the microcontroller and is named as
OPTION_REG. This is a readable and writable register which contains various control bits to
configure the on-chip timer and the watchdog timer. This register is at address 81 (hexadecimal)
of the microcontroller and its bit definitions are given in Figure 2.8. The OPTION REG register
isalso used to control the externa interrupt pin RBO. This pin can be setup to generate an inter-
rupt, for example, when it changes from logic O to logic 1. The microcontroller then suspends the
main program execution and jumps to the interrupt service routine (1SR) to service the interrupt.
Upon return from the interrupt, normal processing resumes.

For example, to configure the INT pin so that external interrupts are accepted on the rising edge
of the INT pin, the following bit pattern should be loaded into the OPTION_REG:

XIXXXXXX

Where X is adonet care bit and can be a0 or a 1. We shall see in the projects section on how to
configure various bits of this register.

/O registers

Theseregistersare used for the |/O control. Every 1/O port in the PIC microcontroller hastwo reg-
isters: port data register and port direction control register.

Port data register has the same name as the port it controls. For example, PIC16F84 microcon-
troller has two port data registers PORTA and PORTB. A PIC16F877 microcontroller has 5 port
data registers PORTA, PORTB, PORTC, PORTD, and PORTE. An 8-bit data can be sent to any
port, or an 8-bit data can be read from the ports. It is also possible to read or write to individual
port pins. For example, any bit of a given port can be set or cleared, or data can be read from one
or more port pins at the same time.

24 PIC BASC projects

7 6 5 4 3 2 1 0
RBPU INTEDG TOCS TOSE PSA pPS2 PS1 PSO

Bit 7: PORTB Pull-up Enable
1: PORTB pull-ups disabled
0: PORTB pull-ups enabled

Bit 6: INT Interrupt Edge Detect
1: Interrupt on rising edge of INT input
0: Interrupt on falling edge of INT input

Bit 5: TMRO Clock Source
1: TOCK1 pulse
0: Internal oscillator

Bit 4: TMRO Source Edge Select
1: Increment on HIGH to LOW of TOCK1
0: Increment on LOW to HIGH of TOCK1

Bit 3: Prescaler Assignment
1: Prescaler assigned to Watchdog Timer
0: Prescaler assigned to TMRO

Bit 2-0: Prescaler Rate

000 1:2
001 1:4
010 1:8
011 1:16
100 1:32
101 1:64
110 1:128
111 1:256

Figure2.8 OPTION_REG bhit definitions

Portsin a PIC microcontroller are bi-directional. Thus, each pin of a port can be used as an input
or an output pin. Port direction control register configures the port pins as either inputs or outputs.
This register is called the TRIS register and every port has a TRIS register named after its port
name. For example, TRISA is the direction control register for PORTA. Similarly, TRISB is the
direction control register for PORTB and so on.

Setting a bit in the TRIS register makes the corresponding port register pin an input. Clearing a
bit in the TRIS register makes the corresponding port pin an output. For example, to make bits 0

The PIC microcontroller family 25

and 1 of PORTB input and the other bits output, we have to load the TRISB register with the bit
pattern.

00000011
Figure 2.9 shows the TRISB register and the direction of PORTB pins.

TRISB
[ofofofolofo]a]1]

Figure2.9 TRISB and PORTB direction

Port data register and port direction control registers can be accessed directly using the PicBasic
Pro compiler. For example, as we shall seein alater chapter, TRISB register can be set to 3 and
data can be read from PORTB into avariable named CNT by the PicBasic Pro instructions.

TRISB =3
CNT = PORTB

The PicBasic compiler has no direct register control instructions and as we shall see in a later
chapter, we have to use the PEEK and POKE instructions. PEEK isused to read datafrom aregis-
ter and POKE is used to send data to aregister.

When we use the PEEK and POK E instructions we have to specify the register address of theregis-
ter we wish to access. The register addresses of port registers are (the «$Z character specifies that
the number isin hexadecimal format)

Ports Address (Hexadecimal)
PORTA $05
PORTB $06
PORTC $07
PORTD $08
PORTE $09
TRISA $85
TRISB $86
TRISC $87
TRISD $88

TRISE $89

26 PICBASC projects

Thus, for the above example, the required PicBasic instructions will be

POKE $86, 3
PEEK $06, CNT

We shall see in the next chapter how to use symbolsin PicBasic language to make our programs
clearer and easier to maintain.

Timer registers

Depending on the model used, some PIC microcontrollers have only one timer, and some may
have up to 3 timers. In this section we shall look at the PIC16F84 microcontroller which has only
one timer. The extension to several timersis similar and we shall see in the projects section how
to use more than one timer.

The timer in the PIC16F84 microcontroller is an 8-bit register (called TMRO) which can be used
as atimer or acounter. When used as a counter, the register increments each time aclock pulseis
applied to pin TOCK 1 of the microcontroller. When used as a timer, the register increments at a
rate determined by the system clock frequency and a prescaler selected by register OPTION_REG.
Prescaler rates vary from 1:2 to 1:256. For example, when using a4 MHz clock, the basic instruc-
tion cycleis 1 s (the clock isinternaly divided by four). If we select a prescaler rate of 1:16, the
counter will be incremented at every 16 p.s.

The TMRO register has address 01 in the RAM which can be loaded using the POKE instruction
in PicBasic, or by accessing the TMRO register directly in PicBasic Pro.

A timer interrupt is generated when the timer overflows from 255 to 0. Thisinterrupt can be enabled
or disabled by our program. Thus, for example, if we requireto generateinterrupts at 200 psintervals
using a 4MHz clock, we can select a prescaler value of 1:4 and enable timer interrupts. The timer
clock rate isthen 4 ps. For atime-out of 200 s, we have to send 50 clocks to the timer. Thus, the
TMRO register should be loaded with 256 — 50 = 206, i.e. a count of 50 before an overflow occurs.

The watchdog timerss oscillator is independent from the CPU clock and the time-out is 18 ms. To
prevent atime-out condition the watchdog must be reset periodically via software. If the watchdog
timer is not reset before it times out, the microprocessor will beforced to jump to the reset address.
The prescaler can be used to extend the time-out period and valid ratesare 1, 2, 4, 8, 16, 32, 64, and
128. For example, when set to 128, the time out period is about 2 s (18 X 128 = 2304 ms). The
watchdog timer can be disabled during programming of the deviceif it is not used.

Since the timer is very important part of the PIC microcontrollers more detailed information is
given on its operation below.

TMRO and watchdog

TMRO and awatchdog are found nearly in al PIC microcontrollers. Figure 2.10 shows the func-
tional diagram of TMRO and the watchdog circuit. The operation of the watchdog circuit is as
described earlier and only the TMRO circuit is described in this section.

The PIC microcontroller family 27

The source of input for TMRO is selected by bit TOCS of OPTION_REG and it can be either
from the microcontroller oscillator f.s. divided by 4, or it can be an external clock applied to the
RA4/TOCK 1 input. Here, wewill only look at using theinternal oscillator. If a4 MHz crystal isused
the internal oscillator frequency isfy/4 = 1MHz which correspondsto aperiod of T =1/f = 1076,
or 1ps. TMROisthen selected asthe source for the prescaler by clearing PSA bit of OPTION_REG.
The required prescaler value is selected by bits PSO to PS2 as shown in Figure 2.8. Bit PSA should
then be cleared to O to select the prescaler for the timer. All the bits are configured now and TMRO
register increments each time a pulse is applied by the internal oscillator. TMRO register is 8-bits
wide and it counts up to 255, then creates an overflow condition, and continues counting from O.
When TMRO changesfrom 255to0 O it generates atimer interrupt if timer interrupts and global inter-
rupts are enabled (see INTCON register. Interrupt will be generated if GIE and TMRO bits of INT-
CON are both set to 1). See the Section 2.4.6 on Interrupts for more information.

fosc/4

Overflow
TMRO |~

RA4/ 1

TOCK1 —| —l_ _T_
[

PSA
TOSE Tocs
Watchdog Prescaler
Timer WDT

Timeout

PS2:PSO

PSA

Figure2.10 TMRO and watchdog circuit

By loading a value into the TMRO register we can control the count until an overflow occurs. The
formula given below can be used to caculate the time it will take for the timer to overflow (or to
generate an interrupt) given the oscillator period, valueloaded into the timer and the prescaler value.

Overflow time = 4 X Tyg X Prescaler X (256 ... TMRO) (2.1)
where
Overflow time isin us,
Tosc isthe oscillator period in ws,
Prescaler isthe prescaler value chosen using OPTION_REG
TMRO isthe value loaded into TMRO register.

For exampl e, assume that we are using a4 MHz crystal, and the prescaler chosen as 1:8 by setting
bits PS2:PS0 to «010Z. Also assume that the value loaded into the timer register TMRO is decimal
100. The overflow time is then given by

4MHz clock hasaperiod, T = Uf = 0.25us

28 PIC BASC projects

Using the above formula,
Overflow time = 4 X 0.25 X 8 X (256 — 100) = 1248 ps.

Thus, the timer will overflow after 1.248 ms and a timer interrupt will be generated if the timer
interrupt and global interrupts are enabled.

What we normally need is to know what value to load into the TMRO register for a required
Overflow time. This can be calculated by modifying Eq. (2.1) as

TMRO = 256 — (Overflow time)/(4 X Tos X Prescaler) (2.2)

For exampl e, suppose that we want an interrupt to be generated after 500 s and the clock and the
prescaler values are as before. The value to be loaded into the TMRO register can be calculated
using Eq. (2.2) as

TMRO = 256 — 500/(4 X 0.25 X 8) = 193.5
The nearest number we can load into TMRO register is 193.

Table 2.5 gives the values that should be loaded into TM RO register for different Overflow times.
Inthistablea4 MHz crystal is assumed and the table gives as the prescaler value is changed from
2to 256.

Table2.5 Required TMRO valuesfor different overflow times

Timeto Prescaler
overflow (us) 2 4 8 16 32 64 128 256
100 206 231 243 250 253 254 .
200 156 206 231 243 250 253 254 ..
300 106 181 218 237 246 251 253 255
400 56 156 206 231 243 250 253 254
500 6 131 193 224 240 248 252 254
600 . 106 181 218 237 16 251 253
700 .. 81 168 212 234 245 250 253
800 . 56 156 206 231 243 250 253
1,000 . 6 131 193 225 240 248 252
5,000 100 178 nr 23
10,000 A 100 178 2
20,000 .. 100
30,000
40,000
50,000
60,000

17
178
139
100
60
21

The PIC microcontroller family 29

TMR1

Although TMRO is the basic timer found nearly in all PIC microcontrollers, some devices have
severa timers, eg. TMRO, TMR1, and TMR2. Additional timers give added functionality to a
microcontroller. In this section the operation of TMR1 will be described in detail.

TMR1isa16-bit timer, consisting of two 8-bit registersTMR1H and TMR1L. Asshown in Figure
2.11, aprescaler isused with TMR1 and the available prescaler valuesare only 1, 2, 4, and 8.

Overflow
1
TIOSO & TMR1H | TMR1L |-»
Prescaler Synchronise (’
0
foodd T TMRION
T1SYNC
T T1CKPSO
T1CKPS1
TMR1CS

Figure2.11 TMR1 structure

Register TLICON controlsthe operation of TMR1. Thebit definition of thisregister isshownin Figure
2.12. TMR1 can operate either asatimer or asa counter, selected by bit TMR1CS of TLICON. When
operated in timer mode, TMR1 increments every oscillator frequency fu./4. TMR1 can be enabled or
disabled by setting or clearing control bit TMR1ON. TMR1 can count from 0 to 65,535 and it gener-
ates an overflow when changing from 65,535 to 0. A timer interrupt is generated if the TMR1 inter-
rupt enable bit TMR1IE is enabled and also the global interrupts are enabled by register INTCON.

When TMR1 is operated in counter mode, it increments on every rising edge (from logic O to
logic 1) of the clock input.

TMR2

TMR2 is an 8-hit timer with a prescaler and a postscaler and it has an 8-bit period register PR2.
This timer is controlled by register T2CON whose bit definitions are given in Figure 2.13. The
prescaler options are 1, 4, and 16 only and are selected by T2CKPS1 and T2CKPSO0 hits of
T2CON. TMR2 increments from 0O, until it matches PR2, and then resets to O on the next cycle.
Then the cycle is repeated. TMR2 can be shut off by clearing TMR20ON of T2CON register to
minimise power consumption.

INTCON register

This is the interrupt control register. This register is at address 0 and 8B (hexadecimal) of the
microcontroller RAM and the bit definitions are given in Figure 2.14. For example, to enable

30 PICBASC projects

7 6 5 4 3 2 1 0
TICKPS] TICKPSQ TIOSCEN TISYNC TMRI1CS TMR1O0ON

Bit 7: Unused

Bit 6: Unused

Bit 5-4: Timerl Input Clock Prescale Select Bits
11 1:8 prescalevaue
10 1.4 prescalevaue
01 1:2 prescaevaue
00 1:1 prescaevaue

Bit 3: Timerl Oscillator Enable Bit
1: Oscillator is enabled
0: Oscillator is disabled

Bit 2: Timerl External Clock Input Synchronisation Select Bit
When TMR1CS = 1.
1: Do not synchronise external clock input
0: Synchronise external clock input
When TMR1CS = 0:
Thisbit isignored. Timerl usesinternal clock

Bit 1: Timerl Clock Source Select Bit
1: External clock from pin TIOSO (on rising edge)
0: Internal clock (f os/4)

Bit O: Timerl On Bit
1: Enable Timerl
0: Stops Timerl

Figure2.12 T1CON bit definitions

interrupts so that external interrupts from pin INT (RBO) can be accepted on a PIC16F84, thefol-
lowing bit pattern should be loaded into register INTCON:

IXXIXXXX
Similarly, to enable timer interrupts, bit 5 of INTCON must be set to 1.

A/D converter registers

The A/D converter is used to interface analogue signals to the microcontroller. The A/D converts
analogue signals (e.g. voltage) into digital form so that they can be connected to acomputer. A/D
converter registers are used to control the A/D converter ports. On most PIC microcontrollers
equipped with A/D, PORTA pins are used for analogue input and these port pins are shared
between digital and analogue functions.

The PIC microcontroller family 31

6

5

3

2

1

0

TOUTPS3

TOUTPSZ

TOUTPS]

| TOUTPS(

TMR20N

T2CKPS1

T2CKPSO

Bit 7: Unused

Bit 6-3: Timer2 Output Postscale Select Bits
0000 1:1 Postscale
0001 1:2 Postscale
0010 1:3 Postscale
1111 1:16 Postscale
Bit 2: Timer2 On Bit

1: Timer2isOn
0: Timer2 is Off

Bit 1-0: Timer2 Clock Prescale Select Bits
00 Prescaler is 1
01 Prescaler is4
10 Prescaler is 16
11 Prescaler is 16

Figure2.13 T2CON bit definitions

PIC16F876 includes 5A/D converters. Similarly, PIC16F877 includes 8 A/D converters. Thereis
actually only one A/D converter as shown in Figure 2.15 and the inputs are multiplexed and they
share the same converter. The width of the A/D converter can be 8-bits or 10-bits. Both
PIC16F876 and PIC16F877 have 10-hit converters. PIC16F73 has 8-hit converters. An A/D con-
verter requires a reference voltage to operate. This reference voltage is chosen by programming
the A/D converter registers and is typically +5V. Thus, if we are using a 10-bit converter (1024
guantisation levels) the resolution of our converter will be 5/1024 = 0.00488V, or 4.88mV, i.e.
we can measure analogue voltages with a resolution of 4.88mV. For example, if the measured
analogue input voltage is 4.88mV we get the 10-bit digital number «0000000001Z, if the ana-
logue input voltage is 2 X 4.88 = 9.76 mV, the 10-bit converted number will be «0000000010Z,
if the analogue input voltage is 3 X 4.88 = 14.64mV, the converted number will be
+0000000011Z, and so on.

Inasimilar way, if the reference voltageis +5V and we are using an 8-hit converter (256 quant-
isation levels), the resolution of the converter will be 5/256 = 19.53mV. For example, if the
measured input voltage is 19.53mV we get the 8-bit number «00000001Z, if the analogue input
voltageis 2 X 19.53 = 39.06 mV we get the 8-bit number +00000010Z, and so on.

TheA/D converter iscontrolled by registers ADCONO and ADCONL. The bit pattern of ADCONO
isshown in Figure 2.16. ADCONO is split into four parts, the first part consists of the highest two

32 PICBASC projects

GIE EEIE TOIE INTE RBIE TOIF INTF RBIF

Bit 7: Global Interrupt Enable
1: Enable all un-masked interrupts
0: Disable al interrupts

Bit 6: EE Write Complete Interrupt
1: Enable EE write complete interrupt
0: Disable EE write complete interrupt

Bit 5: TMRO Overflow Interrupt
1: Enable TMRO interrupt
0: Disable TMRO interrupt

Bit 4: INT External Interrupt
1: Enable INT External Interrupt
0: Disable INT External Interrupt

Bit 3: RB Port Change Interrupt
1: Enable RB port change interrupt
0: Disable RB port change interrupt

Bit 2: TMRO Overflow Interrupt Flag
1: TMRO has overflowed
0: TMRO did not overflow

Bit 1: INT Interrupt Flag
1: INT interrupt occurred
0: INT interrupt did not occur

Bit 0: RB Port Change Interrupt Flag
1: One or more of RB4-RB7 pins changed state
0: None of RB4-RB7 changed state

Figure2.14 INTCON register bit definitions

bitsADCS1 and ADCS0 and they are used to select the conversion clock. Theinternal RC oscilla
tor or the external clock can be selected as the conversion clock asin the following table:

00 External clock/2
01 External clock/8
10 External clock/32

11 Internal RC clock

The PIC microcontroller family 33

Channel) ——— @

Channell ———e@

Channel 2 ——e@ —

Channel 3 ———e@ A/D - gior;t\;elrted

Channel4 ———@ Converter |— Signal

Channel 5 ——e@

Channel 6 ——e@

Channel 7 ———e@
Multiplexer

Figure2.15 Multiplexed A/D structure

7 6 5 4 3 2 1 0
ADCS1 ADCS0 CHS2 CHS1 CHSO GO/DONE ADON

Bit 7-6: A/D Converter Clock Select

00 fosd2

01 fosc!/8

10 fosc/ 32

11 Internal RC oscillator

Bit 5-3: A/D Channel Select
000 Channel 0
001 Channel 1
010 Channel 2
011 Channel 3
100 Channel 4
101 Channel 5
110 Channel 6
111 Channel 7

Bit 2: GO/DONE Bit
1: Start conversion
0: A/D conversion is complete

Bit 1: Not used

Bit 0: ADON Bit
1: Turn ON A/D circuit
0: Turn OFF A/D circuit

Figure2.16 ADCONO bit definitions

34 PICBASC projects

The second part of ADCONO consists of the three bits CHS2, CHS1, and CHS0. These are the
channel select bits, and they select which input pin is routed to the A/D converter. The selection
isasfollows:

CHS2:CHS1:CHSO
000 Channel 0
001 Channel 1
010 Channel 2
011 Channel 3
100 Channel 4
101 Channel 5
110 Channel 6
111 Channel 7

The third part of ADCONO is the single GO/DONE hit. This bit has two functions: first, by set-
ting the bit it startsthe A/D conversion. Second, the bit is cleared when the conversion is complete
and this bit can be checked to see whether or not the conversion is complete.

The fourth part of ADCONO isalso asingle bit ADON which is set to turn on the A/D converter
circuitry.

ADRESH and ADRESL are the A/D converter result registers. ADRESL is the low byte and
ADRESH is the upper 2 bits (if a 10-bit converter is used). We shall see how to configure the
result of the conversion later.

ADCONL1 isthe second A/D control register. Thisregister controlsthe format of converted dataand
mode of the PORTA inputs. The bit format of this register is shown in Figure 2.17. Bit 7 is called
ADFM and when thisbit is O the result of the A/D conversionisleft justified, whenitis 1, theresult
of the A/D conversion isright justified. If we have an 8-bit converter we can clear ADFM and just
read ADRESH to get the 8-bit converted data. If we have a 10-bit converter we can set ADFM to 1
and the 8 bits of the result will bein ADRESL, 2 bits of the result will bein the lower bit positions
of ADRESH. The remaining 6 positions of ADRESH (bit 2 to bit 7) will be cleared to zero.

Bits PCFGO-3 control the mode of PORTA pins. Asseenin Figure 2.17, aPORTA pin can be pro-
grammed to be a digital pin or an analogue pin. For example, if we set PCFGO0-3 to «0110Z then
all PORTA pinswill be digital 1/0 pins. PCFGO-3 bits can also be used to define the reference
voltage for the A/D converter. As we shall see in the projects section of the book, the reference
voltage Vref+ is usually set to be equal to the supply voltage (Vdd), and Vref — is set to be equal
toVss. This makesthe A/D reference voltage to be +5V.

2.4.4 Oscillator circuits

An Oscillator circuit is used to provide a microcontroller with a clock. A clock is needed so that
the microcontroller can execute a program.

The PIC microcontroller family 35

7 6 5 4 3 2 1 0
ADFM PCFG3 PCFG2 PCFG1 PCFC
Bit 7: A/D Converter Result Format Select
1: A/D converter output isright justified
0: A/D converter output isleft justified
Bit 6: Not used
Bit 5: Not used
Bit 4: Not used
Bit 3-0: Port Assignment and Reference Voltage Selection
(see Table below)
PCFG3-| AN7 | AN6| AN5 | AN4 | AN3 | AN2 |AN1 | ANO | Vref+ | Vref—
PCFGO
0000 A A A A A A A A Vdd Vss
0001 A A A A | Vref+ A A A RA3 Vss
0010 D D D A A A A A vdd Vss
0011 D D D A | Vref+ A A A RA3 Vss
0100 D D D D A D A A Vdd Vss
0101 D D D D | Vref+ D A A RA3 Vss
0110 D D D D D D D D Vdd Vss
0111 D D D D D D D D Vdd Vss
1000 A A A A | Vref+ | Vref— | A A RA3 RA2
1001 D D A A A A A A Vdd Vss
1010 D D A A | Vref+ A A A RA3 Vss
1011 D D A A | Vref+ | Vref— | A A RA3 RA2
1100 D D D A | Vref+ | Vref— | A A RA3 RA2
1101 D D D D | Vref+ | Vref— | A A RA3 RA2
1110 D D D D D D D A vdd Vss
1111 D D D D | Vref+ | Vref— | D A RA3 RA2

Figure2.17 ADCONL1 hit definitions

36 PICBASC projects

PIC microcontrollers have built-in oscillator circuits and this oscillator can be operated in one of
five modes.

LP ... Low-power crystal

XT ... Crystal/resonator

HS ... High-speed crystal/resonator

RC resistor ... capacitor

No external components (only on some PIC microcontrollers).

In LB, XT, or HS modes, an external oscillator can be connected to the OSC1 input as shown in
Figure 2.18. This can be a crystal-based oscillator, or simple logic gates can be used to design an
oscillator circuit.

Microcontroller

External
Clook . —1° 0S¢

0S8C2

Figure2.18 Using an external oscillator

Crystal operation

Asshownin Figure 2.19, in thismode of operation an external crystal and two capacitors are con-
nected to the OSC1 and OSC2 inputs of the microcontroller. The capacitors should be chosen as
in Table 2.6. For example, with acrystal frequency of 4 MHz, two 22 pF capacitors can be used.

PIC
16F84

0OSC1 0SC2
16 15

ci [L c2
22 pI 4MHz Izz pF

Figure2.19 Crystal oscillator circuit

The PIC microcontroller family 37

Table2.6 Capacitor selection for crystal

operation
Mode Frequency Cl,C2
LP 32kHz 68...100 pF
LP 200kHz 15...33pF
XT 100kHz 100...150 pF
XT 2MHz 15...33pF
XT 4MHz 15...33pF
HS 4MHz 15...33pF
HS 10MHz 15...33pF

Resonator operation

Resonators are available from 4 to about 8 MHz. They are not as accurate as crystal-based oscil-
lators. Resonators are usually 3-pin devices and the two pins at either sides are connected to
OSC1 and OSC2 inputs of the microcontroller. The middle pin is connected to the ground. Figure
2.20 shows how aresonator can be used in a PIC microcontroller circuit.

PIC
16F84

0OSC1 0SC2
16 15

RESONATOR

Figure2.20 Resonator oscillator circuit

RC oscillator

For applications where the timing accuracy is not important we can connect an external resistor
and a capacitor to the OSC1 input of the microcontroller as in Figure 2.21. The oscillator fre-
guency depends upon the values of the resistor and capacitor (see Table 2.7), the supply voltage,
and to the temperature. For most applications, using a 5K resistor with a 20 pF capacitor gives
about 4MHz and this may be acceptable in non-time critical applications.

38 PICBASC projects

Vad PIC

Microcontroller

0OSCH1

i—

Figure2.21 RC oscillator circuit

Table2.7 RC oscillator component selection

C R Frequency
20pF 5K 4.61MHz
10K 2.66 MHz
100K 311kHz
100pF 5K 1.34MHz
10K 756 kHz
100K 82.8kHz
300pF 5K 428kHz
10K 243kHz
100K 26.2kHz

Internal oscillator

Some PIC microcontrollers (e.g. PIC12C672 and PIC16F628) have built-in oscillator circuits and
they do not require any external timing components. The built-in oscillator is usually set to oper-
ate at 4MHz and is selected during the programming of the device. For example, the PIC16F62X
series of PIC microcontrollers can be operated with an internal resistor.. capacitor-based 4 MHz
oscillator (called mode INTRC). Additionally, asingle resistor can be connected to pin RA7 of the
microcontroller to create a variable oscillator frequency (called ER mode). For example, in the
PIC16F62X microcontroller OSC1 and OSC2 pins are shared with the RA7 and RA6 pins respec-
tively. The internal oscillator frequency can be set by connecting a resistor to pin RA7 as shown
in Figure 2.22. Depending on the value of this resistance the oscillator frequency can be selected
from 200kHz to 10.4 MHz (see Table 2.8). When used in thismode, pin RA7 isnot availableas a
digital 1/O pin.

The internal oscillator frequency of some microcontrollers (e.g. PIC16F630) can be calibrated
so that more accurate timing pulses can be generated in time critical applications (e.g. in serial
communications). In these microcontrollers an oscillator register called OSCCAL is used for the

The PIC microcontroller family 39

PIC
16F628

0SC1
(RAT)

Figure2.22 Changing theinternal oscillator frequency

Table2.8 Resistor value for the internal oscillator

Resistance Frequency
0 10.4MHz
1K 10.0MHz

10K 7.4MHz
20K 5.3MHz
47K 3MHz
100K 1.6MHz
220K 800kHz
470K 300kHz
1M 200kHz

calibration of the oscillator frequency. A factory-calibrated oscillator constant is loaded into the
last location of the memory. By copying this constant value into the oscillator register we can have
amore accurate 4MHz clock frequency for our microcontroller. It is also possible to modify the
OSCCAL register valuesin order to fine-tune the oscillator frequency.

Thefollowing PicBasic and PicBasic Pro statements can be used to copy the oscillator calibration
constant from the last memory location into the OSCCAL register. These commands must be
declared at the beginning of our programs.

DEFINEOSCCAL_1K 1 For 1 K core-size microcontrollers
DEFINE OSCCAL_2K 1 For 2 K core-size microcontrollers

Note that the oscillator constant can be erased during the erasing of the program memory. You
should make a note of the value at the last location of the program memory before erasing the
memory. If this value is known it can be loaded directly into the OSCCAL register at the begin-
ning of our programs as shown below (here it is assumed that the constant is $24).

OSCCAL = $24

40 PIC BASC projects

2.4.5 Reset circuit

Reset is used to put the microcontroller into a known state. Normally when aPIC microcontroller is
reset execution starts from address O of the program memory. Thisiswhere the first executable user
program resides. The reset action also initialises various SFR registers inside the microcontroller.

PIC microcontrollers can be reset when one of the following conditions occur:

® Reset during power on (POR ... Power On Reset)
® Reset by lowering MCLR input to logic O
® Reset when the watchdog overflows.

As shown in Figure 2.23, a PIC microcontroller is normally reset when power is applied to the
chip and when the MCLR input is tied to the supply voltage through a4.7K resistor.

+Vvdd

4.7K

MCLR

PIC

Microcontroller

Figure 2.23 Using the power on reset

There are many applications where we want to reset the microcontroller, e.g. by pressing an exter-
nal button. The simplest circuit to achieve an external reset isshownin Figure 2.24. In thiscircuit,
the MCLR input is normally at logic 1 and the microcontroller is operating normally. When the
reset button is pressed this pin goesto logic 0 and the microcontroller isreset. When the reset but-
ton is released the microcontroller starts executing from address 0 of the program memory.

+Vdd

47K

Eutzon[:l:l

PIC
Microconirohier

MCLR

Figure2.24 Using an external reset button

The PIC microcontroller family 41

2.4.6 Interrupts

Interrupts are an important feature of all microcontrollers. An interrupt can either occur asyn-
chronously or synchronously. Asynchronous interrupts are usually external events which inter-
rupt the microcontroller and request service. For example, pin INT (RBO) of a PIC16F84
microcontroller is the external interrupt pin and this pin can be used to interrupt the microcon-
troller asynchronously, i.e. the interrupt can occur at any time independent of the program being
executed inside the microcontroller. Synchronous interrupts are usually timer interrupts, such as
the timer overflow generating an interrupt.

Depending on the model used, different PIC microcontrollers may have different number of inter-
rupt sources. For example, PIC16F84 microcontroller has the following four sources of interrupts:

External interrupt from INT (RBO) pin

TMRO interrupt caused by timer overflow

External interrupt when the state of RB4, RB5, RB6, or RB7 pins change
Termination of writing data to the EEPROM.

Interrupts are enabled and disabled by the INTCON register. Each interrupt source has two bitsto
control it. One enables interrupts, the other one detects when an interrupt occurs. Thereis acom-
mon bit called GIE (see INTCON register bit definitions) which can be used to disable all sources
of interrupts.

The INTCON control bits of variousinterrupt sources are

Interrupt Source Enabled by Completion Status
External interrupt from INT INTE=1 INTF=1

TMRO interrupt TOIE =1 TOIF =1
RB4...RB7 state change RBIE =1 RBIF =1
EEPROM write compl ete EEIE=1

Whenever an interrupt occurs the microcontroller jumpsto the ISR. On low-end microcontrollers
(e.g. PIC16F84 or PIC16F628) all interrupt sources use address 4 in program memory asthe start
of the ISR. Because all interrupts use the same | SR address we have to check the interrupt com-
pletion status to detect which interrupt has occurred when multiple interrupts are enabled.

The completion status has to be cleared to zero if we want the sameinterrupt source to be able to
interrupt again.

Assuming that we wish to use the external interrupt (INT) input, and interrupts should be
accepted on the low to high transition of the INT pin, the steps before and after an interrupt are
summarised below.

® Set the direction of the external interrupt to be on rising edge by setting INTEDG = 1linregis-
ter OPTION_REG.

42 PIC BASC projects

Enable INT interrupts by setting INTE = 1 in register INTCON.

Enable global interrupts by setting GIE = 1 in register INTCON.

Carry out normal processing. When interrupt occurs program will jump to the ISR.
Carry out the required tasksin the ISR routine.

At the end of the ISR, re-enable the INT interrupts by clearing INTF = O.

Aswe shall seein the projects section of the book, PicBasic Pro language has special instructions
for handling interrupts.

2.4.7 The configuration word

PIC microcontrollers have a special register called the Configuration Word. Thisis a 14-bit register
and is mapped in program memory 2007 (hexadecimal). This addressis beyond the user program-
memory space and cannot be directly accessed in a program. This register can be accessed during
the programming of the microcontroller.

The configuration word stores the following information about a PIC microcontroller:

Code protection bits: These bits are used to protect blocks of memory so that they cannot
be read.

Power-on timer enable bit.

Watchdog (WDT) timer enable bit.

Oscillator selection bits: The oscillator can be selected as XT, HS, LR, RC, or internd (if supported
by the microcontroller).

For example, in atypical application we can have the following configuration word selection during
the programming of the microcontroller:

Code protection OFF
XT oscillator selection
WDT disabled
Power-up timer enables.

2.4.8 I/O interface

A PIC microcontroller port can source and sink 25mA of current. When sourcing current, the
current isflowing out of the port pin, and when sinking current, the current isflowing into the pin.
When the pin is sourcing current, one pin of theload is connected to the microcontroller port and
the other pin to the ground (see Figure 2.25a). The load is then energised when the port output is
at logic 1. When the pin is sinking current, one pin of the load is connected to the supply voltage
and the other pin to the output of the port (see Figure 2.25b). The load is then energised when the
port output is at logic O.

The PIC microcontroller family 43

Crispat
Port
Load

PiC
Microconzroller

Figure2.25a Current sourcing

+Vdd

t.oad

Ouipt
Port

BIC

Mickonontroiler

Figure2.25b Current sinking

Some useful interface circuits are given in this section.

LED interface

LEDs come in many different sizes, shapes, and colours. The brightness of an LED depends on
the current through the device. Some small LEDs operate with only a few milliamperes of cur-
rent, while standard size LEDs consume about 10mA of current for normal brightness. Some
very bright LEDs consume 15...20mA of current. The voltage drop across an LED is about 2V,
but the voltage at the output of amicrocontroller port isabout 5V whentheportisat logic 1 level.
As aresult of thisit is not possible to connect an LED directly to a microcontroller output port.
What is required isaresistor to limit the current in the circuit.

If the output voltage of the port is5V and the voltage drop acrossthe LED is 2V, we need to drop
3V acrosstheresistor. If we assume that the current through the LED is 10mA, we can calculate
the value of the required resistor as

_5-2V _ 3V

= = = 0.3K
10mA 10mA

The nearest physical resistor we can useis 330(). Figure 2.26 shows how an LED can be connected
to an output port pin in current source mode. In this circuit the LED will be ON when the port out-
put is set to logic 1. Similarly, Figure 2.27 shows how an LED can be connected to an output port
pinin current sink mode. In this circuit the LED will be ON when the port output is at logic O.

44 PIC BASIC projects

Higher current load interface

The circuits given in Figures 2.26 and 2.27 work fine for an LED, or for any other device whose
current requirement islessthan 25mA. What do we do if we wish to operate aload with a higher
current rating? e.g. a 12V filament lamp. The answer is that we have to use a switching device,
e.g. atransistor or arelay.

Critpit
Pord
R
B
Microcontoller - ED

Figure2.26 Connecting an LED in current source mode

+Vvdd
R
\\ LED
Output
Port
PIC

Microcontroller

Figure2.27 Connecting an LED in current sink mode

Figure 2.28 shows how we can drive asmall lamp from our port pin using abipolar transistor. In this
circuit, when the port output pinisat logic 1, current flows through the resistor and turnsthe transis-
tor ON, effectively connecting the bottom end of the lamp to ground. It isimportant to realise that the
positive supply to the lamp is not related to the PIC supply voltage and while the PIC is operating
from +5V, thelamp can be operated froma 12V supply. The current capability depends upon thetype
of transistor used and several hundred milliamperes can be achieved with any type of small npn tran-
sistors. For higher currents, bipolar power transistors, or preferably MOSFET transistors can be used.

Relay interface

When we want to switch inductive loads such as relays we have to use adiode in the circuit to pre-
vent the transistor from being damaged (see Figure 2.29). An inductive load can generate a back
EMF which could easily damage a transistor. By connecting a diode in reverse bias mode this
back EMF is dissipated without damaging the transistor.

The PIC microcontroller family

45

Figure2.28

Figure2.29

ot
Port

FHC

Micracontroiler

Driving alamp using atransistor

Output
Port

PIC

Microcontroller

Driving an inductive load (e.g. arelay)

EaY

Lamp

B

Since we can drive a relay, we can connect any load to the relay outputs as long as we do not
exceed the contact ratings of the relay. Figure 2.30 shows how amains lamp can be operated from
the microcontroller output port using arelay. The relay could also be operated using a MOSFET
power transistor. In this circuit the mains lamp will turn ON when the output port of the micro-
controller isalogic 1.

Figure2.30 Driving amainsbulb using arelay

Output
Port

PIC
Microcontroller

Mains Lamp

220V

46 PIC BASC projects

Button input

One of the most common type of input is a button (a push-button switch) input where the user can
change the state of an input pin by pressing a button. Basically, button input can be in two different
ways: active low and active high. As shown in Figure 2.31 in active low implementation, the micro-
controller input pin is connected to the supply voltage using aresistor (thisis also called a pull-up
resistor) and the button is connected between the port pin and ground. Normally the microcontroller
input is pulled to logic 1 by the resistor. When the button is pressed the input is forced to ground
potential whichislogic 0. The change of state in the input pin can be determined by a program.

+V

10K

Input
Port

PIC
Microcontroller

Figure2.31 Active low-button input

Some portsin PIC microcontrollers have internal pull-up resistors (e.g. PORTB) and these resis-
tors can be enabled by clearing bit 7 (RBPU) of register INTCON to zero. When one of this port
pinsisused for button input there is no need to use an external pull-up resistor and the button can
simply be connected between the port pin and ground.

A button can also be connected in active high mode as shown in Figure 2.32. In this configuration
the button is connected between the supply voltage and the port pin. A resistor (thisisalso caled
a pull-down resistor) is connected between the port pin and ground. Normally, the port pinis at
logic 0. When the button is pressed the port pin goes to the supply voltage whichislogic 1.

X

Input
Port

10K
PIC

Microcontroller

Figure2.32 Active high-button input

One of the problems with mechanical switchesis that when a switch closes its metal parts com-
press and relax and this causes the switch to open and close several times quickly. The problem
is that the microcontroller can read the switch so fast that it can see the switch open and close

The PIC microcontroller family 47

during the bouncing of the metal parts and this may cause wrong switch state to be read by the
microcontroller. One way to eliminate this switch-bouncing problem is to delay reading the input
after the switch state changes. For example, when we detect the switch is pressed, we may wait
about 10 ms before we read the state of the switch.

In Figures 2.31 and 2.32, we have seen how simple buttons can be connected to a microcontroller
port. It is also possible to connect to an input pin a switching transistor, the output of another IC,
or simply the output of another PIC port pin. Figure 2.33 shows how a switching transistor can be
connected as an input. In thiscircuit the transistor acts like an inverting switch. When the transis-
tor input voltage is 0V, the transistor isin OFF state and the port pinisat logic 1 level. When the
transistor input voltage is +5V the transistor turns ON and its collector-emitter voltage drops to
0V, making the port pin logic 0. One thing nice about this circuit is that the transistor input volt-
age does not need to be +5V to turn the transistor ON, it could easily be 9 or 12V.

+V

10K

Input
Port

10K
PIC Input
Microcontroller

Figure2.33 Transistor input

The input ports of PIC microcontrollers are protected by internal diodes for over-voltage and
under-voltage. Thus, the voltage on a pin can exceed the supply voltage, or it can go below the
ground voltage without causing any harm to the microcontroller. The RS232 serial communica-
tion lines operate with =12V and we can usually connect these lines directly to the input ports
using resistors without damaging the microcontroller.

2.5 Exercises

1. What is a flash memory? Explain the differences between a flash program memory and an
EPROM program memory. Which one would you use in program devel opment?

2. What isan EEPROM memory? Explain where you might useit. Give an example PIC micro-
controller which has EEPROM memory.

3. Explain briefly the bit definitions of the INTCON register. Where would you use bit 6 of this
register?

4. Explain how an 1/0 port direction is controlled in a PIC microcontroller. In an application it
is required to make bits 0, 2, 4, and 6 of PORTB as input ports. What value would you have
to load into the TRIS register?

48

PIC BASIC projects

10.

11.

12.

13.

14.

15.

16.

17.

Inan application it isrequired to make all PORTB pinsasinputsand all PORT C pins as out-
puts. What value would you load into the TRIS registers?

Explain what registers are used to control the A/D on a PIC microcontroller. What are the
ADRESH and ADRESL registers?

Inan application it is required to have 3 digital portsand 5 anal ogue ports. What value would
you have to load into register ADCON1?

Explain how you can connect an external crystal to a PIC microcontroller. What capacitor
values would you choose for a 10MHz crystal ?

What are the advantages of using a resonator instead of a crystal?

In asimple application where the timing accuracy is not important it is required to operate a
PIC microcontroller with a clock frequency of around 2MHz. What value of resistor and
capacitor would you use in the timing circuit?

Explain how the internal oscillator can be used on a PIC16F628 microcontroller. It is
required to use an internal clock frequency of around 3MHz. What value of resistor would
you use and where would you connect this resistor?

Explain what happens when a PIC microcontroller is reset. How can you achieve the reset
action by using external components?

Explain the differences between TMRO and TMR1 of a PIC microcontroller.

It is required to load the TMRO register to generate an overflow in 250 ms. Assuming the
clock frequency is 4 MHz, choose suitable values for the prescaler and TMRO.
Inanapplicationitisrequired to connect 8 small LEDsto PORTB pins of a PIC16F84 micro-
controller. What value resistors would you use if the average current of the LEDs are 2mA?
Draw the circuit diagram of your project.

Explain the different ways a button can be connected to a microcontroller input port. What
are the advantages of using the internal pull-up resistors? Explain how you can enable the
internal pull-up resistors of a PIC microcontroller.

Explain how arelay can be connected to the output port of a microcontroller. What are the
advantages and disadvantages of using relays?

3
PIC microcontroller project
development

In this chapter, we will look at the hardware and software tools required to develop PIC
microcontroller-based projects. We begin by looking at the minimum hardware toolsrequired and
explain the function of each tool.

3.1 Required hardware tools

A PIC microcontroller isan integrated circuit and assuch it isuselessunlessit is programmed and
used properly in an electronic circuit to carry out a certain task. The following hardware tools are
normally required before a microcontroller-based project can be devel oped:

A desktop or alaptop PC

PIC microcontroller programmer device

A solderless breadboard or a similar circuit development board
PIC microcontroller chip(s) and support components

Power supply

We shall look at each of these toolsin detail now.

3.1.1 PC

One of the most important and perhaps the most expensive tools we need is a PC. This can be a
desktop PC or alaptop PC. A laptop PC is preferred as it can be carried around and it provides
greater flexibility. The PC must be running one of the current Windows operating systems (e.g.
Windows 2000 or Windows XP) and it should be equipped with:

Hard disk with several Giga-byte free space
CDROM reader

Floppy drive

USB port (see notesin later sections)
Parallel port (see notesin later sections)

Among other things, such as perhaps the Microsoft Office, Internet Explorer, Games, etc., the
hard disk will be required to store:

® A text editor software to develop our programs with
® The PicBasic compiler software

50 PICBASC projects

® PIC microcontroller programmer software
® The programs that we develop

Most of the commercial software is nowadays distributed on CDROMSs and this is why you will
need a CDROM reader on your PC. You will find that some small software may still be distrib-
uted on floppies and this is why you may also need afloppy drive.

As we shall seein later sections of this chapter, some microcontroller programmer devices are
designed to be interfaced to the parallel port (or the printer port) of the PC, while some newer
ones are designed for the USB interface. Depending on the type of programmer device you have,
you will need either a parallel port or a USB port on your PC. Most laptop PCs are nowadays
equipped with only USB ports. If your programmer requires a serial or a parallel port, you can
purchase a device to convert between a serial or aparallel interface and the USB.

3.1.2 PIC microcontroller programmer device

A microcontroller programmer device is a stand-alone unit usually with one or more ZIF (zero-
insertion-force) type sockets mounted on it. The device is connected to the PC using either a par-
allel (or sometimes a serial) cable or by the USB interface. The new programmer devices with the
USB interface do not require any external power supply as they are powered from the USB port
of the PC they are connected to. The older devices with serial or parallel interfaces require an
external mains adaptor for their operation. The size of the ZIF socket determines the types of
chips that can be programmed by the device. Some sockets are 40-pin which can be used to pro-
gram microcontrollers with 40, 24, 20, 18, and 8 pins. Some programmer devices have sockets
with only 18 pins and they are designed to program smaller microcontrollers with 18 or less pins.

Figure 3.1 shows a typical PIC microcontroller programmer device based on a USB-type inter-
face. This device is distributed by Forest Electronics Ltd. in UK (website www.fored.co.uk) and
is known as the FED Programmer. The programmer has a single 40-pin ZIF socket mounted on
it. Microcontrollers with 40-pins (e.g. PIC16F877) can be programmed by placing them directly
on the socket and closing the handle. Devices with less number of pins (e.g. PIC16F84) are nor-
mally placed at the far end of the socket near the handle. The Programmer in Figure 3.1 has the
advantage that it can program avery large variety of PIC microcontroller chips. The programmer
deviceis sold for around £99 in UK and includes a USB cable.

A PIC microcontroller programmer device designed to operate with the parallel port is shown in
Figure 3.2. This particular device is known asthe EPIC Plus programmer and it can be purchased
from the developers of the PicBasic/Pro compilers (microEngineering Labs Inc.) or from many
other electronic component distributors. EPIC Plus is a low-cost programmer with an 18-pin
socket on the device. There is no ZIF socket on the device and a standard DIL (dua-in-line)
socket is provided. The programmer is connected to the parallel port (the printer port) of a PC
using a 25-way DB25 type cable. If the parallel port of your PC is connected to the printer, the

PIC microcontroller project development 51

Figure3.1 USB port-based PIC microcontroller programmer device

Figure3.2 Parallel port-based PIC microcontroller programmer device

printer must be disconnected while you are using the programmer. EPIC Plus is powered from a
12...15V DC mains adaptor.

Some microcontroller programmer devices have multiple ZIF sockets, also called gang program-
mers. These programmers are usually used to copy the same program to a number of devices at

52 PIC BASC projects

the same time, such as during the production runs. An example multiple socket programmer is
shown in Figure 3.3.

.sl

Figure3.3 Multiple socket programmer (Courtesy of Dataman)

3.1.3 Solderless breadboard

When we are building an electronic circuit, we have to connect the components as outlined in the
given circuit diagram. This task can usually be carried out on a strip-board or a printed circuit
board (PCB) by soldering the components together. The PCB approach is used for circuits which
have been tested and which function as desired and also when the circuit isto be made permanent.
It is not economical to use a PCB for one or only afew applications.

During the development stage of an electronic circuit, it may not be known in advance whether or not
the circuit will function correctly when assembled. A solderless breadboard is then usually used to
assemble the circuit components together. A typical breadboard is shown in Figure 3.4. The board
consists of rowsand columns of holesthat are spaced so that integrated circuits and other components

J K L

Oooooogono
OoOoooodno
H |

Oooooogono
OoOoooono
Oooooogono
OoOoooono
Oooooogono
Oooooogono
Oooooogono
Oooooogono
Oooooogono
Oooooogono
Oooooogono
Oooooogono
OoOoooono
Oooooogono
Oooooogono
Oooooogono
Oooooogono
Oooooogono

G

10o0oooornoooood

ooooono
OoOoooono
A B CDE F
2000000
sgoooOoooag
a0 00000
sOO0O0o0OOoagd
eOOOOOgd
rOo0oooag
sOoooOooOooag
opgooOoooag
iodoogood
ungoooood
rOo0OooOood
wBOOOOOO
uogooogooo
BO0O0O0O0god
w0 oOogood
vOoooogoood
BOOOOOO
wOoooogood
O OOOOoOOoUWOoOOoOOoOooo

Figure3.4 A typica breadboard layout

PIC microcontroller project development 53

can be fitted inside them. The holes have spring actions so that the component leads can be held
tightly inside the holes. There are various types and sizes of breadboards depending on the complex-
ity of the circuit to be built. The boards can be stacked together to make larger boards for very com-
plex circuits. Figure 3.5 shows the internal connection layout of the breadboard given in Figure 3.4.

The top and bottom half parts of the breadboard are separate with no connection between them.
Columns 1to 20 in rowsA to F are connected to each other on acolumn basis. Similarly, rows G to
L in columns 1 to 20 are connected to each other on a column basis. Integrated circuits are placed
such that the legs on one side are on the top half of the breadboard, and the legs on the other side of
the circuit are on the bottom half of the breadboard. The first two columns on the left of the board
are usually reserved for the power and earth connections. Connections between the components are
usudly carried out by using stranded (or solid) wires plugged inside the holes to be connected.

i
i

Figure3.5 Interna wiring of the breadboard in Figure 3.4
Figure 3.6 shows the picture of a breadboard with two integrated circuits and a number of resis-
tors and capacitors placed on it.

IJ K L

G H

A B CDEF

10 B =-B5H585d o o e e |
e e o e o o o e e o |
R e o e e o o e e |
e e e e
15 B =HEH=84d
16 B H-BH-5d
17 585855854 o o e e |
18 B =84
19 B H-H5H5-5d o o e e |
O e e e e e e O e e e e

The nice thing about the breadboard design is that the circuit can be modified very easily and
quickly and different ideas can be tested without having to solder any components. The components
can easily be removed and the breadboard can be used for other projects after the circuit has been
tested and working satisfactorily.

3.1.4 PIC microcontroller and minimum support components

A PIC microcontroller, even though it may have been programmed, is not of much use unlessitis
supported by a number of components, such as the timing components and the reset circuitry.
As described in Chapter 2, a PIC microcontroller requires an external clock circuit (some PIC

54 PIC BASC projects

Figure3.6 Picture of a breadboard with some components

microcontrollers have built-in clock circuits) to function accurately. For accurate timing applica
tions, the clock circuitry consists of acrystal, and two small capacitors. The commonly used crys-
tal frequency is 4-MHz and as described in Chapter 2, the capacitors for this crystal should be
around 22 pF. Figure 3.7 shows a4-MHz crystal with two 22-pF capacitors.

Figure3.7 A 4MHz crystal with two 22-pF capacitors

Figure 3.8 showsthe circuit diagram of a PIC microcontroller with a4-MHz crystal clock circuit.
The crystal and the capacitors are connected to the OSC1 and OSC2 inputs of the microcontroller.

PIC microcontroller project development 55

PIC16F84 microcontroller istaken as an examplein all of the figuresin this section, but the same
principles apply to al the other members of the PIC microcontroller family.

PIC

microcontroller

0OSCA1 0OSC2
16 15

I 0— c2

22 pI 4 MHz Izz pF

Figure3.8 PIC microcontroller clock circuit

Resonators are more often used in microcontroller clock circuits because of their low cost, sim-
plicity, and low component count. Figure 3.9 shows some typical 3-terminal resonators, and the
connection of aresonator to a PIC microcontroller is shown in Figure 3.10. The centre pin is con-
nected to ground, and the two pins at either sides of the resonator are connected to the OSC1 and
OSC2 oscillator inputs of the PIC microcontroller.

e

Figure3.9 Sometypical resonators

A PIC microcontroller starts executing the user program from address O of the program memory
when power is applied to the chip. As shown in Figure 3.11, the reset input (M CLR) of the micro-
controller is usually connected to the +V supply voltage through a4.7K resistor.

56 PIC BASC projects

PIC

microcontroller

0OSC1 0SC2
16 15
Resonator

1

Figure3.10 Using aresonator in aPIC microcontroller

+B5V

Vdd

47K
MCLR

PIC

microcontroller

Figure3.11 Connecting the reset (MCLR) input

There are many applications where the user may want to force reset action e.g. by pressing an
external button so that the program re-starts to execute from the beginning. External reset isvery
useful during microcontroller-based system development and testing. Figure 3.12 shows how an
external reset button can be connected to a PIC microcontroller. Normally the MCLR input is at

+5V

Vdd

47K
4IMcLR

Push to

reset E[Iji PIC

microcontroller

Figure3.12 Applying external reset to the PIC microcontroller

PIC microcontroller project development 57

logic 1, and goesto logic O which resets the microcontroller when the reset button is pressed. The
microcontroller goes back to the normal operating mode when the button is rel eased.

Now that we have described the clock and the reset circuitry let uslook at the design of aminimum
PIC microcontroller system. Figure 3.13 shows the circuit diagram of a PIC microcontroller circuit
with a4-MHz resonator and an external reset button. As mentioned earlier, PIC16F84 microcontroller
istaken asan exampleinthisfigure. Thelayout of thecircuit on abreadboard isshownin Figure 3.14.

+5Y

Wad

4 T
2iMCLR

Frush t
oot Cﬂj PIC

16F84

Vas S
O8C1 OSC2 1

18 18 s

Figure3.13 Minimum PIC16F84 resonator...based microcontroller circuit

Reset button

4.7K resistor
PIC16F84

Resonator +5V rail GND rail

Figure3.14 Layout of the circuit in Figure 3.13 on a breadboard

58 PIC BASC projects

3.1.5 Power supply

Every electronic circuit requires a power supply to operate. The required power can either be pro-
vided from abattery, or the mains voltage can be used and then reduced to the required level before
itisused in the circuit (e.g. amains adaptor). In this section, we shall 1ook at the design of a power
supply circuit to power our PIC microcontroller circuits using a battery as the source of power.

PIC microcontrollers can operate from a power supply voltage in the range 2 to 6 V. The standard
power supply voltage in digital electronic circuitsis +5V and thisis the voltage with which the
PIC microcontrollers are mostly operated. Unfortunately, it is not possible to obtain 5V using
standard alkaline batteries only. The nearest we can get is by using three batteries, which gives
4.5V and thisis not enough to power standard logic circuits. In this section, we shall see how to
convert a standard 9-V battery (e.g. type PP3) voltage to 5V so that it can be used in our PIC
microcontroller-based projects.

The simplest solution to drop the voltage from 9to 5V isby using apotential divider circuit using
two resistors. Although a potential divider circuit is simple, it has the major disadvantage that the
voltage at the output depends on the current drawn from the circuit. As aresult of this, the output
voltage will change as we add or remove components from our circuit. Also, the output voltage
falls as the battery is used.

A voltageregulator circuit is needed to convert the 9V battery voltageinto 5V, independent of the
current drawn from the supply. A basic voltage regulator circuit consists of aregulator integrated
circuit and filter capacitors. Figure 3.15 shows a low-cost voltage regulator circuit using the
78L05-type voltage regulator 1C, and two filter capacitors. 78L05 (see Figure 3.16) isa3-pin IC
with a maximum current capacity of 200 mA.

* LA B +5Y
ov T
pattery 1 033uF o 2 = .014F
R R
l & GND
301

TELUS bottom view

Figure3.15 Circuit diagram of the +5-V voltage regulator

One of the pins of 78L05 is connected to the +V terminal of the battery in parallel with a0.33-F
capacitor. One of the pinsis connected to the —V terminal of the battery. The third pin provides
the +5V output and a 0.01-pF capacitor should be used in parallel with this pin. In applications
where alarger current isrequired, the 7805 regulator |C can be used. Thisis pin compatible with

PIC microcontroller project development 59

A

Output GND Input
©) @ @

Figure3.16 78L05 voltage regulator

the low-power 78L05 and it has a maximum current capacity of 1 A. 78L05 should be used with
asuitable heatsink in applications drawing more than afew hundreds of milliamperes.

The complete circuit diagram of our PIC16F84-based basic system, together with the power sup-
ply, isshown in Figure 3.17. The layout of the circuit on abreadboard is given in Figure 3.18. The
circuit in Figure 3.17 is our basic PIC16F84 microcontroller circuit and is now fully functional.
What is required now is to write our program and load it into the program memory of the micro-
controller. Thisis the topic of the next chapter.

3 *5V

L 1’ _(vdd
- T . —L

4.7K

41MCLR
Push to
reset EI:I PIC
j 16F84
= Vss]>
0OSC1 0S8cC2 _‘|_
15 16 =

Figure 3.17 Circuit diagram of the complete PIC16F84-based system

60 PIC BASC projects

78L05 0.01pF 0.33pF

Figure 3.18 Breadboard layout of the system

3.2 Required software tools

All microcontrollersrequire aprogram (or software) for their operation. This program is devel oped
and tested by the programmer (or the user). The following software tools are normally required in
a PIC microcontroller-based project development cycle:

® A text editor
® PicBasic or PicBasic Pro compilers
® PIC programmer device software

We shall look at each of these toolsin detail now.

3.2.1 Text editor

A text editor helps us write our program (or the source code) so that it can be compiled and loaded
into our target microcontroller. There are two text editorsreadily available on any standard PC ... the
Windows-based Notepad, and the DOS-based EDIT (note that WORD cannot be used as atext edi-
tor since it inserts special control characters into the text). We can use any of these text editors to
create afile and write our programs. A program file consists of afile name and a file extension.
Thefile name can be given any name, but the file extension is usually chosen as .BASin PicBasic
and PicBasic Pro programs, for example, MYPROG.BAS and LED.BAS (In general, aprogram file
can be given any other file extension but when the program file is specified when invoking the
PicBasic or PicBasic Pro compilers, the file name and file extension must be specified to the com-
piler. If the file extension .BASis used, then only the file name needs to be specified). It isagood

PIC microcontroller project development 61

practice to store all of our program files inside a folder so that we can find them easily when we
need them.

DOS edit

This is the old PC text editor which runs under the DOS operating system. Although not very
powerful, it should be powerful enough to develop small programs. Asan example, to create atext
file called LED.BAS using the DOS editor the steps to follow are:

Go to the MSDOS prompt. On Windows 2000 and X P machines this is usually found by fol-
lowing the path START -> Programs -> Accessories -> Command Prompt. You should then
go to theroot directory C:\> by entering the commands CD .. followed by CD ..

Go to the folder where you want to create your file. If the folder does not exist, create it using
the command MD followed by the required folder name. For example, to create the folder
named MY BASIC, enter the command MD MYBASIC. Then move to this folder by entering
the DOS command CD MYBASIC. You should see the DOS prompt C:\MYBAS C> as shown
in Figure 3.19.

Start the DOS editor by entering the command EDIT LED.BAS. Write your program using the
PicBasic/Pro commands as explained in Chapter 4 and then save the program by pressing the
keys Alt F and then X and then press the RETURN key. Your program will be named LED.BAS
and will be saved inside the folder MYBASIC under the root directory.

Command Prompt

#P IUew=inn L_1_2AAA1
Ba1 Mi oft Corp.

Documents and Setti
L:nMD MYRASTC
C:\>CD MYBASIC
C:NMYBASICY

Figure3.19 Creating the folder MYBASIC in DOS

WINDOWS notepad

Notepad is a powerful text editor which runs under al Windows operating systems. Notepad can
be accessed by following the path START -> Programs -> Accessories -> Notepad. You should
write your programs and then save them with the .BASfile extensions. It isimportant that when
you save the file you should select the Save As Type as All Files in the Notepad File save menu.

62 PICBASC projects

Although both Edit and Notepad are useful for creating new programs or for modifying an existing
program, Integrated Development Environments (IDE) such as the CodeDesigner and MicroCode
Sudio provide a much easier and quicker method of program development since they combine a
powerful syntax highlighted editor with the compiler and the device programmer software. As a
result, the programmer can develop the program, compile it, and then load it into the target micro-
controller by using only one program interface. Both of these products are third-party products and
can be purchased from the devel opers, or in some cases, cut-down versions can be downloaded free
of charge from the Internet. We shall be looking at both products in the following sections.

CodeDesigner

The CodeDesigner software package has been developed by CSMicro Systems (web site www.
csmicrosystems.com). A cut-down version of the CodeDesigner, known as CodeDesigner Lite
can be downloaded free of charge from the microEngineering Labsnc. web site (www.melabs.com).
The installation and configuration instructions are also available from their web site. After down-
loading the software, double click the cdlite icon and then follow the standard Windows installation
procedures. When the installation is finished, click the Finish button. The software isinstalled in
theroot directory insidefolder C:\CDLITE>. Now, create a shortcut to CodeDesigner Litein your
desktop so that you can invoke the program easily. To do this, open the Windows Explorer and
navigate to My Computer -> Local Disk (C:) and click on Local Disk(C:). Then click on folder
CDLite. Find application cdlite on the right hand window and right click on the application. Then
select Send To -> Desktop (create shortcut). You will now have a shortcut named Shortcut to
cdlitein your desktop.

To start CodeDesigner, double-click on the shortcut you have just created. Figure 3.20 showsthe
form you will see on your screen.

&l CodeDesigner Lite - [C:\CDLite\Untitled1.pbp]

Erle Bt Comple Programmer Options Window Help =181 x|
D& P AL FE | v & rici7css v | R Fles: 2

§ o

Line: 1 Cot 1 roP

Figure3.20 A typical screen form of the CodeDesigner Lite

PIC microcontroller project development 63

CodeDesigner Lite should be configured before it is used. Configuration involves specifying the
compiler and the programmer devices to be used in project development. To configure the com-
piler options, select Compile -> Compiler Options from the top menu. If you are using the
PicBasic compiler, specify the path to the compiler as shown in Figure 3.21 and press OK.

If you are using the PicBasic Pro compiler, specify the path to the compiler as shownin Figure 3.22.

]P:Bas'c Compier
Compder Pathname:

[C\PBC\PBC EXE
Command Line Options:

ENR
J Cancel

End Conpie |

|
¥ Auto Close Compiler Dutput Screen in: 5 Secs
¥ Don't Display DOS Window

Figure3.21 Configuring CodeDesigner Lite for the PicBasic compiler

Compiler Options

| PicBasic Pro Compier
Compder Pathname:

[C\PBF\PEF EXE
Comenand Line Options:

]
¥ Auto Close Compiler Dutput Screen in: 5 Sece
W Donit Display DOS Window

Figure3.22 Configuring CodeDesigner Lite for the PicBasic Pro compiler

The CodeDesigner Lite software should then be configured for the PIC microcontroller pro-
grammer device you are using. To do this, select Programmer -> Programmer Options from the
top menu. You can now choose your programmer device from the given list. If your programmer
isnot specified in thelist, choose Other and specify the path to your programmer application soft-
ware. In this book, we shall be using the FED Programmer shown in Figure 3.1. Figure 3.23

Programmer Options

X

| Oither

Programmer Pathname:

K7

Command Line Options:

[C\Program Files\FED\Pie Programmen\PicProg |

J
x| [C

Figure3.23 Specifying the path to the FED Programmer

64 PICBASC projects

shows how to specify the path to this programmer inside the CodeDesigner Lite (if you are using
adifferent programmer device then you should either select your device from thelist if it isavail-
able, or choose Other and enter the path to your programmer device software).

The CodeDesigner Lite is how ready for program development, compilation, and downloading
the code to the target PIC microcontroller. After writing our program, we can choose Compile ->
Compile from the top menu to compile our program. If the compilation is successful, we can
download our program to the programmer device by selecting the Programmer -> Launch
Programmer options from the top menu.

Note that when using the CodeDesigner software, the file extension of PicBasic programs should
be .PBC, and the file extension of PicBasic Pro programs should be .PBP.

We shall see acomplete example, step-by-step in Section 3.4 on how to create a project from first
principles using the CodeDesigner Lite.

MicroCode studio

Although CodeDesigner Lite is sufficient for most of our project development tasks, we shall look
a MicroCode Sudio, which is another popular IDE with In Circuit Debugging (ICD) capability,
designed specifically for the PicBasic and PicBasic Pro compilers. ThisIDE also provides a syntax-
highlighted editor to the programmer for easy program development. The IDE is interfaced to
PicBasic or PicBasic Pro compilers so that the user can easily and very quickly compile programs.
After the program is compiled with no errors, the compiled code can be sent to a PIC microcon-
troller programmer device to load the microcontroller. MicroCode Sudio aso provides an ICD
capability which enables the user to single-step the program in the target microcontroller in order to
examine and verify the operation of the program. The ICD is beyond the scope of this book and
interested readers are referred to the manufacturerss web site at wwww.mecanique.co.uk.

MicroCode Studio can be downloaded from the manufacturerss web site and it is available free
of charge to non-commercia users. The software is a cut-down version of the full product
MicroCode Sudio Plus but it can be used in al of the projects developed in this book.

MicroCode Sudio is also distributed free of charge and is installed as part of the PicBasic Pro
compiler demo package from microEngineering Labs Inc. Aswe shall seein the next section, this
package enables the user to create limited programs with a maximum line count of 31 (excluding
comment lines and blank lines), which should be enough to evaluate the compiler and to develop
many small to medium-size programs. After the installation, MicroCode Sudio is invoked by
double clicking on itsicon (or selecting it from the Programs menu) and the screen form shown
in Figure 3.24 is displayed when the program is invoked.

The software needs to be configured for the type of compiler, and the type of programmer we are
using. When the software is first invoked, it searches for the PicBasic compiler on the hard disk
and the compiler path is set automatically if the compiler isfound. If the compiler isnot found we

PIC microcontroller project development 65

@ MicroCode Studio - PICBASIC PRO (Untitled. bas)

Fle Bt Vew Project Help
. 3 T e e T —
o bl) = eavs 2= 25 o= o=

y ¥ | 16FB4 .

Cade Explorer
) Inchudes
) Defires
£ Constants
L) Variables
£ Alias and ModiSers
£ Symbels
) Labels

<

3 Ready 2| Ln 102 Col 55

Figure 3.24 MicroCode Sudio screen form

can specify the path to the compiler by selecting View -> Compile and Program Options. Then
select the Compiler tab and specify the compiler path by clicking the Find Manually option. You
can aso click the Find Automatically button to see if the compiler path can be found automat-
ically. The type of programmer device we are using should be configured by choosing View ->
Compile and Program Options and then clicking the Programmer Tab. Depending on the type of
programmer device we have, we can either choose the default one or choose Add New Programmer
to add our own programmer device. Figure 3.25 shows how the FED Programmer device can be
selected to be the default programmer.

We can now write our program and when finished, compileit by selecting Project -> Compile or
we can send the code to a PIC programmer by selecting Project -> Program.

3.2.2 PicBasic and PicBasic Pro compilers

These compilers are distributed on afloppy diskette or on aCDROM and they should beinstalled
before they can be used. The installation is very easy ... insert the diskette into drive A and click
START -> Run and type A:\INSTALL in the RUN dialoug box. The compiler files will automat-
ically be loaded onto the hard disk. PIC Basic files are loaded inside the folder

C:\>PBC

66 PIC BASC projects

Compile and Program Options @
Compiler | Assembler Programmer |

Default Programmer | FED Programmer W | | Edit...

[Add New Programmer. ..] [Remove Programmer Entry]

[Jinsert source file comments
[¥] Listing fiie
[[JGenerate isting, symbol table and map fie

I

Figure3.25 Adding the FED Programmer device
And the PIC Basic Pro files are loaded inside the folder
C:\> PBP
You may look at the filesin these directories by using your Windows Explorer program.

The compilers can either be activated directly from DOS, or by using CodeDesigner or the MicroCode
Sudio as described in Section 3.2.1.

To activate the compilers directly from DOS, go to the Command Prompt mode and then enter
C:\PBC> PBC ...pxxx myfile for PicBasic compiler
and

C:\PBP> PBP ...pxxxx myfile for PicBasic Pro compiler

where
...pxxx isthe PIC microcontroller type (e.g. -p16F877 for PIC16F877). If the microcon-
troller typeis not specified, the default PIC16F84 is assumed;
...myfileisthe name of the program to be compiled (a.BASfile extension is assumed).

For example, the following command assumes that we are using a PIC16F627 microcontroller,

and compiles PicBasic Pro file called LED.BAS. Thefile is assumed to be in the same directory
asthe compiler:

C:\PBP> PBP ...p16F627 LED

Similarly, the following command can be used to compile a program called MOTOR.BAS using
the PicBasic compiler. It is assumed here that our target system is a PIC16F84 microcontroller.

PIC microcontroller project development 67

C:\PBC> PBC MOTOR

A demo version of the PicBasic Pro compiler is available from the web site of microEngineering
Labs Inc. and thisis included on the CDROM distributed with this book. You can use this demo
version to create programs with up to 31 lines long. The demo version a so includes the MicroCode
Sudio which can beinstalled during the installation of the compiler.

The compiler generates a number of files with the same filename but with different extensions
(for example, .ASM, .HEX etc). Thefilewith the extension .HEX isaso known asthe object file
and thisisthe file which isto be sent to the programmer device.

3.2.3 Programmer device software

You should install the programmer software which has been distributed with your programmer device.
In this book, the USB-based FED Programmer device is used and the software for this device is
installed by following the standard Windows software installation procedures. The programmer soft-
wareis invoked automatically when working with CodeDesigner Lite or with the MicroCode Sudio.
Figure 3.26 shows the typical screen form of the FED Programmer software. First of all, you should
select the type of PIC microcontroller you will be using. To do this, click PIC from the top menu and
then click Sdlect Device (see Figure 3.27) and select your microcontroller from the given list. The
device name you have chosen should appear at the bottom |eft-hand corner of the screen form.

E5 PIC Programmer - YOL.HEX @@@

fle PIC Optors tep
el v 09 %

Fuse=3FF5

T FFIT

FETFFP ET : vevsenns »

s Bohn
I UselCSP (- N
16F84 CS=AOCE User- FFFF Count: 8 Session: 0

Figure3.26 FED Programmer screen form

68 PIC BASC projects

E5 PIC Programmer - YOL.HEX

Read F4
Blank Check F6
Yerify FS

Checksum PIC F?

Program Entire Device F2
Program Config Fuses FB

Program User ID =]
Program EE Data F10
Erase EEPROM F3

Verify After Write Crl4v

v
2P IT I T IR EE & cevenene ~
T I IIEITIIEIEITIT & ocicionns
TP T T I FE BT 2 eaevvnne
s FFFFFE FF FE FT FEF FT 5 vevccenns
TP FETE T FETEFF EY i iavsinai v
I UselCSP 9@ ¢

16F84 CS=ADCE | User - FFFF Count: 0 Session: 0

Figure3.27 Selecting a PIC microcontroller

Insert the PIC microcontroller chip into the socket and close the handle. Then, click File and then
Open to open the compiled .HEX file of your program. Click File and then Fuses to set the PIC
microcontroller configuration fuses for the power-up timer option, watchdog option, and the timing
device used. You should normally click only the crystal (XT) option as shown in Figure 3.28. You

Set Fuses rg|

Fuse value 3FFSH

[~ Code Protect
[~ Powes Up Timer
J iRE
[T HS
v KT
P

ok | Cancel | Clear Fuses Help

Figure 3.28 Setting the configuration fuses

PIC microcontroller project development 69

can now program the configuration fuses by selecting PIC followed by Program Config Fuses. The
microcontroller can then be programmed by selecting PIC followed by Program Entire Device.

3.3 Bundled development systems

Some manufacturers provide bundled packages of their hardware and software products mainly
for development and experimenting purposes. Bundled packages have the following advantages:

® The cost is lower than the cost of purchasing the individual products in the package.

® They usually contain al the necessary hardware for devel oping microcontroller-based products.

® They usualy contain the compiler software and programmer software to enable the user develop
projects easily.

Some bundled packages for PIC microcontrallers, including the PicBasic or PicBasic Pro compilers
are described in this section. All of the bundled products given in this section are manufactured by
microEngineering LabsInc. Further information can be obtained from their web site www.melabs.com

Developer’sbundle

Thisisacomplete PIC microcontroller project development package and as shown in Figure 3.29,
the package contains

PicBasic Pro compiler

Melabs serial programmer device

LAB-X1 Experimenter board

PIC microcontroller chips

All the necessary mains adaptors and interface cables

Figure3.29 Developers Bundle (Courtesy of microEngineering Labs Inc.)

PicBasic compiler bundle

This package is based on the PicBasic compiler. The package contains (see Figure 3.30)

70 PICBASC projects

PicBasic compiler

EPIC Plus programmer

PICPROTO18 Experimenter board

PIC microcontroller chips

All the necessary mains adaptors and interface cables

R

FERRRERRRERIRANANANNINY
1
£ o
] -.?/

N,
Figure3.30 PicBasic Compiler Bundle (Courtesy of microEngineering Labs Inc.)

LAB-X1 bundlewith serial programmer

Thisbundleisfor those people who have the PicBasic or the PicBasic Pro compilers and are look-
ing for a programmer device and an experimenter board. The package contains (see Figure 3.31)

LAB-X1 Experimenter board

Melabs serial programmer

PIC microcontroller chips

All the necessary mains adaptors and interface cables

Fig.3.31 LAB-X1 Bundle with serial programmer (Courtesy of microEngineering Labs Inc.)

PicBasic or the PicBasic Pro compilers can be added to the bundle at a reduced cost.

PIC microcontroller project development 71

3.4 Experimenter boards

In Section 3.1.3, we have seen how to use a solderless breadboard to develop microcontroller-
based projects easily and also at low cost. Some manufacturers provide experimenter boards for
the development and testing of microcontroller-based systems. Some low-cost experimenter
boards contain LEDs and push-button switches. Some more expensive ones may contain LCD
displays, keyboards, seria input/output ports, relays, on-board chip programmers, and so on.
Examples of some popular experimenter boards are given below.

LAB-X1 experimenter board

This board is manufactured by the microEngineering Labs Inc. Some of the features of this board
are (see Figure 3.32)

A keypad with 16 switches
Potentiometers, IR, real-time clock
LED bargraph

LCD module

RC servo connectors

Speaker

RS232 and R$485 interface

Serial EEPROM

Prototyping area

5-V regulator

Figure3.32 LAB-X1 Experimenter board (Courtesy of microEngineering Labs Inc.)

The company also manufactures other experimenter boards such asLAB-X2, LAB-X3, LAB-X4,
and so on.

72 PICBASC projects

PIC microcontroller training and development kit

Thisboard is manufactured by Kanda Systems Ltd. Some of the features of the board are (see Fig.
3.33)

A/D converters

RS232 interface

4-digit, 7-segment display
LED bar-graph

8 push-button switches
Piezo-buzzer

Infrared transmitter...receiver
Sockets for seriadl EEPROM

Figure 3.33 Kanda Systemss Development kit (Courtesy of www.kanda.com)

EasyPI C 2 development system

Thisisavery sophisticated development board manufactured by MikroElektronika. The board sup-
ports 8, 14, 18, 28, and 40-pin PIC microcontrollers. Some of theimportant features of the board are
(see Figure 3.34)

Figure3.34 EasyPIC 2 Development system (Courtesy of MikroElektronika)

PIC microcontroller project development 73

RS232 interface

4-digit, 7-segment display
32 push-buttons

Digital thermometer

32 LEDs

A/D converters

2 potentiometers

On board USB programmer

3.5 Example project development

In this chapter, we have seen the hardware and software tools required to develop a PIC
microcontroller...based project. We shall now summarise the steps required for the devel opment of
aproject by giving asimple example.

In this example, we shall connect a small LED to port RB7 (bit 7 of PORTB) of a PIC16F84
microcontroller and then write a program to continuoudly flash the LED with 1-s intervals; i.e. the
LED will be ON for 1 s, then OFF for 1 s, then ON againfor 1 s, and so on. You may have difficulty in
understanding the operation of the program given in this section as you may have not read Chapter 4
yet. You should not worry about the details of the actual program since this exerciseis not designed
to teach you programming, but to show you the stepsrequired for atypical project development cycle.

Step 1—design thecircuit

Thecircuit diagram of the project isshown in Figure 3.35. A small LED is connected to port RB7 (pin
number 13) of a PIC16F84 microcontroller through a current-limiting resistor. The voltage across an
LED isabout 2V, and the average current through an LED depends on the type of LED we are using,
but we can assume a current of about 10mA.. If we assume that the voltage at the output of an output
pinis5V, the value of the required current-limiting resistor is then found as

_5-2V _ 3V

= = = 0.3K
10mA 10mA

0.3K is not a standard resistor and we can choose the resistor as 330€) which will give slightly
less than 10 mA through the LED.

The microcontroller is operated from a4-MHz resonator and an external reset button is connected
as described in Section 3.1.4. A 9-V battery together with a voltage regulator circuit is used to
power the microcontroller as shown in Section 3.1.5.

Step 2 —required components

Make alist of the required components:

® Solderless breadboard
® P|C16F84 microcontroller

74 PIC BASC projects

4-MHz resonator
Push-button switch
4.7K resistor

LED

330-Q resistor
78L05 regulator
0.33-pF capacitor
0.01-pF capacitor

9-V battery clip
9-V battery
+
AT

brtbery _i'
JE S—
1 _

78L05

g OV

”'L COHF

.;E--«

4.7

Push te
reset

Figure3.35 Circuit diagram of the project

Step 3 —construct the circuit

Figure 3.36 shows the circuit constructed on a solderless breadboard. You should connect the bat-
tery and make the following checks before inserting the microcontroller in its place. A voltmeter

14
Wed
MOLR RB?
PIC
18~84
V5s

OSCt 0802

(e.g. adigital test meter) will be required for these checks.

You can now insert the microcontroller chip inits place, but wait until after the chip is programmed.

13 A 230

LED

Inspect the breadboard visually to make sure that all the connections are correct.

Measure the voltage at the +5V rail and make sure that the voltage is very closeto +5V. You
should check your battery connections and the 78L05 regulator connections if the voltage is
not close to +5V. You should not continue with the project unless you get the correct voltage

at this step.

Measure the voltage at pin position 14 of the PIC microcontroller chip. Again, this voltage
must be very closeto +5V and you should not continue until you get the correct voltage.
Disconnect the battery

PIC microcontroller project development 75

Figure3.36 Project constructed on a breadboard

Step 4 —writethe program

Before writing our program, let us assume that we shall be keeping al of our programsin afolder
named MY PROGS under the root directory. To do this, the following steps will be required (this
task will have to be done only once):

e Start the Windows Explorer and click on My Computer. Then click on Local Disk (C:). Click
on File in top menu and then select New -> Folder. Enter the name of the new folder as
MY PROGS and press the RETURN key. The new folder has now been created and you may
Exit the Windows Explorer.

At this part of the development, we shall assume that we are using the PIC Basic Pro compiler.

® Double-click the CodeDesigner icon in the Desktop to start the program and make sure that the
Compiler Option chosen is the PicBasic Pro.

® Select the microcontroller type as PIC16F84 by clicking on the top middle part of theform, left
of the Files: 1.

® \Write your program by entering the statements shown in Figure 3.37.

® Click on File in the top menu and save your program with the name MYLED in the folder
MY PROGS (note that the file extension is chosen as .PBP automatically).

e Compile the program by selecting Compile from the top menu and then click on Compile.
Make sure that there are no errors in the compilation.

® Connect the programmer device to your PC and insert a PIC16F84 chip into the programmer
device. Click on Programmer in the top menu and select Launch Programmer. You should now
see the programmer software on your screen. Click on PIC in the top menu and select the
device type as PIC16F84.

76 PIC BASC projects

&l CodeDesigner Lite - [C:\MYPROGS\MYLED.pbp] EEx
Elsle £t Comple Programmer Options Window Help =18 x|

DEE& s e Mg FEE o |

I LED FLASHING PROGRAM

y 5 PIC 16734 - '%%:1

In this program an LED is connected to port pin RB7 of

a PICI6F&4 microcontroller The microcontroller is
operated from a 4MHz resonator The program tlashes the
LED with 1 second intervals. i.e. 1 second ON. 1 second
OFF. then again 1 second ON. and so on.

Progranmer: [. Ibrahim

Date : dugust 2005
File MYLED . FBP
Loop:
High PORTB. * LEU = OR
Pause 100U " Wait 1 second
Low PORTB.7 ' LED = OFF
Pause 1000 " Wait 1 second
GoTo Loop ' repeat forsver
End " End of program
-
4
Line:1Cok1 | pep

Figure 3.37 The program of our project

® Click on Fileinthetop menu and select Open. Navigate to folder MY PROGS and click on file
MY LED. Click on OPEN to load the object file of your program (MY LED.HEX) to the pro-
grammer memory (see Figure 3.38).

e Bl v EY#
S
600018 : 180C
000020 : 1303
goooze ; 3003
3003
T IFEF
IFTF
IFFF SFFF
: arFr ¥ IFFF
000090 : 3JFFF 3FFF 3TTTF
gooose IFFT
O000AG SEIF
O000AE : SFITF ~
EEFROM Data
00 : FF FFE FE FE EE FE FEF FF & -~
a8 : FF FF FF FF FF FF FF FF @
10 : FF FF FF FF FF FF FF FF :
13 : FT FE FY FF EF IF T IT
20 : FTFE T FF EF FF FE FT]
I~ UselCSP (- N
16F84 C5=156D User - FFFF Count: 3 Session: 0

Figure 3.38 Programmer form

PIC microcontroller project development 77

® Click on File in the top menu and select Fuses. In this form, tick only the XT box to indicate
that we are using a crystal for timing.

® Click on PIC in the top menu and select Program Config_Fuses to program the configuration
fuses. You should get a confirmation when the configuration fuses have been programmed.

® Click on PIC in the top menu and select Program Entire Device. Wait until the chip is pro-
grammed. You should get a confirmation when the device has been programmed.

® Remove the chip from the programmer and place it on the breadboard. Connect the battery and
test your project. The LED should be flashing with 1-sintervals. If the project is not working,
first check the hardware to make sure that the connections are correct. Then check the software.

3.6 Other useful development tools

In addition to the microcontroller hardware and software development tools described in this
chapter, there are some other development tools which could be very useful during the project
development cycle. Two of such tools are described briefly in this section.

3.6.1 Simulators

A simulator is a software development tool designed to run on the PC. A simulator enables the
programmer (or the user) to test the functional operation of a program on the PC, without having
to construct any microcontroller-based hardware.

Typicaly, the programmer develops the program and then compiles it. The simulator program is
then invoked and the object code of the program is loaded into the simulator program (some simu-
lators have built-in compilers or assemblers which make it easier to write a program, compileit and
then simulate using the same development tool). The programmer can then single-step through the
program and observe the val ues of variables as they change. Some simulators provide input. .. output
portswherethe programmer can connect various software-simulated devices such asLEDs, 7-segment
displays, LCDs, motors, and so on. The programmer isalso allowed to change the values of variables
during a simulation session so that the operation of the program can be analysed in detail and any
logic errors can be removed before the program isloaded into a microcontroller.

Although the simulators can be very useful devel opment tools, they have the disadvantage that the
programisnot runin real-time. Another disadvantageisthat it isnot possible to examine the oper-
ation of the program when real hardware devices are connected to the input...output ports. For
example, it is not possible to connect areal motor to the simulator and see it running. As a result
of this, any hardware-related timing errors cannot be detected by the simulation process.

3.6.2 In Circuit Emulators (ICE)

Thisisanother useful microcontroller development tool. In an | CE application, the microcontroller
of the target system is replaced by the ICE which behaves exactly same as the original microcon-
troller. Typically, the microcontroller is removed from its socket and replaced by the ICE header.

78 PIC BASC projects

This header isusually connected to an emulator box which contains the main emulator functional-
ity. A PC isthen connected to the emulator box. The ICE emulates the replaced microcontroller in
real-time asif the replaced microcontroller isin the socket. The programmer can load the program
he has devel oped into the emulator and can run, single-step, and trace the operation of the program.
Some emulators have advanced functions such as performance analysis, trace buffer, triggering
functions, and breakpoint features. Breakpoints give the programmer the ability to stop the pro-
gram at precise locations and then to examine the values of variables at these points.

A simpler, and also much cheaper type of emulator isan In Circuit Debugger (ICD). ICD provides
real-time emulation of the target processor. The program can be executed in single-step mode
with breakpoints. Memory locations and val ues of various registers can be examined in real-time.

3.7 Exercises

Describe the minimum hardware tool s required to devel op PIC microcontroller-based projects.
Explain why a PC is needed to develop PIC microcontroller-based projects.
What isthe function of a programmer device? What types of programmer devices are there?
Explain what a breadboard is and why it can be useful during microcontroller-based project
development. What are the advantages and disadvantages of using a breadboard?
5. Explain why a power supply isrequired to power a PIC microcontroller. Draw the circuit dia-
gram of atypical low-cost +5-V power supply.
6. Describe the minimum software tools required for the development of PIC microcontroller-
based projects.
7. Explain why you need a text editor. Give examples of at least two text editors available on
your PC.
8. Explain what the advantages of using an Integrated Development Environment (IDE) are.
Give an example of an IDE for the development of PIC microcontroller-based projects.
9. Explain what CodeDesigner is and the advantages of using it.
10. Explain the benefits of using the MicroCode Studio software package during the develop-
ment of PIC microcontroller projects.
11. Explain in detail the steps required to develop a simple PIC microcontroller-based project.
Can you suggest some methods to speed-up the development time?
12. Explain where and why you might need to use a simulator. What are the limitations of
simulators?

E SN o

3.8 Links to useful web sites

Links to some useful web sites on PIC microcontrollers and development tools are listed in this
section.

microEngineering Labs Inc. www.melabs.com
MikroElektronika www.mikroel ektronika.co.yu
Kanda Systems L td. www.kanda.com

PIC microcontroller project development

79

Maplin Electronics

RS Components

Farnell In One

Mecanique

CSMicro Systems
Brunning Software
Microchip Technology Inc.
Images Sl Inc.
Microcontroller Pros Corporation
ASIX

HVW Technologies Inc.
Microdesigns Inc.
Apogeekits

Quasar Electronics
Spectro Technologies Inc.
Dontronics

Hobby Engineering
Mouser

ProtoCessor

Crownhill Associates

www.maplin.co.uk
WWW.FSWWW.COm
www.farnell.com
www.mechanique.co.uk
WWW.CSmi crosystems.com
http://brunningsoftware.co.uk
www.microchip.com
WWW.imagesco.com
http://microcontrollershop.com
WwWw.pic-tools.com
www.hvwtech.com
www.microdesignsinc.com
www.apogeekits.com
www.quasarel ectronics.com
www.spectrotech.net
www.dontronics.com
www.hobbyengineering.com
WWW.MOouser.com

WWW. protocessor.com
www.crownhill.co.uk

4
PicBasic and PicBasic Pro
programming

BASIC isone of the oldest and one of the easiest programming languages to learn. You should be
able to learn and program in BASIC in less than an hour. In this chapter, we shall be looking at
the principles of programming PIC microcontrollers using the PicBasic and PicBasic Pro lan-
guages. Both these languages are very similar to the standard BASIC language but they have
some modified and some additional instructions specifically for microcontroller programming.

Both PicBasic and PicBasic Pro languages have been developed by the microEngineering Labs
Inc. PicBasic is alower-cost, simpler language than PicBasic Pro and it isaimed at students and
hobbyists. PicBasic Pro is more expensive, aimed at professionals, and includes additional com-
mands for more advanced instructions.

Table 4.1 gives alist of the comparison of PicBasic and PicBasic Pro languages. Before we pro-
ceed to the chapter on PIC applications and projects, we shall be looking at how we can program
the PIC microcontrollers using these languages.

4.1 PicBasic language

In this section, we shall be looking at the variable types and the commands of the PicBasic lan-
guage. A detailed description of all the commands can be found in the PicBasic Compiler man-
ual, available from the web site www.melabs.com, or a printed copy can be obtained from the
microEngineering Labs Inc.

4.1.1 PicBasic variables

Variables are used to store temporary datain a program. These variables are stored in the general -
purpose area of the RAM memory of a microcontroller.

Variablesin PicBasic can be bytes (8 bits), or words (16 hits). Byte variables are named B0, B1,
B3, etc., and word variables are named WO, W1, W2, etc. Word variables are made up of two
bytes. For example, WO uses the same memory space as bytes BO and B1. Similarly, W1 word
variableis made up of bytes B2 and B3, and so on. We can access the bit positions of variables BO
and B1 using predefined names Bit0, Bit1,...,Bit15. For example, the least significant bit of BO

PicBasic and PicBasic Pro programming 81

Table4.1 Comparison of PicBasic and PicBasic Pro

PicBasic

PicBasic Pro

Low-cost ($99.95)

Higher cost ($249.95)

Limited to first 2K of program space

No program space limit

Interrupt service routine in assembly language

Interrupt service routine can be in assembly
language or in PicBasic Pro

Peek and Poke used to access registers

Registers can be accessed directly by specifying
their names

Some commands can be used only for
PORTB, PORTC, or GPIO

Commands can be used for al ports

Clock speed 4MHz

Any clock speed up to 40MHz

Most 14-bit Pic microcontrollers supported

All PIC microcontrollers, including 12-bit ones
are supported

More code space in memory

5-10% less code space in memory

More difficult to learn and less powerful

Easier to learn and more powerful

No LCD commands

Specia LCD control commands (LCDOUT,
LCDIN)

No hardware serial communication commands

Specia hardware serial communications
commands (HSERIN, HSEROUT)

No PWM commands

Special PWM commands for the microcontrollers
that have built-in PWM circuit (HPWM)

No Select-Case command

Select-Case command for multi-way selection

No program memory read—-write commands

Commands to read and write program memory
locations (READCODE, WRITECODE)

No One-wire device interface

One-wire device interface commands (OWIN,
OWOUT)

No USB commands

USB commands for microcontrollers that have
built-in USB circuits (USBIN, USBOUT)

No X-10 remote control commands

X-10 remote control commands (XIN, XOUT)

No A/D commands

A/D commands for microcontrollers that have
built-in A/D converters (ADCIN)

is labelled BitO, the second bit Bitl, and the most significant bit as Bit7. Similarly, the least
significant bit of B1 can be named as Bit8, and the most significant bit of B1 as Bit15.

Variables are stored in the RAM memory of a PIC microcontroller where BO is the first RAM
location, B1 is the second RAM location, and so on. The size of the RAM memory depends on
the type of PIC microcontroller used and Table 4.2 gives alist of the variable names for various
microcontrollers. For example, if we are using a PIC16F84-type microcontroller, we can define
52 variables from BO to B51, and the highest variable name must not exceed B51. Note that you
can only accessRAM locations up to the available RAM. For example, if you try to accessaRAM

82 PICBASC projects

location that does not exist, the compiler does not generate an error and your program may not
work as expected.

Table4.2 PicBasic variable names

Microcontroller Variables (bytes) Variables (words)
PIC16C61 B0O-B21 WO0-wW10
PIC16C71 B0O-B21 W0-W10
PIC16C710 B0O-B21 WO0-W10
PIC16F83 B0O-B21 W0O-W10
PIC16C84 B0O-B21 WO0-w10
PIC16F83 B0O-B21 WO0-W10
PIC12F629 B0-B47 W0-W23
PIC12F675 B0O-B47 WO0-W23
PIC16F630 BO-B47 W0-W23
PIC16F676 B0-B47 W0-W23
PIC16C711 BO-B51 W0O-W25
PIC16F84 B0O-B51 WO0-W25
PIC16C554 B0-B63 W0-W31
PIC16C556 B0-B63 W0-w3l
PIC16C620 B0O-B63 WO0-W31
PIC16C621 B0-B63 WO0-wW31
PIC 12C67X BO-B79 WO0-W39
PI1C14C000 BO-B79 WO0-W39
PIC16C558 B0O-B79 WO0-W39
PIC16C558 BO-B79 WO0-W39
PIC16C622 BO-B79 WO0-W39
PIC16C62 BO-B79 WO0-W39
PIC16C63 BO-B79 WO0-W39
PIC16C64 BO-B79 WO0-W39
PIC16C65 BO-B79 WO0-W39
PIC16C72 BO-B79 WO0-W39
PIC16C73A BO-B79 WO0-W39
PIC16C74A BO-B79 WO0-W39

The relationshi ps between the byte, word, and bit variables are given in Table 4.3. For example, word
W2 ismade up of bytes B4 and B5. You will see additional predefined variablesin Table 4.3, named
Port, Dirs, and Pins. Pins refers to the PORTB hardware, Dirs refers to the port data direction
register for PORTB, i.e. TRISB and a 0 sets its associated Pin to an input, and a Dirs of 1 setsits

PicBasic and PicBasic Pro programming 83

associated Pin to an output. Port isaword variable that combines Pinsand Dirs. Theindividual pins
of aport can be accessed by the variable names PinQ, Pinl,...,Pin7.

Table4.3 Relationship between byte, word, and bit variables

Word variable Bytevariable Bit variable

W0 BO Bit7, Bit6,...Bit0
B1 Bit15, Bit14,...Bit8

W1 B2
B3

W2 B4
B5

w3 B6
B7

W39 B78
B79

Port Pins Pin7, PinG,...Pin0
Dirs Dir7, Dir6,...Dir0

Symbols

In order to make programs more readable, we can assign meaningful names to variables, instead
of using BO, B1, etc. The PicBasic statement symbol isused for this purpose. For example, we can
assign variable name count to location BO with the instruction:

Symbol count = BO

Symbols must be declared at the top of a program. Symbols can also be used to assign constants
to names. For example, the following statement assigns the decimal value 20 to the name total.
Note that this statement does not occupy any location in the microcontroller RAM memory. The
number is simply represented with a name.

Symbol total = 20

Command namesin PicBasic are case insensitive and can be written in upper case, lower case, or
with amixture of the two. Thus, all the variables below are the same:

TOTAL
Tota
toTa

84 PIC BASC projects

Comments

Comments are useful in programs to describe the operation performed in aline or in a block of
lines. A comment starts with either the keyword REM or the single quote character (*). All the
characters following a comment character are ignored. Examples of comments are:

REM Thisisasimple test program
LOWO ‘Clear Pin0to 0
HIGH1 REM SetPinltol

Numeric Values

In PicBasic, numeric values can be specified in three ways. decimal, binary, and hexadecimal.
Decimal values are the default and require no prefix. Binary values are specified using the prefix
“9%" followed by the number. Hexadecimal values are specified using the prefix “$”" followed by
the number. Some examples are:

REM A has the same value in al the following three statements

A =10
A = %00001010
A = $0A

ASCII Values

Character constants can be converted into their ASCII values by enclosing them in double quotes.
Only one character must be specified. For example,

“A” * ASCII value of decimal 65
“1" * ASCII value of decimal 49

String Constants

Although PicBasic does not provide string-handling functions, we can define strings of characters
by enclosing them in double quotes. For example,

“COMPUTER”
The above string is treated as a string of ASCII characters with values“C”, “O”, “M”, “P", “U”,
“T",“E",“R".
Line Labels

In PicBasic programs, we often want to jump to different parts of a program, or to jump to a sub-
routine. A linein PicBasicisreferred by alinelabel. A line label can be avalid identifier (avalid
name in PicBasic), followed by a colon character (:). For example,

LOOP:

Multi-statement Lines

It is possible to use more than one statement on aline to make the program more readable. A colon (:)
character should be used to separate more than one statement in aline. The size of the code does

PicBasic and PicBasic Pro programming 85

not change when more than one statement is written on the same line. For example, consider the
following statements:

BO=3
Bl1=5
B2=28

The above statements can all be written on the sameline as
BO=3 : Bl=5 : B2=8

4.1.2 PicBasic mathematical and logical operations

PicBasic supports a number of mathematical and logical functions which make calculations easy
in programs. The operations are performed on integer numbers only with 16-bit precision and
there is no floating-point number format. Also, all math operations are performed strictly from
left to right. The operators supported are

+ addition

- subtraction

* multiplication

*x most significant bit (MSB) of multiplication
/ division

1 remainder in adivision
MIN limit to minimum value
MAX limit to maximum value
& bitwise AND

| bitwise OR

A bitwise XOR

&/ bitwiss AND NOT

I/ bitwise OR NOT

N bitwise XOR NOT

Multiplication isdone on 16 X 16 bit numbers, resulting in a32-bit result. The “*” operator returns
the lower 16-bits of the 32-bit result. Similarly, the “**” operator returns the upper 16-bits of the
result. For example,

W2 = W1* W0 * Multiply W1 with WO. The lower 16-bits of the result

‘areplaced in W2
or,
W2 =W1** W0 ‘Multiply W1 with WO. The upper 16-bits of the result
‘areplaced in W2
or,

W2 =W1* 100 * Multiply W1 with 100. Place the lower 16-bits of the
‘ result in W2. Note that thisis the multiplication
* found in most programming languages

86 PICBASC projects

Similarly with division,

W2 =W1/W0 ‘ DivideW1 by WO. Theresultisplacedin W2
or,
W2 =W1//W0 * DivideW1 by WO0. Theremainder is placed in W2

MIN is used to limit the result to the minimum value defined. For example,
B1 = B0 MIN 100

Sets B1 to the smaller of BO and 100, i.e. B1 cannot be greater than 100.

Similarly, MAX is used to limit the result to the maximum value defined. For example,
B1 = BOMAX 100

sets B1 to the larger of BO and 100, i.e. B1 will be between 100 and 255.

Bitwise logical operations operate on the entire byte and these operations can be used to extract
bits from bytes or to set and clear bits of a byte. For example, to extract the least significant bit of
BO we can write

BO = B0 & %00000001

Similarly, to set bit 2 of B1 to be 1 we can write

B1 = B1 | %00000100

To store the upper four bits of B2 in B1 we can write

Bl =B2& %11110000

4.1.3 PicBasic program flow control commands

Program flow control commands are important in every programming language since they enable
the programmer to make a decision and change the flow of the program based on this decision.
PicBasic language supports the following program flow control commands:

BRANCH

BUTTON

CALL
FOR...NEXT
GOSUB...RETURN
GOTO

IF...THEN

PicBasic and PicBasic Pro programming 87

We shall now see what the functions of these commands are and how to use them in programs.

BRANCH
BRANCH offset, (Label0, Label1,...)

When this command is executed, the program will jump to the program label based on the value
of offset. Offset is actually a program value and if offset is zero, the program jumps to the first
label, if offset is one, the program jumps to the second label, and so on.

Example:

BRANCH B2, (Lbl1, Lbl2, LbI3) * If B2 = Othen goto Lbl1
“1f B2 = 1 then goto Lbl2
“1f B2 = 2then goto Lhl3

BUTTON
BUTTON Pin, Down, Delay, Rate, Var, Action, Label

This command is used to check the status of a switch. The command operatesin aloop and con-
tinuously samples the pin, debouncing it and comparing the number of iteration performed with
the switch closed. The parameters are

Pin Pin number (0 to 7). PORTB pins only

Down State of pin when button is pressed (0 or 1)

Delay Delay before auto-repeat begins (0 to 255). If 0, no debounce or auto-repeat is
performed. If 255, only debounce, but no auto-repeat is performed

Rate Auto-repeat rate (0 to 255)

Var Byte variable used for delay/repeat countdown. Should be
initialised to 0 before use

Action State of pin to perform goto (0 if not pressed, 1 if pressed)

Label Program execution continues at thislabel if Actionistrue

Figure 4.1 shows the two types of switches that can be used with this command.

For exampl e, the following command checks for a switch pressed on pin 2 (of PORTB) and jumps
to Loop if it is not pressed (this command assumes that the port pin will be logic 0 when the
switchis pressed, i.e. the figure on the left in Figure 4.1):

BUTTON 2, 0, 255, 0, BO, 0, Loop

88 PIC BASC projects

+5V +5V

w g

To input pin
To input pin putp

10K

E”l |

Figure4.1 Switchesthat can be used for the Button command

The following command checks for a switch pressed on pin 2 as above, but jumps to Loop if the
switch is pressed:

BUTTON 2, 0, 255, 0, BO, 1, Loop

CALL
CALL Label

This command executes the assembly language subroutine named Label. For example, the com-
mand calls to assembly language routine with the name calculate.

CALL calculate

FOR...NEXT

FOR index = Sart TO End (STEP (—) Inc)
(body)
NEXT index

Thiscommand is used to perform iterationsin aprogram. Index is aprogram variable which holds
theinitial value of theiteration count Start. End isthe final value of the iteration count. STEP is
the value by which the index isincremented at each iteration. If no STEP is specified, theindex is
incremented by 1. The iteration repeats until index = End and then execution continues with the
next instruction following the NEXT. Index can be a byte (0 to 255), or aword (0 to 65535).

In the following example, the two statements enclosed within the FOR...NEXT are executed 10
times.

FOR B0O=1TO10
Bl=Bl1+1
B2=B2+1

NEXT BO

PicBasic and PicBasic Pro programming 89

or in the following example, the index is incremented by 2 in each iteration.

FOR BO = 1TO 100 STEP 2
B1=BO+2
NEXT BO

GOSUB...RETURN
GOSUB Label

This program calls a subroutine starting at Label. It islike a GOTO command, but here the program
returns when the RETURN statement is reached, and continues with the instruction after the
GOSUB. The RETURN statement has no parameters. A subroutine hasthe following characteristics:

® A |abel to identify the starting point of the subroutine
® Body of the subroutine where the required operation is performed
e RETURN statement to exit the subroutine and return to the main calling program

Subroutines can be nested in PicBasic where a subroutine can call to other subroutines. The nest-
ing should be restricted to no more than four levels deep. In the following example, the subrou-
tine labelled INC increments variable B1 by one and then returnsto the main program. On return
to the main program, the statement B2 = B1 is executed.

BO=0

Bli=1

GOSUB INC * Jump to subroutine INC

B2 = B1 ‘ Subroutine returns here
INC: ‘ Start of the subroutine

B1=Bl1+1 ‘Body of thesubroutine

RETURN * End of the subroutine
GOTO

GOTO Label

This command causes the program execution to jump to the statement beginning at Label. For
example,

GOTO Loop

Loop:
IF...THEN
IF Comp (AND / OR Comp) THEN Label

90 PICBASC projects

This statement is used to perform comparisons (Comp) in a program. If the result of the compari-
son is true then the program jumps to the statement at Label, otherwise execution resumes with
the statement following IF... THEN.

A comparison can relate to a variable, to a constant, or to other variables. All comparisons are
unsigned and the following comparison operators can be used:

< less than

<= lessthan or equa

= equal

<> notequd

>= greater than or equa
> greater than

Additionally, logical operatorsAND and OR can be used in acomparison operation. For example,

IFBO> 10THEN CALC * Jumpto CALCIif BO> 10

CALC:

Another exampleis given below. In thisexample, if B2 isgreater than 40 and at the sametime B3
isless than 20 then the program jumps to the statement at label EXT. Otherwise, execution con-
tinues with the statement after the IF... THEN.

IFB2 > 40 AND B3 < 20 THEN EXT

EXT:

It isimportant to be careful that only aLabel can be used after the THEN statement.

4.1.4 Other PicBasic commands

We shall now briefly look at the remaining PicBasic commands in aphabetical order which are
useful during the program development. More details about these commands can be obtained
from the PicBasic manual.

EEPROM

EEPROM Location, (constant, constant,....., constant)

This command stores constants in consecutive bytes in on-chip EEPROM memory. The command
only workswith the PIC microcontrollers that have EEPROM, such asthe PIC16F84, PIC16F877,

PicBasic and PicBasic Pro programming 91

etc. Location is optional, and if omitted the first EEPROM location is assumed. Constants can be
numeric constants or string constants. Strings are stored as consecutive bytes of ASCII values. An
example is given below.

EEPROM 3,(5,2,8) ‘ Store5inlocation 3,
‘2inlocation 4, and 8 in
‘ location 5

END
END

Stops execution and enters low power mode. The command has no parameters.

HIGH
HIGH Pin

Makes the specified pin an output pin and setsit to logic 1. Pin only appliesto PORTB pins and
it can take values from O to 7. In the following example, bit 1 of PORTB is configured as an out-
put pin and is set to logic 1:

HIGH 1

12CIN
I2CIN Control, Address, Var, (,Var)

This command is used to read datafrom seridl EEPROMswith a2-wire I?C interface. A list of some
compatible devicesis givenin Table 4.4. The lower 7 bits of the Control byte contain a4-bit control
code, followed by the chip select or additional address information, depending on the device used.
AsshowninTable 4.4, the 4-bit control code for EEPROMsis*1010”. The high-order bit (M SB) of
the Control byte is aflag indicating whether the Addressis to be sent as 8 hits or 16 hits. If the flag
islow, the Addressis sent as 8 bits, and if it ishigh, the Addressis sent as 16 hits. (,Var) shown in the
command list is used only for 1-bit information. The 1°C data and clock lines are predefined in the
PicBasic library asbit 0 of PORTA (RAO0) and bit 1 of PORTA (RA1), respectively.

For example, when communicating with a24L C02B EEPROM, the required Addressis 8 bits, the
control codeis“1010” and chip select or additional address information is not required and can
be assumed to be 0. The required Control byteisthen “01010000".

Figure 4.2 shows how the 24L.C02B (or any other serial EEPROM) can be connected to a PIC
microcontroller. In this example, a PIC16F84 is used and pin RAO and RA 1 are connected to the
data and clock pins of the EEPROM, respectively. These are the only connections required to
communicate with an 12C-compatible device. As shown in the figure, the 12C lines should be con-
nected to Vdd (+5 supply) with 4.7K resistors.

92 PICBASC projects

Table4.4 Some|°C compatible EEPROMSs

Device Capacity Control Addresssize
241.C01B 128 bytes 01010xxx 8 bits
241.C02B 256 bytes 01010xxx 8 bits
241.C04B 512 bytes 01010xxb 8 bits
241.C08B 1K bytes 01010xbb 8 bits
241L.C16B 2K bytes 01010bbb 8 hits
241.C32B 4K bytes 11010ddd 16 bits
241.C65B 8K bhytes 11010ddd 16 hits

bbb = block select bits (each block is 256 bytes)
ddd = device select bits
XXX = don't care

A +5Y
' 14 8
R ,;_?KA VB 10K 30K , Yoo
MCLR RAG i; 2 50A
RA1 sCL
24L.C02B
PIC 3 j;f
16F84 3 N WP 7
Vas e
Vs 5 N ﬂ—
Sen l‘EE?ROM
0SC1 QSC2 _-i- o

16 15
m-l: i[” o2
22pi AMbiz IZZpF

Figure4.2 1°C Connections to a PIC microcontroller

In the following example, a databyte isread from address 20 of the serial EEPROM and stored in
variable B1. Note that the Control byteis set to “01010000”, Addressis assigned variable BO and
value 20 stored in it, and the byte read from the EEPROM is stored in dataregister B1.

Symbol con = %01010000
Symbol addr = BO
addr = 20 ‘ Set address to 20
I2CIN con, addr, B1 ‘ Read from address 20 to B1

PicBasic and PicBasic Pro programming 93

[2COUT
[2COUT Control, Address, Value (,Value)

This command is used to send data to an 1°C compatible device such as a seriadl EEPROM
described in command 12CIN. The (,Value) in the command is used for 16-bit information.

When writing data to an EEPROM, it is necessary to wait about 10 ms (device dependent) for the
write operation to complete before attempting to write again. In the example given below, data byte
10iswritten to address 30, and also databytein variable B5 iswritten to address 31 of an EEPROM.

Symbol con = %01010000
Symbol addr = BO

addr = 30 * Set addressto 30
12COUT con, addr, (10) * Write byte 10 to address 30
PAUSE 10 * Wait 10ms
addr = 31 * Set addressto 31
[2COUT con, addr, (B5) * Write byte in B5 to address 31
PAUSE 10 ‘Wait 10ms

INPUT

INPUT Pin

This makes the specified PORTB pin aninput. Pin isfrom O to 7. For example,
INPUT 2 ‘ Make RB2 an input pin

LOOKDOWN
LOOKDOWN Search, (Constant, Constant,.....), Var

This command provides alook-up table. It looks down alist of Constants and compares each one
with the Search value. If amatch isfound, the position of the match is stored in Var. Note that the
first Constant is assumed to be at position 0. The Constant list can be numeric or string constants.
In the following example, if we assume that variable BO has value 5 then variable B1 will contain
3 which isthe position of 5 in the table:

LOOKDOWN B0, (0,8, 9,5, 12,0, 1), B1
LOOKUP
LOOKUP Index, (Constant, Constant,....), Var

Thiscommand is used to retrieve values from atable. When Index is 0, Var isloaded with thefirst
Constant; when Index is 1, Var is loaded with the second Constant and so on. In the following

94 PIC BASC projects

example, if we assumethat variable BO has value 3, variable B1 will beloaded with 8 which isthe
3rd element in the table starting from O:

LOOKUPBQO, (0,9, 0, 8,12, 32), B1

LOW
LOW Pin

This command makes the specified pin an output pin and clearsit to logic 0. Pin only appliesto
PORTB pins and it can take values from 0 to 7. In the following example, bit 2 of PORTB is con-
figured as an output pin and is cleared to logic O:

LOW 2

NAP
NAP Period

The NAP command places the PIC microcontroller in low-power mode for awhile to save power
in battery applications. The Period is avariable from 0 to 7 and the approximate delay is given in
Table 4.5.

Table4.5 Delay in NAP command

Period Delay (s, approx)
0 18 x 1073
36 x 1073
72 %1073
144 x 1078
288 x 1073
576 x 1072
1.152
2.304

N[O~ WIN|F

In the following example the microcontroller is put into low power mode for just over 1s:
NAP 6

OUTPUT
OUTPUT Pin

This command makes the specified pin of PORTB an output pin. Pin can take valuesfrom 0to 7.
In the following example, bit 2 of PORTB (RB2) is made an output pin:

OUTPUT 2

PicBasic and PicBasic Pro programming 95

PAUSE
PAUSE Period

Thisis one of the commonly used commands to delay a program by a specified amount. Period is
in milliseconds and can range from 1 to 65,535 ms (i.e. just over one minute). PAUSE does not put
the microcontroller into low-power mode. In the following example, the program isdelayed by 1s:

PAUSE 1000

PEEK
PEEK Address, Var

This command is used to read the value of aRAM register at the specified Address and then put
the value into variable Var. The PEEK command can be used to access al registers of the PIC
microcontroller including the Port registers, A/D converter registers, etc.

In the following example, the 8-bit value of PORTB isread and stored in variable BO:

Symbol PORTB = 6 * PORTB register address
PEEK PORTB, BO ‘ Read PORTB into BO

POKE
POKE Address, Var

This command is used to send data to a RAM register at the specified Address. The POKE com-
mand can be used to send data to all accessible registers of the PIC microcontroller, including the
PORT registers, PORT direction registers, A/D converter registers, etc.

In the following example, TRISB is cleared to 0 so that all PORTB pins are outputs. The hexa-
decimal value 24 is sent to PORTB.

Symbol TRISB = $86 * TRISB register address

Smbol PORTB = 6 * PORTB register address
POKETRISB, 0 ‘ Clear TRISB
POKE PORTB, $24 * Send $24 to PORTB

POT
POT Pin, Scale, Var

This command could be useful to read an analogue voltage if the microcontroller has no built-in
A/D converter. Pinisa PORTB pin and can take a value between 0 and 7. For this command to
work, aresistor and a capacitor are serially connected to a port pin as shown in Figure 4.3. When
avoltage is applied to aresistor—capacitor circuit, the voltage across the capacitor rises exponen-
tially as the capacitor is charged through the resistor. The charge time is dependent on the value
of the resistor and the capacitor.

96 PIC BASIC projects

Port pin 5-50K

0.1 pF

Figure4.3 Resistor and capacitor connected to an 1/O pin

When the POT command is used, the capacitor isinitialy discharged by the 1/0O pin by placing the
pinin output mode. After that, the I/O port is changed to an input port and startstiming the voltage
across the capacitor until the voltage reaches the threshold value of the I/O pin. When this happens,
the calculated charge time is converted into a number between 0 and 255 and is stored in Var. The
Scale value should be set experimentally. To do this, set the device to maximum resistance and set
the Scale to 255. The value returned in Var will be the proper scale value for the chosen compo-
nents. An example is given below where the resistor—capacitor are connected to pin 1 of PORTB,
the Scale value is set to 255 and the output value is stored in BO.

POT 1, 255, BO

PULSIN
PULSIN Pin, Sate, Var

The PULSIN command measures the pulse width of any signal connected to a PORTB pin. With
a4MHz crystal or resonator, the pulse width will be measured in 10 usunits. If Sate is 0, the
width of alow pulseis measured; if Scaleis 1, the width if ahigh pulse is measured. The meas-
ured value in 10 ps unitsis stored in variable Var. Var can be abyte or aword. If aword is used,
it can take values 1 to 65,535, i.e. the minimum pulse width that can be measured is 10 ws and the
maximum is 655,350 u.s. If abyteisused, the range of the measurement is 10 to 2550 p.s.

PULSOUT
PULSOUT Pin, Period

This command generates a pulse on a PORTB pin (Pin can be 0 to 7) of specified Periodin 10 us
units. The Period is a word and thus pulses of up to 655,350 s can be generated. The specified
pin is automatically made an output pin.

For example, to generate a 500-.s pulse on pin 1 of PORTB, we need the command
PULSOUT 1, 50

PWM
PWM Pin, Duty, Cycle

PicBasic and PicBasic Pro programming 97

This command outputs a Pulse-Width-Modulated (PWM) signal on the specified PORTB pin
(Pincanbe0to 7). The Duty is the pulse duty-cycle and can range from O to 255. O correspondsto
a0% duty-cycle, and 255 corresponds to a 100% duty-cycle. The generated PWM pulseisrepeated
Cycle times. The specified port Pin is made an output just before the command is executed and
reverts to an input after the pulseis generated.

In the following example, a 200-cycle PWM signal is generated on bit 0 of PORTB with a duty-
cycle of 50%:

PWM 0, 127, 200

Another use of this command is to generate an analogue signal by sending the output to a
resi stor—capacitor circuit as shown in Figure 4.4. In this circuit, the voltage across the capecitor will
vary depending on the Duty and the Cycle of the pulses.

10K

Port pinpe S l‘ &= Anatague out

1uF

Il

Figure4.4 Using PWM signal for D/A conversion

RANDOM
RANDOM Var

This command generates arandom number and stores in word variable Var. For example, to gen-
erate a random number and store in W1 use the command:

RANDOM W1

READ
READ Address, Var

This command is used to read a byte from the specified Address of the built-in EEPROM mem-
ory. The byte read is stored in variable Var. This command can only be used with PIC microcon-
trollers that have built-in EEPROM memory (such as PIC16F84, or PIC16F877).

In the following example, the byte at address 10 of EEPROM isread and stored in variable B1:

READ 10,B1 ‘ Read byte at address 10
‘and storein B1

REVERSE
REVERSE Pin

This command reverses the mode of a PORTB pin (Pin can be from O to 7). If the pin isan input,
it ismade an output. Similarly, if the pin isan output, it is made an input.

98 PIC BASIC projects

In the following example, bit 2 of PORTB isfirst made an output pin, then changed to an input pin:

OUTPUT 2 * RB2isoutput pin

REVERSE2 ‘RB” isaninput pin
SERIN

SERIN Pin, Mode, (Qual, Qual,,), Item, Item,

This command is used to receive RS232 serial asynchronous data on a PORTB pin (pin is
between 0 and 7) using 8-bit data, no parity bit, and one stop bit. As shown in Table 4.6, Mode
defines the baud rate and whether or not the pin datais inverted. For example, if Mode is N9600,
the datais inverted and the selected baud rate is 9600.

Table4.6 Selecting the baud rate with Mode

Symbol Value Baud rate Mode
T2400 0 2400 True
T1200 1 1200 True
T9600 2 9600 True
T300 3 300 True
N2400 4 2400 Inverted
N1200 5 1200 Inverted
N9600 6 9600 Inverted
N300 7 300 Inverted

The RS232 signal levelsare =12V and level converter circuits (such as MAX232) are normally
used to convert the RS232 signal levelsto TTL and the TTL levels back to RS232 levels. The 1/O
specifications of PIC microcontrollers allow RS232 signals to be directly connected to a port pin.
Asshown in Figure 4.5, aresistor is al that is needed to receive RS232-compatible signals on a
pin. When used in this mode, the dataisto be inverted (i.e. usethe “N” versions of the mode sig-
nalsin Table 5.6)

22K
Port pin >————3—— RS232 TX (Pin 3 on DB9 connector)

J_— RS232 Ground (Pin 5 on DB9 connector)

Figure4.5 Connecting aRS232 signal to aport pin

A number of qualifiers, enclosed in brackets, can be used with the SERIN command such that these
bytes must be received before receiving the data items. Once the qudifiers are satisfied, SERIN
receivesthe seria dataand storesin Items. The Item variable may be preceded by the hash character
(“#"). Thiswill convert the decimal number received into ASCII equivalent and storeit in Item.

PicBasic and PicBasic Pro programming 99

In the following example, pin 1 of PORTB (RB1) isdefined as the serial 1/O pin and the port pin
is connected to the RS232 serial line using a resistor. The baud rate is assumed to be 4800. The
microcontroller waits until the character “X” is received from the line and then stores the next
bytein variable BO:

SERIN 1, N4800, (“X”), BO

SEROUT
SEROUT Pin, Mode, (Item, Item,...)

This command is similar to the SERIN command but is used to send RS232 asynchronous serial
datato apin of PORTB (Pin can be between 0 and 7). As before, Mode is used to set the commu-
nications baud rate. In addition to the standard inverted and non-inverted modes, it is also possi-
ble to set Open-Drain and Open-Collector modes where a pull-up resistor will be required at the
output of the pin. Table 4.7 gives alist of the available Modes.

Table4.7 Selecting the baud rate with Mode

Symbol Value Baud rate Mode
T2400 0 2400 True

T1200 1 1200 True

T9600 2 9600 True

T300 3 300 True

N2400 4 2400 Inverted
N1200 5 1200 Inverted
N9600 6 9600 Inverted
N300 7 300 Inverted
QOT2400 8 2400 Open Drain
OT1200 9 1200 Open Drain
OT9600 10 9600 Open Drain
OT300 11 300 Open Drain
ON2400 12 2400 Open Source
ON1200 13 1200 Open Source
ON9600 14 9600 Open Source
ON300 15 300 Open Source

Databyte Item is sent to the specified port pin in seria format. The Item can be a string constant or a
numeric value. A string constant consists of characters and each character of the string is sent out. For
example, the string “COMPUTER” is sent out as 8 individual characters. A numeric value will send
the corresponding ASCII character. For example, 13 is the carriage-return character, 65 is character
“A” and so on. A numeric value can be preceded by the hash character “#’ and this will send out the
ASCII representation of its decimal value. For example, #345 will besent as“3”, “4”, and “5".

100 PIC BASC projects

In the following example, it is assumed that pin 1 of PORTB (RB1) is used as the serial 1/0 pin
and it is configured for 4800 baud. ASCII value of variable BO is sent out from this pin, followed
by a carriage-return.

SEROUT 1, N4800, (#BO, 13)

SLEEP
SLEEP Period

The SLEEP command is used to put the microcontroller in low-power mode and stops the micro-
controller running for the specified Period. The Period is aword and can range from 1 to 65,535
and represents increments of 2.3s. For example, avalue of 1 will make the microcontroller sleep
for 2.3s, avalue of 2 will make the microcontroller sleep for 4.6 sand so on. The maximum value
of 65,535 makes the microcontroller sleep just over 18h.

In the following example, the microcontroller sleepsfor 23s:
SLEEP 10

SOUND
SOUND Pin, (Note, Duration, Note, Duration,.....)

This command is used to generate sound on a specified PORTB pin of the microcontroller (Pins
are between 0 and 7). Note can take values from 0 to 255 and these values do not correspond to
the musical notes. A O represents silence. Values from 1 to 127 are tones (1 is lower frequency
than 127), and values from 128 to 255 are white noise (128 is lower frequency than 255). The
sound continues for alength of time specified by Duration. Duration is measured in milliseconds
and it can take values between 0 and 255. The SOUND command produces TTL level square
waves and it is possible to connect a speaker to the output pin as shown in Figure 4.6.

22 uF

X
Bort pin 0—[! ETI!!
P Speaker

Figure4.6 Connecting a speaker for the SOUND command

In the following example, a sound with note 20 and duration 100 ms is sent to pin 0 of PORTB.
Then, another sound with note 23 and duration 200 msis sent out from the same port pin.

SOUND 0, (20, 100, 23, 200)
TOGGLE
TOGGLE Pin

This command makes the specified Pin an output pin and invertsthe state of thispin (Pin can take
valuesfrom 0to 7).

PicBasic and PicBasic Pro programming 101

In the following example, bit 0 of PORTB (RBO) isfirst made low, and then changed to high using
the TOGGL E command:

LOWO
TOGGLE O

WRITE
WRITE Address, Value

The WRITE command writes the Value byte to the specified EEPROM address. Thiscommand is
only valid for the PIC microcontrollers which have built-in EEPROM memories.

In the following example byte in variable BO is written to EEPROM address 2:

WRITE 2, BO

4.1.5 Recommended PicBasic program structure

There are many different waysin which aPicBasic program can be written. It isimportant to note
that a program should be written in such away that it is easily maintainable by other people. This
is specially important if you work in afirm and others may have to upgrade or maintain your pro-
gram. The following steps should be followed to devel op a maintainable program:

® Use a header in your programs. This header should briefly describe the function of the pro-
gram. In addition, the author of the program, the program creation date, program file name,
and any program modifications should be described in the header.

® Use commentsin your programs to describe what you are trying to do. The comments can be
used at the beginning of a piece of code, or after every statement.

® Use symbolsas much as possible in your programs. Symbols make your programs more readable.

The author recommendsthat you use atemplate similar to the one given in Figure 4.7 when devel op-
ing PicBasic programs. Asyou can seein thisfigure, the header includes abrief description of the
program, name of the author, the date, and the filename of the program. Comments are used in
every line of the program to clarify the actions of the program.

4.2 PicBasic Pro language

PicBasic Pro is a full-featured compiler and is for serious or professional PIC programmers.
PicBasic Pro has many additional commands compared to the standard PicBasic compiler. In
addition, the variables, constants and symbols are treated differently in PicBasic Pro. In this sec-
tion, we shall only be looking at the commands which are specific to PicBasic Pro language, and
which have not been described in Section 4.1. Also, various features of the PicBasic Pro language
are described in this section.

102 PIC BASC projects

Ehkkhhhhhhhhhhhhhhhhhhhdhhhhhdhhhdhdhhhhdhhhhhhhdhhdhhdhhdhhhdhhdhhddrhhdddhddrddhrdrrdx

‘ LED FLASHING PROGRAM

* This program flashes and LED connected to port RBO of PORTB. The
* Led isflashed with 1 second intervals.

* Author: Dogan Ibrahim

‘ Date: September, 2005

‘ Fle LED.PBC

‘ Modifications

DRSS S S S S S S S SESEL S LSS LSS E S LSS EE S LSS EE TS S L LS E LR LSS LT EEEEEEEEEEEEEEEEEEEEE SRS S
‘* SYMBOLS

Symbol LED =0 ‘ Define RBO as LED

Symbol TRISB = $86 ‘ TRISB address

Symbol PORTB = $06 * PORTB address

* START OF MAIN PROGRAM

POKETRISB, 0 ‘ Set PORTB pins as outputs
AGAIN:

HIGH LED * Turn ON LED

PAUSE 1000 ‘ Wait 1 second

LOW LED * Turn OFF LED

PAUSE 1000 ‘ Wait 1 second

GOTOAGAIN ‘ Repeat

END ‘ End of program

Figure4.7 Recommended PicBasic program template

4.2.1 PicBasic Pro variables

Variablesin PicBasic Pro are stored in the general purpose RAM registers and are declared using
the VAR keyword. Each variable has a name and a variable type. A variable type can be a bit, a
byte, or aword. Some example variable declarations are

Total VAR word
Count VAR byte
Flag VAR it

PicBasic and PicBasic Pro programming 103

The VAR keyword can also be used to create an aliasfor avariable (i.e. another name). In thefol-
lowing example, Sum is another name for Total:

Sum VAR Totd

Theindividual bits of a variable can be accessed by writing the variable name, followed by a dot
“” character, and then the bit number (O to 15), or the keyword BIT followed by the bit number
(e.g. BITOto BIT15). The following are examples of accessing bit O of variable Total:

Total.0
Total .BITO

Arrays of variables can be created in PicBasic Pro by writing the name of the array, followed by
the keyword VAR, and then the type and the size of the array. For example, abyte array called Sum
with 10 elements of type byte can be declared as

sum VAR bytd10]

In the above example, the first element of the array is SUm[0], and the last element is SUM[9].
Arrays have asize-limit in PicBasic Pro.

® Maximum size of abit array is 256
® Maximum size of abyte array is 96 (microcontroller-dependent)
® Maximum size of aword array is 48 (microcontroller-dependent)

4.2.2 Constants

Constants in the PicBasic Pro language are declared using the CON keyword. A constant value
cannot be changed in a program.

In the following example, Maximis declared as 10 and its value cannot be changed in the program:

Maxim CON 10

4.2.3 Comments

Comments in PicBasic Pro are declared same as in the PicBasic language, i.e. using the REM
keyword or a single quote at the beginning of aline.

4.2.4 Multi-statement lines

Multi-statement lines are created asin PicBasic, i.e. by separating each statement with acolon “:”
character.

104 PIC BASC projects

4.2.5 INCLUDE

Other PicBasic Pro source files can be included in a program as in PicBasic language.

4.2.6 DEFINE

This command defines various compiler options, such as the clock oscillator frequency, pin num-
ber, etc.

4.2.7 Line extension

When writing long programs, it may be necessary to continue part of a statement on a new line.
A line can be extended by typing the line extension character “_" asthe last character in the line
to be continued. For example,

Iteml, Item2, Item3, Item4, _
Item 5, Item6

4.2.8 Accessing ports and other registers in PicBasic Pro

PIC microcontroller ports or any other registers can easily be accessed by simply writing the
name of the port or the register and using equate “ =" character. For example,

A = PORTA

UP = PORTB & $F0
PORTB = $2F
INTCON = $0F

The bitsof aport or aregister can be accessed by simply writing the name of the port or theregis-
ter, followed by adot “.” character and the PORTBIt to be accessed. For example,

L = PORTB.1 ‘ Read bit 1 of PORTB and load into L
L = PORTB.BIT1 * Read hit 1 of PORTB and load into L
K = STATUS.0 ‘ Read bit 0 of STATUS register and load into K

In most of the PicBasic I/O commands, Pin is used to define a pin of PORTB where Pin can take
avalue from 0 to 7 corresponding to PORTB pins. In a similar manner, PicBasic allows the use
of numbers 0 to 15 to access port 1/0 pins. When only a number is used to access a port pin, the
port and the pin number accessed depends on the package size of the microcontroller used. Table 4.8
shows the Pin definitions for 8 to 40 pin PIC microcontrollers.

For example, assuming we are using an 18-pin PIC microcontroller, the PicBasic command

SOUND 3, 10,100

PicBasic and PicBasic Pro programming 105

generates a sound with note 10 and duration 100 ms from bit 3 of PORTB (i.e. RB3). In PicBasic
Pro, we can use the same statement, or we can write

SOUND PORTB.3, 10, 100

If we wish to generate the sound from bit 0 of PORTA, in PicBasic Pro we can write
SOUND PORTA.O, 10, 100

or
SOUND 8§, 10, 100

Thereis no way of generating a sound from PORTA using the PicBasic language.

Table4.8 Port 1/O Pin definitions

PIC micro Size Pin 0-7 Pin 8-15
8 pin GPIO -

18 pin PORTB PORTA
24 pin (except 14,000) PORTB PORTC
28 pin PORTC PORTD
40 pin PORTB PORTC

The direction of a port is determined by loading the corresponding TRIS register. For an output
pin, a0 isloaded into the corresponding TRIS register, and for an input pin a1l isloaded into the
corresponding TRIS register. In PicBasic Pro, the TRIS register can be accessed directly like any
other register. For example, to configure all PORTB pins as outputs and then send the hexadeci-
mal value $FF to PORTB we can write

TRISB =0
PORTB = $FF

4.2.9 Arithmetic operators

PicBasic Pro supports more arithmetic operators than PicBasic. Table 4.9 lists al the arithmetic
operators supported by PicBasic Pro. In this section, we shall be looking only at these additional
operators.

Shift

The shift operators “ <<” and “>>" are used to shift avalue left or right, respectively, 0 to 15
times. Zeroes are placed to the shifted positions. Shifting left is same as multiplying the number
by 2, and shifting right is same as dividing the number by 2.

106 PIC BASC projects

Table4.9 PicBasic Pro arithmetic operators

Arithmetic Operator Description

+ —*/ Add, subtract, multiply, divide
*x Top 16 bits of multiplication

*/ Middle 16 bits of multiplication
1 Remainder

<< >> Shift left, shift right

ABS Absolute value

Ccos Cosine

DCD Decode

DIG Digit

MAX MIN Maximum, minimum

NCD Encode

REV Reverse bits

SIN Sine

SOR Square root

& | N~ Bitwise AND, OR, EXOR, NOT
&I N Bitwise NAND, NOR, INOR

In the following first example, variable Cnt is shifted left twice. In the second example, variable
Sumis shifted right 3 times.

Cnt=cnt<<2 * Shift left Cnt by 2 places
Sum = Sum >>3 ‘ Shift right Sumby 3 places

ABS

Operator ABS returns the absolute value of a number. In the following example, the absolute
value of variable p isreturned:

p=ABSp * Return the absolute value

COSs

Returns the cosine of a number. The result is in 2's complement format in the range —127
to +127. The number must be in radians in the range 0 to 255. In the following example, the
cosine of 8 radiansis returned:

Angle = COS 8 * Return the cosine of 8

PicBasic and PicBasic Pro programming 107

DCD

This operator is used to set abit of abyte or aword to 1. All other bits are set to 0. For example,
to set bit 4 of abyte we can write

B4 =DCD 4 * Set bit 4 of variable B4
Where variable B4 will take the binary value %00010000

DIG

This operator returns a digit of a number. The number can be up to 4 digits with the rightmost
digit being digit 0. For example, if variable Sumis equal to 678, the first digit (number 7) can be
extracted as

Sum = 678 ‘Sum = 678
P=SumDIG1 ‘P=7
NCD

The NCD operator is used to find the highest bit number set in a number. The bit numbers can
range from 1 to 16. A zero is returned if no bit is set. In the following example, variable P = 6
since the highest bit set in the number is the sixth bit (starting from 1).

P = NCD %00101011 ‘ Highest bit setis6

SIN

This operator is similar to the COS operator and it returns the sine of a number. The number must
be expressed in radians and it must be between 0 and 255. For example, to find the sine of 10 radi-
ans, use

P = SIN 10

SQR

This operator returns the square root of a number. The result is an integer number. For example,
to find the square root of variable Total, use

N = SQR Total * Find sguare root of Total

4.2.10 PicBasic Pro commands

PicBasic Pro has over 80 commands. Some commands are similar to the PicBasic commands with
minor changes. For example, the range of the Pin variableisfrom O to 15, instead of 0to 7. It isthe
author's recommendation that you use the port name, followed by adot and the bit number when you
wish to access a port pin. This makes your programs much more readable and easier to maintain.

In this section, we shall only look at the commonly used commands which are specific to the
PicBasic Pro language. Further information about these or any other commands can be obtained
from the PicBasic Pro user manual.

108 PIC BASC projects

ADCIN
ADCIN Channel, Var

This command is used to read the on-chip A/D converter. Thisis not a very useful command and
we shall seein the projects section how to read datafrom the A/D channel of aPIC microcontroller.

BRANCHL
BRANCHL Index, (Label, Labd,.....)

The BRANCH command used in the PicBasic language causes alimited range of branch (usualy
1K). The BRANCHL command can be used to create longer jumps in the program memory. The
BRANCHL command is slower than the BRANCH command and generates more assembly code.

CLEAR

CLEAR
This command clears (zeroes) al the RAM registersin each bank.
CLEARWDT

CLEARWDT

If the watchdog timer is enabled, it can time out and reset the program to the beginning (address 0).
The CLEARWDT command is used to reset the watchdog timer so that it does not time out.

COUNT
COUNT Pin, Period, Var

This command is used to count the number of pulses that occur on Pin during the Period and
stores the result in Var. Pin can take values 0 to 15 but the “ Porthame.number” format is recom-
mended (e.g. PORTB.0).

The highest frequency that can be counted with a 4 MHz crystal clock is 25kHz, and 125kHz
when a20MHz clock isused. In the following example, the number of pulses on bit 0 of PORTB
are counted in 100ms and stored in variable Cnt:

COUNT PORTB.0, 100, Cnt
DATA
DATA @Location, Constant, Constant,....

This command stores constants in the on-chip EEPROM memory during the programming of the
device (not when the program is run). The command can only be used with the PIC microcon-
trollers that have on-chip EEPROMSs. Location denotes the starting address of the EEPROM and
if omitted, address O is assumed.

The following example shows how the numbers 5, 10, 15, and 20 can be stored in EEPROM starting
from address 6:

DATA @6, 5, 10, 15, 20

PicBasic and PicBasic Pro programming 109

DTMFOUT
DTMFOUT Pin, Onms, Offms, [Tone, Tone,.....]

This command produces Touch Tones normally available in keyboards and mobile phones. Pin can
take avalue between 0 and 15 (or Portname.number) and the specified pin is made an output. Onms
isthe duration of each tonein milliseconds, and Offmsisthe number of milliseconds pause between
each tone. If the Onms or the Offms are not specified, they default to 200 ms and 50 ms, respectively.

A Tone can take a value between 0 and 15. Tones 0 to 9 are the same as on a telephone keypad.
Tone 10 isthe * key, Tone 11 is the # key, and Tones 12-15 are the extended keys A to D. The
sound generated by the DTMFOUT should be smoothed using resistor—capacitor filters. It isrec-
ommended to use a high clock rate (e.g. 20MHz) to get a smooth signal after the filtering.

In the following example, the DTMF tones for numbers 886 are sent from bit 0 of PORTB with
the default duration and pause:

DTMFOUT PORTB.0, [8, 8, 6]
FREQOUT
FREQOUT Pin, Onms, Frequencyl, [,Frequency?2]

Thiscommand generates asignal with one or two different frequencies on the specified Pin for Onms
milliseconds. Pin is automatically made an output and it can be 0 to 15 or a Porthame.number. The
generated signal is asquare wave and filtering may be required to obtain a smooth signal.

In the following example, a 1kHz signal is generated on port 0 of PORTB for 3 s:
FREQOUT PORTB.0, 3000, 1000

HPWM
HPWM Channel, Dutycycle, Frequency

Some PIC microcontrollers have one or more built-in circuits to generate pul se width—modul ated
square-wave signals (PWM). For example, PIC16F877 has two PWM Channels. Channel 1 is
known as CCP1 (also PORTC.2) and Channel 2 isknown as CCP2 (also PORTC.1).

Dutycycle can vary from 0 to 255 which corresponds to 0% (low &l the time) to 100% (high all
the time), respectively. A value of 127 gives 50% duty cycle. The highest Frequency is 32,767 Hz,
and on microcontrollers with two channels, the Frequency must be the same on both channels.

The PWM signal is output from the specified pin continuously in the background while the pro-
gram executes other instructions.

In the following example, a 1kHz, 50% duty cycle PWM signa is generated from Channel 1
(CCP1) of a PIC16F877 type microcontroller:

HPWM 1, 127, 1000

110 PIC BASC projects

HSERIN
HSERIN2

These commands are only available on microcontrollersthat have built-in serial port devices such
as an USART. The use of these commands is complicated and more details can be obtained from
the PicBasic Pro user manual.

HSEROUT
HSEROUT2

These commands are only used on microcontrollers that have built-in serial port devices such as
an USART. The commands are used to send out serial asynchronous data from the microcon-
troller with the required format. The use of these commands is complicated and more details can
be obtained from the PicBasic Pro user manual.

IF.THEN..ELSE

These commands are similar to the PicBasic IF.THEN command but the PicBasic Pro language
provides more flexibility when one or more comparisons are made. These commands can be used
in the following formats:

Format 1:
IF Comparison [AND/OR Comparison...] THEN Label
Format 2:
IF Comparison [AND/OR Comparison...] THEN Statement.....
Format 3:
IF Comparison [AND/OR Comparison...] THEN
Statement....
ELSE
Statement
ENDIF

Some examples for the use of this command are given below:

Conditional statement:
IFPORTB.0=0THEN Led =1

Conditional jump:
IF (PORTB.0O = 0) AND (PORTB.1 = 1) THEN Loop

Multiple statements:
IFCnt<10THENA=A+1B=B+1

Multiple statements:
IF SUM < 10 THEN
Cnt=Cnt+ 1
Tot =Tot + 1
ENDIF

PicBasic and PicBasic Pro programming 111

IF.THEN..ELSE
IF Total = 100 THEN
Flag=1
ELSE
Flag=10
ENDIF
PAUSEUS
PAUSEUS Period

Thiscommand pauses the program for Period microseconds. Period isaword in therange 1 to 65,535.
Thus, the maximum delay is 65.535ms. PAUSEUS command assumes that we are using a 4MHz
clock. The minimum delay that can be generated with PAUSEUS using a4 MHz clock is24 ps.

REPEAT..UNTIL

REPEAT
Satement...
UNTIL Condition

This command is used to create loops in programs. The statements between the REPEAT and
UNTIL are executed until the specified Condition istrue.

In the following example, the statements between REPEAT and UNTIL are executed 10 times:

k=0

REPEAT
Sum = Sum + 1
Cnt = Sum
k=k+1

UNTIL k < 10

SELECT..CASE

SELECT CASE Var
CASE Exprl[,Expr...]
Satement...
CASE Expr2 [,Expr...]
Satement...
[CASEELSE
Satement..]
END SELECT

This command is used instead of using multiple IE.THEN commands. The variable Var is com-
pared with different values (or ranges of values) and an action is taken based on its value. If Var
does not match any of the conditions, then the statements after the CASE EL SE are executed. The
IS keyword is used after CASE to specify a comparison other than equal to.

112 PIC BASC projects

In the following example, if xis1, B isset to 100. If x is2, Bissetto 6. If xis3 or 4, Bisset to
50. If x is greater than 120, B isset to 1. If x is none of these, then B isset to 0.

SELECT CASE X
CASE1
B =100
CASE 2
B=6
CASE 3, 4
B =50
CASE IS > 120
B=1
CASEELSE
B=0
END SELECT
SHIFTIN

SHIFTIN Datapin, Clockpin, Mode, [Var{\bits}, Var{\bits},..]

The SHIFTIN command is used to read data one bit at atime as clock is sent out to the sending
device. The received datais stored in variables Var. Datapin is either from 0 to 15 or a Portname.
number and specifies the pin number which is to receive the data. \bits optionally specify the
number of bitsto shift in and if omitted, 8 bits are assumed. Clockpiniseither Oto 15 or aportname.
number and specifies the pin number where the clock is sent out. Mode has a val ue between 0 and
7 and it specifies the mode of the clock operation as shown in Table 4.10. For Modes between 0 and 3,
the clock output isnormally low and goes high to clock in abit, then returnslow. For Modes between
4 and 7, the clock output is normally high and goes low to clock in a bit, then returns high.

Table4.10 SHIFTIN command clock Modes

Mode No. Operation

0 Shift in MSB first. Read before sending clock. Clock normally low
Shift in LSB first. Read before sending clock. Clock normally low
Shift in MSB first. Read after sending clock. Clock normally low
Shift in LSB first. Read after sending clock. Clock normally low
Shift in MSB first. Read before sending clock. Clock normally high
Shift in LSB first. Read before sending clock. Clock normally high
Shift in MSB first. Read after sending clock. Clock normally high
Shift in LSB first. Read after sending clock. Clock normally high

N[O~ [W|IN|F

In the following example, data bits are received into bit 0 of PORTB and stored, L SB firgt, followed
by 8 data bitsin variable B1. Mode O is used here and the clock is sent out from bit 1 of PORTB.

SHIFTIN PORTB.O, PORTB.1, 0, [B1\8]

PicBasic and PicBasic Pro programming 113

SHIFTOUT
SHIFTOUT Datapin, Clockpin, Mode, [Var{\bits}, Var{\bits},..]

This command is similar to SHIFTIN, but here, data bits are sent out one bit at atime. Datapin
can be 0 to 15 or a Portname.number . \bits optionally specify the number of bitsto be shifted out
and if omitted, 8 bits are assumed. Mode specifies which bit will be sent out first. If Mode is 0,
the LSB is sent out first followed by other data bits. If Mode is 1, the MSB is sent out first fol-
lowed by other data bits.

In the following example, the contents of variable B1 are sent out as 8 bits, LSB first, from bit 0
of PORTB. Bit 1 of PORTB is used as the clock pin.

SHIFTOUT PORTB.0, PORTB.1, 0, B1

SWAP
SWAP Var, Var

This command is used to swap the contents of two variables. It can be used with bit, byte, and
word variables.

In the following examples, values of variables B1 and B2 are exchanged:

SWAPB1, B2

WHILE.WEND

WHILE condition
Satement...
WEND

This is another command used to create loops in programs. The statements between the WHILE
and WEND are repeated while the Condition is true.

In the following example, the statements between WHILE and WEND are repeated 10 times:

k=0
WHILEK < 10
Sum = Sum + 1
BO=B0O+ 2
k=k+1
WEND

4.3 Liquid crystal display (LCD) interface and commands

In many microcontroller-based applications, it is required to display a message or the value of a
variable. For example, in atemperature-control application, it may be required to display the value

114 PIC BASC projects

of the temperature dynamically. Basically, three types of displays can be used in practise. These
are video displays, 7-segment LED displays, and LCD displays. Standard video displays require
complex interfaces and their cost is relatively high and their operation is not covered in this book.
7-segment LED displays are made up of LEDs. Although the 7-segment LEDs are bright, their dis-
advantage is the high power consumption which makes them unsuitable in many battery-operated
portable applications. We will see the operation of these devicesin Chapter 5.

L CDs are a phanumeric displays which are frequently used in microcontroller-based applications.
Some of the advantages of LCDs are their low cost and low power consumption. LCDs are ideal
in low-power, battery-operated portable applications. These displays come in different shapes and
sizes. Some LCDs have 40 or more characters with several rows. Some more advanced L CDs can
be programmed to display graphicsimages. Some modules, such asthe ones used in games, offer
colour displays while some others may incorporate back lighting so that they can be viewed in
dimly lit conditions. In this section, we shall be looking at how we can interface the standard
LCDsto a PIC microcontroller and what commands are available to use the LCDs.

There are basically two types of LCDs as far as the interface technique is concerned: parallel
LCDsand serial LCDs. Parallel LCDs are connected to the microcontroller I/O portsusing 4 or 8
data wires and data is transferred from the microcontroller to the LCD in paralel form. Seria
L CDs are connected to the microcontroller using only one data line and data is transferred to the
LCD using the standard RS232 asynchronous data communication protocols. Serial LCDs are
easier to use but they usually cost more than the parallel ones. Serial LCDs also have the advan-
tage that only onewireisrequired to interface them to amicrocontroller, thus saving the I/O pins.
In this section, we shall be looking at the interface and programming of both types of LCDs.

4.3.1 Parallel LCDs

Figure 4.8 shows atypical paralel LCD. The programming of a parallel LCD is usually a complex
task and requires a good understanding of the internal operation of the LCDs, including the timing
requirements. Fortunately, the PicBasic Pro language provides special commands for displaying
data on HD44780 or compatible LCDs. All the user hasto do is connect the LCD to the appropri-
ate 1/O ports and then use these specia commands to simply send data to the LCD. The standard

Figure4.8 A typica parallel LCD

PicBasic and PicBasic Pro programming 115

PicBasic language does not provide any special commands for programming the parallel LCDs
and the programming of LCDs using the PicBasic language is described in the projects section
(Chapter 5) of this book.

HD44780 LCD module

HD44780 is one of the most popular LCD modules used in theindustry and also by hobbyists. This
moduleis monochrome and comesin different shapes and sizes. Modules with line lengths of 8, 16,
20, 24, 32, and 40 characters can be selected. Depending on the model chosen, 1, 2, or 4 display
rows can be selected. The display has a 14-pin connector for interfacing to a microcontroller. Table
4.11 shows the pin configuration of the LCD. A description of the pin functionsis given bel ow.

® VistheOV or ground. Vpp pin should be connected to the positive supply. Although the manu-
facturers specify a5V supply, the module can be operated with aslow as 3V or ashigh as6V.

® Pin3isnamed asVge and thisisthe contrast control pin. Thispinis used to adjust the contrast of
the LCD and it should be connected to a variable voltage supply. A potentiometer is usually con-
nected between the power supply lines with its wiper arm connected to this pin so that the con-
trast can be adjusted. This pin can be connected to ground if contrast adjustment is not needed.

® Pin4isthe Register Select (RS) and when thispinis LOW, datatransferred to thedisplay istreated
as commands. When RS is HIGH, character data can be transferred to and from the module.

® Pin5istheread/write (R/W) pin. Thispinis pulled LOW in order to write commands or character
data to the LCD module. When this pin is HIGH, character data or status information cannot be
read from the module. Thispin isusually connected to ground, i.e. the LCD is put into write mode.

® Pin 6isthe Enable (E) pin which isused to initiate the transfer of commands or data between the
L CD module and the microcontroller. When writing to the display, dataistransferred only on the

Table4.11 Pin configuration of HD44780 LCD

Pin No Name Function
1 Vgg Ground
2 Vop Positive supply
3 Vee Contrast
4 RS Register select
5 R/W Read/write
6 E Enable
7 DO Datahit O
8 D1 Datahit 1
9 D2 Data bit 2
10 D3 Databit 3
11 D4 Databit 4
12 D5 Databit 5
13 D6 Databit 6
14 D7 Databit 7

116 PIC BASIC projects

HIGH to LOW transition of this pin. When reading from the display, data becomes available after
the LOW to HIGH transition of the enable pin and this data remains valid as long as the enable
pinis HIGH.
® Pins7to 14 are the eight data bus lines (DO to D7). Data can be transferred between the micro-
controller and the LCD moduleusing either an 8-bit interface, or a4-bit interface. Inthelatter case,
only the upper four datalines (D4 to D7) are used and the datais transferred as two 4-bit nibbles.
This mode has the advantage that fewer 1/0O lines are required to communicate with the LCD.

Connecting the LCD to the microcontroller

PicBasic Pro compiler by default assumesthat the LCD is connected to specific pins of the micro-
controller unless told otherwise. It assumes the following connections:

LCD

D4
D5
D6
D7
E

RS

Microcontroller

RAO
RA1
RA2
RA3
RB3
RA4

Figure 4.9 shows the circuit diagram with the default connections between the LCD and the
microcontroller. In addition to the above connections, the R/W pin of the LCD isnot used and is
connected to the ground. The contrast adjustment is done by connecting a potentiometer to V ge.
Notice that port pin RA4 is connected to +5V supply with aresistor. This is because this pin is
open-drain output and should be pulled HIGH with aresistor.

Figure4.9

+5V
| [l[]jK
VDD
20K MCLR
2 3 = 10K
VDD VEE |,
RS RA4
E ‘131 RB3
D4 rao PIC
HD D5 RA1
13
44080 e ” RA2
D7 RA3
0SC1

Vss _—I_

0SC2 | =

.
R

—

L c2

Default LCD connections to a PIC microcontroller

PicBasic and PicBasic Pro programming 117

When the above connections are made between the microcontroller and the LCD, we can simply
use the LCDOUT command to send data to the LCD module. Note that the connections between
the microcontroller and the LCD can be changed using a set of DEFINE commands to assign the
LCD pinsto the PIC microcontroller.

In the following example, PORTB pins 0 to 4 are used for LCD data (i.e. RBO connected to D4,
RB5 connected to D5, etc.), bit 4 of PORTB is connected to the RS pin of the LCD, bit 5 of PORTB
is connected to the E pin of the LCD, the LCD is set for 4-bits of operation, and the LCD is
assumed to have two rows.

DEFINE LCD_DREG PORTB * Set LCD dataport to PORTB

DEFINE LCD_DBIT 0 * Set data starting bit to O
DEFINELCD_RSREG PORTB ‘ Set RSregister port to PORTB
DEFINE LCD_RSBIT 4 * Set RS register bit to 4
DEFINE LCD_EREG PORTB * Set E register port

DEFINE LCD_EBIT 5 * Set E register bitto 5
DEFINELCD_BITS 4 * Set 4 bit operation

DEFINE LCD_LINES 2 * Set number of LCD rows

The format of the LCDOUT command is
LCDOUT Item, Item,......

where Item can be a command or data. A command is used to clear the display, home the cursor,
move the cursor to left or right, etc. It isimportant that a program should wait for at least half a
second before sending the first command to the LCD. This is because it can take quite a while
before the LCD initializes itself.

Table 4.12 gives alist of the available commands. All commands must be preceded by the hexa-
decimal number $FE. For example, to clear the display we have to issue the command

LCDOUT $FE, 1

Similarly, to move the cursor left by one position we have to issue the command
LCDOUT $FE, $10

Also, to move the cursor to the 5th position in the first row, we have to use the command
LCDOUT $FE, $80 + 5

Datais sent to the LCD using the LCDOUT command. The character set of the LCD isgivenin
Table 4.13. A string can be sent to the LD by enclosing it in double-quotes. For example, the fol-
lowing command displays the string HELL O at the current cursor position:

LCDOUT “HELLO”

118 PIC BASC projects

Table4.12 LCD commands

Command Operation

$FE, 1 Clear display

$FE, 2 Home cursor

$FE, $0C Cursor off

$FE, $0E Underline cursor on

$FE, $0F Blinking cursor on

$FE, $10 Move cursor |eft by one position

$FE, $14 Move cursor right by one position

$FE, $80 Move cursor to the beginning of first row
$FE, $CO Move cursor to the beginning of second row
$FE, $94 Move cursor to the beginning of third row
$FE, $D4 Move cursor to the beginning of fourth row

If ahash sign (#) precedes avariable (or if the characters DEC precede a variable), the ASCII repre-
sentation for each digit is sent to the LCD. For example, if thevariable B1 = 208, then the command

LCDOUT #B1
or
LCDOUT DECB1

displays the characters“2”, “0”, and “8” on the LCD.

If character BIN precedes a variable, the ASCII representation of its binary value is sent to the
LCD. For example, if the variable B1 = 9, then the command

LCDOUT BIN B1

displays the characters“1001” on the LCD.

A numeric value preceded by HEX will send the ASCII representation of its hexadecimal value
to the LCD. For example, if BO = 255, then the command

LCDOUT HEX BO
will display “FF’ on the LCD.

It is also possible to send repeated characters to the LCD. In the following example, the charac-
ters“AAAAA” are sent to the LCD:

LCDOUT REP“A"\5

PicBasic and PicBasic Pro programming 119

Table4.13 LCD character table

o %] | B[P P mEIER=
ot [@ | 1 |1 H[A] 2] o | PIF|GAH
el ["ZERBF AR B
weot| 0| ||] S]E]E 1 [RTES e
woom| 0| TG0 Tt - | Ik PR
woe0io | © :':EELIE'LJ --7'|'.'-|'.1|5L.|
o] ERFUFN . FHoFaE
ot | @ | |7 PG WD ?*F_:'gl'[
womn| 0| | € [BH[A] A A=
oo 0| | MS[IN[1]F] | [T ML
LI HRIEEIF Ijl"ll-"_]:l".
w0 | |3 KL K4 AW EO* |R”
seroo| © | | |4 L[]] #2374 /A
e 101 | @) _=r'1]|'"|} J.:E'-"':.r'*.+
woud 110 | @) .}H'ﬁ'l"l':" E.ElTll"-l':l

e 111 | @) f-?l:l_l:l'i' 'U"JEIUE'[

Example 4.1

A 2-row paralel LCD is connected to a PIC microcontroller as shown in Figure 4.9. Write a
PicBasic Pro program to display the string “PIC ROW 1" and “PIC ROW 2" in row 1 and row 2
of the LCD, respectively.

120 PIC BASC projects

Solution 4.1
Therequired programis

PAUSE 1000 * Wait 1 second for initialization
LCDOUT $FE ,1 ‘ Clear the LCD

LCDOUT “PICROW 1" *‘ Display messagein row 2
LCDOUT $FE, $CO Move cursor to row 2
LCDOUT “PICROW 2" * Display message in row 2

4.3.2 Serial LCDs

A serial LCD isconnected to amicrocontroller using only one dataline. Both PicBasic and PicBasic
Pro languages can be used to send data to serial LCDs using the SEROUT command.

A popular serial LCD isthe ILM-216 (see Figure 4.10). Thisis a 16-pin, 2-row by 16-character
LCD manufactured by Scott Edwards Electronics Inc. The device can operate with a baud rate of
2400 or 9600. In addition to the normal display functions, inputs for four push-button switches
and also an output to drive a buzzer are included on the LCD module. The module incorporates
an EEPROM memory and a backlight which are programmable.

Figure4.10 [LM-216 serial LCD

Table 4.14 shows the pin configuration of this LCD. Pins 1 and 2 are the ground and the +5V
supply connections, respectively. Pin 3 is the serial input pin. Either RS232 voltage levels or
standard TTL level signals can be connected to this pin. Similarly, pin 4 is the serial output pin

PicBasic and PicBasic Pro programming 121

and TTL logic levels (inverted) can be connected to this pin. Pin 5 is the buzzer out pin where a
small buzzer (up to 25mA) can be connected to this pin and the buzzer can be controlled with the
software. Pins 6 to 8 are the option pins. Pin 7 is used to configure the device. Pin 8 is used to
select a baud rate and when this pin is connected to pin 6, the device operates at 9600 baud.
Leaving pin 8 unconnected configures the device to operate at 2400 baud. Pins 9 to 16 are four
push-button switch inputs. The state of these pins can be read from the software.

Table4.14 Pin configuration of ILM-216

Pin No Function
1 Ground
2 +5V
3 Serial in
4 Seria out
5 Bell
6 Ground
7 Config/test
8 9600 baud
9 Switch 1
10 Switch 1 ground
11 Switch 2
12 Switch 2 ground
13 Switch 3
14 Switch 3 ground
15 Switch 4
16 Switch 4 ground

The ILM-216 can be connected to a microcontroller using the following minimum pins:

Pinl ground
Pin2 +5V supply
Pin3 tomicrocontroller serial output

Pin4 tomicrocontroller serial input (if it isrequired to read the state
of push-button switches on the LCD module)

The default factory configuration of the ILM-216 is 2400 baud, 8 data bits, no parity, and 1 stop
bit. Table 4.15 gives alist of the control codes of ILM-216. These codes are summarized below:

Null: These characters are ignored by the LCD

122 PIC BASC projects

Table4.15 ILM-216 LCD control codes
Function ASCII Code
Null 0
Cursor home 1
Hide cursor 4
Show underline cursor 5
Show blinking cursor 6
Bell 7
Backspace 8
Horizontal tab 9
Smart line feed 10
Vertical tab 11
Clear screen 12
Carriage return 13
Backlight on 14
Backlight off 15
Cursor position 16
Format right-aligned text 18
Escape codes 27

Cursor home: Moves the cursor to the first character position of the first row

Hide cursor: Hides the cursor so that it is not visible

Show underlined cursor: Shows a non-blinking underlined cursor at the current position

Show blinking cursor: Shows ablinking cursor at the current position

Bell: sends pulses to a buzzer connected to pin 5 of the LCD

Backspace: Moves the cursor back by one space and erases the character in that position

Smart linefeed: Moves the cursor down by one line

Vertical tab: Moves the cursor up by oneline

Clear screen: Clearsthe LCD screen

Carriagereturn: Movesthe cursor to the first position on the next row

PicBasic and PicBasic Pro programming 123

Backlight on: Turns on the LED backlight
Backlight off: Turns off the LED backlight

Position cursor: Accepts a number from 0 to 31 and moves the cursor to that position where 0
is the first character of the first row and 31 is the last character of the second row. Number 64
should be added to the required cursor position in order to get the actual displayed cursor posi-
tion. For example, position 80 corresponds to the first character position in the second row
(64 + 16 = 80).

Right align text: Accepts anumber from 2 to 9 representing the width of an areaon the screenin
which right-aligned text is to be displayed.

Escape sequences: Escape codes enable the user to define a custom character, to transfer data
from the EEPROM, and to read the state of the four push-button switch positions on the LCD
module.

Example 4.2

AnILM-216 model serial LCD isconnected to bit 0 of PORTB of aPIC microcontroller as shown
in Figure 4.11. Write a PicBasic Pro program to clear the LCD screen and then to display the
string “PIC LCD” inrow 1 of the LCD. Wait 1 sfor the initialization of the LCD.

+5V
47K
VDD 2
MCLR
RBO 3 ILM-216
Serial LCD
1
RB3 1
rao PIC
RA1
RA2

RA3 VSS_J

0OSC1 08C2 | =

cpP“:l 1 ¢
ZZpI 4MHz IZZpF

Figure4.11 Connecting ILM-216 model LCD to a PIC microcontroller

124 PIC BASC projects

Solution 4.2

Therequired program is given below. The PicBasic command SEROUT isused to send datato the
serial LCD.

PAUSE 1000 ‘Wait 1 sfor initialization
SEROUT PORTB.0, N2400 (12, “PIC LCD")

4.4 Interrupts

Interrupts are very useful in many microcontroller applications. An interrupt, as the name sug-
gests, interrupts the normal execution of a program and jumps to a designated address in the pro-
gram memory called the Interrupt Service Routine (ISR) where a short program is executed. At
the end of this program, control is returned to the main program and execution continues from the
point it was interrupted.

Interrupts are asynchronous events and it is not known when they may occur. There are basically
two types of interrupts: external interrupts and internal interrupts. External interrupts may occur
when an external event occurs. For example, when an external signal changes its state. Internal
interrupts are usually in the form of timer interrupts and an interrupt may be generated when the
timer overflows.

When an interrupt occurs, the PIC microcontroller saves the address of the next instruction on
stack and jumps to the ISR which is at address 4 of the program memory. When interrupts are
expected from multiple sources, the program should check at the beginning of the ISR to deter-
mine the actual source of the interrupt.

PicBasic Pro allows the use of interrupts in programs. The command
ON INTERRUPT GOTO Label

declares Label as the starting point of the ISR. Further interrupts should be disabled by the
DISABLE command just before entering the I1SR. Also, further interrupts should be enabled by
the ENABLE command after the end of the ISR. The last statement in the ISR should be the
RESUME statement which terminates the ISR and returns to the main program.

The structure of the main program and the ISR are as follows:

Main program

ON INTERRUPT GOTO Mylabel

PicBasic and PicBasic Pro programming 125

Interrupt Service Routine

DISABLE
Mylabel:

RESUME
ENABLE

The use of external and timer interrupts will be discussed further with examples in the projects
section of this book.

45 Recommended PicBasic Pro program structure

A PicBasic Pro program can be written in many different formats. The author recommends that
you use a template similar to the one given in Figure 4.12 when developing PicBasic Pro pro-
grams. Asyou can seein thisfigure, the header includes abrief description of the program includ-
ing the author name, the date, and filename of the program. Comments are used in every line of
the program to clarify the actions of the program.

b hkkkhkkhhkhhhhhkhhhhhhhhkkhhkhhhhhkkhhhhhhhhkhhhkhhkhhhkhhhhhkhhkhhkhhhkkhhkkhhhkhkkhhkkdkhkhkxx*x
‘

‘ LED FLASHING PROGRAM

* This program flashes and LED connected to port RBO of PORTB.
‘ The Led isflashed with 1 second intervals.

* Author: Dogan Ibrahim

‘ Date: September, 2005
‘File LED.PBP

‘ Modifications

b hkkkhkkhhkkhhhhhkhhhkkhhhhhkkhhkhhkhhhkkhhhkhhhhhkhhhkhhhhhkhhhhhkhhkhhkhhkkhhkkhhhkhkkhhkkdkhkhkx*x*x

Figure4.12 (Continued)

126 PIC BASC projects

‘ DEFINITIONS

LED VAR PORTB.O ‘ DefineRBO asLED

* START OF MAIN PROGRAM

TRISB=0 * Set PORT B pins as outputs
AGAIN:

LED=1 * Turn ON LED

PAUSE 1000 ‘ Wait 1 second

LED=0 ‘ Turn OFF LED

PAUSE 1000 ‘ Wait 1 second

GOTOAGAIN ‘ Repeat

END ‘ End of program

Figure4.12 Recommended PicBasic Pro program template

4.6 Using stepping motors

Stepping motors are widely used in many microcontroller-based projects where motion isrequired.
This section describes the basic operation of these motors and also shows how they can be used
in microcontroller-based projects with PicBasic and PicBasic Pro languages.

Stepping motors are electro-mechanical devices that convert electrical pulses into discrete
mechanical movements. A conventional motor has a free running shaft and rotates continuously
as long as power is applied to the motor. The shaft of a stepping motor rotates in discrete steps
when electrical pulsesare applied to it in the correct sequence. The speed of therotation isrelated
to the time between the input pulses and the length of rotation is directly related to the number of
pulses applied. Basically, the motor rotates by an angle defined as the “ stepping angle” each time
apulseisapplied to the motor. For example, if the stepping angle of a stepping motor is specified
as 10°, then each time a pulse is applied the motor will rotate by an angle of 10° and 36 pulses
will be required to make a complete 360° rotation.

Stepping motors have the following advantages over the conventional motors:

® Motor shaft position can be controlled very accurately using pulses and in open-loop mode.
® Stepping motors can be operated at very low speeds.

PicBasic and PicBasic Pro programming 127

® Stepping motors are very reliable since there are no brushes and, as aresult, these motors have
very long operational lives.

® Stepping motors have full torque at standstill.

® The speed of stepping motors can be controlled easily and accurately.

There are basically two types of stepping motors: unipolar and bipolar. Unipolar motors are easy
to control where two windings with common points are used, and a simple 1-of-n counter circuit
can be used to generate the required stepping sequence. A driver transistor can be used for each
winding. One of the most commonly used drive methods is 1 phase full step, also known as the
“wave drive”, where the motor windings are energised one at atime as shown in Table 4.16. The
motor can be driven by using a MOSFET power transistor for each coil winding, as shown in
Figure 4.13. Unipolar motors can also be driven by using integrated circuits, such as the
UCN5804B. This chip operates with voltages between 6 and 30 V. It contains a CMOS | ogic sec-
tion for the sequencing logic and a high-voltage output section to directly drive a unipolar step-
ping motor. As shown in Figure 4.14, the motor is connected directly to the chip and the chip

Table4.16 One-phase full-step drive

Step A B C D
1 1 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1

[

7
—
] g

To stepping motor
[> R || =

pic

microcontrolier

Figure4.13 Driving aunipolar stepping motor

128 PIC BASIC projects

oY

Y
1;{ '—% Stepping motor

vED
4 i outi

Kbd

m VONSE4E outD
i outc

STEP

Kac
OutA

maimwmi_—‘

TTT T

Figure4.14 Controlling a unipolar motor using a UCN5804B

generates the correct sequence of signalsto drive the motor. The DIR input controls the direction
of rotation. The motor is rotated by one step each time a pulse is applied to the STEP inpuit.

Bipolar motors generally produce higher torques, but more complex circuits are required to con-
trol these motors. The control of bipolar stepping motors is beyond the scope of this book.

Figure 4.15 shows atypical small stepping motor.

Figure4.15 A typica stepping motor

4.7 Using servomotors

Servomotors are generally used in radio control toys, such as airplanes, boats, or robots. A servo-
motor consists of a DC motor with a series of gears attached to it. An interna potentiometer is
used with feedback to control the movement of the motor. Normally, the output shaft islimited to
180° of rotation, but it is possible to modify a servomotor so that continuous rotation is obtained.
In the projects section of this book, we shall be looking at the control of modified servomotors.

PicBasic and PicBasic Pro programming 129

A servomotor is controlled with pulse-width-modulated (PWM) signal. In a modified servo-
motor, a pulse with awidth of 2ms rotates the motor clockwise at full speed. Similarly, a pulse
with awidth of 1 ms rotates the motor anti-clockwise at full speed. Sending a pulse with awidth
of 1.5ms stops the motor.

A servomotor requires only three wires to operate: +V, ground, and the signal wire where the
pulseis applied.

Figure 4.16 shows atypical small servomotor.

Figure4.16 A typica servomotor

4.8 Exercises

=

What are the ranges of PicBasic variables bit, byte and word?

Explain how you can declare a 20-element byte array called scoresin PicBasic.

Explain how you can use commentsin PicBasic and PicBasic Pro programs. Why should we

use comments in our programs?

Why would you use Symbolsin a PicBasic program?

Explain the use of the command BRANCH by giving an example.

Give different ways in which you can make loopsin PicBasic Pro programs.

Explain how you can connect an LCD to a PIC microcontroller using the default settings.

Write a program to count from O to 100 repestedly with 1 sintervals and show your results

on aparalel LCD.

9. Explain the advantages and the disadvantages of parallel and serial LCDs.

10. WriteaPicBasic Pro program to display the text “RESULTS’ in row 1, column 5 of a paral-
lel LCD.

11. WriteaPicBasic Pro program to count from 0 to 100 in steps of 2 and show the output on the
second row of aparallel LCD.

12. Repeat question 11 using a serial LCD and PicBasic language.

13. Explain how you can use the DEFINE statements to change the interface between a PIC

microcontroller and an LCD.

w N

© N oA

130 PIC BASC projects

14. Give an example for the use of the SELECT..CASE command. Show how you can program
using the IF.THEN..EL SE command instead. Explain which one you would prefer.

15. Explainthe differences between the REPEAT..UNTIL and WHILE..WEND commands. Give
examples for each command.

16. Explain how aunipolar stepping motor can be controlled.

17. Explain how a modified servomotor can be controlled to rotate: (a) full speed clockwise,
(b) full speed anti-clockwise.

5
PicBasic and PicBasic Pro
projects

In previous chapters we have seen the characteristics of the PIC microcontrollers and how to pro-
gram these microcontrollers using the PicBasic and PicBasic Pro languages. In this chapter we
shall be looking at various PIC microcontroller-based projects. All the projects described here
have been constructed and tested using both the PicBasic and PicBasic Pro languages.

Each project has been described with the following sub-headings:

Project title: Title of the project

Project description: A brief description of the project.

Hardware: Hardware used in the project. This is mainly the circuit diagram of the
microcontroller and associated interface electronics used for the project.

Flow diagram: A flow diagram is given to describe the operation of the project.
Software: Listings of the microcontroller programs for both PicBasic and PicBasic
Pro languages.

Projectsin this chapter have been organised in increasing complexity. It is recommended that the
reader study the simple projects first before going to the more complex ones.

132 PIC BASC projects

Project 1

Project title:

Project description:

Hardware:

Simple flashing LED

An LED is connected to one of the port pins of a PIC microcontroller. The
LED isflashed continuously with 1-sinterval.

Thisproject isso simplethat any type of PIC microcontroller can be used.
As shown in Figure 5.1, a PIC16F84 type microcontroller is chosen for
this project. Bit 0 of PORTB (RBO) is connected to a small LED through
a current-limiting resistor. The voltage drop across an LED is approxi-
mately 2V. Assuming an LED current of 10mA, the value of the resistor
can be calculated as

the nearest value is 330().

3 +5V

9V T 0.33 pF 14|

Battery

—_ll_—

2 0.01 UF
T T Vdd
A
) _L 4.7K 4 RBO 6 330
- MCLR LED

Push to -
Reset E[I PIC
16F84
= Vss|2
OSC1 0OS8C2 __|_
15 16 -

Figure5.1 Circuit diagram of Project 1

Flow diagram:

The project has been constructed on abreadboard as shown in Figure 5.2.

The software consists of an indefinite loop where the LED is turned on
and off inside this loop. The flow diagram of the software is shown in
Figure 5.3.

PicBasic and PicBasic Pro projects 133

bkl 20 o

o

RN 1 pin, i1y B 4 FIL
A AR o TR RS

Figure5.2 Construction of Project 1

BEGIN

Set port directions

—

Turn on LED

!

Wait for 1 second

!

Turn off LED

!

Wait for 1 second

S

Figure5.3 Flow diagram of Project 1

Software: PicBasic
The software for PicBasic language is shown in Figure 5.4. At the begin-
ning of the program LED is defined as a symbol and is assigned to zero
(bit 0 of PORTB). Also, the port direction register TRISB and PORTB

134 PIC BASC projects

addresses are defined. The main program is an indefinite loop and starts
with label AGAIN. Inside the main program the LED is turned on using
the HIGH LED instruction. Then after a delay of 1s (PAUSE 1000) the
LED isturned off and this process is repeated forever.

ekkkkkhkkkkkkhkkhkkkhhkkhkkhkhkkhhkkhkkhhkkhkkhkhkhhkhkhkhhkkkdhkhkhkdhkxkkkkxkkx%

. LED FLASHING PROGRAM

« This program flashes an LED connected to port RBO of PORTB. The
* Led isflashed with 1 second intervals.

* Author: Dogan lbrahim
* Date: October, 2005
» Compiler: PicBasic

* File: LED1.BAS

* Modifications

ekkkkkhkkkkkkhkkhkkkhhkkhkkhkhkhhkkhkkhhkkhkkhkhkhhkhhkhhkkkdhkhkhkdhkxkkkkxkkx*k

« SYMBOLS

Symbol LED =0 e DefineRBO as LED
Symbol TRISB = $86 * TRISB address
Symbol PORTB = $06 * PORTB address

* START OF MAIN PROGRAM

POKETRISB, 0 « Set PORTB pins as outputs
AGAIN:

HIGH LED *Turn ON LED

PAUSE 1000 » Wait 1 second

LOW LED * Turn OFF LED

PAUSE 1000 » Wait 1 second

GOTOAGAIN * Repeat

END « End of program

Figure5.4 PicBasic program of Project 1

PicBasic and PicBasic Pro projects 135

PicBasic Pro

The software for PicBasic Pro language is shown in Figure 5.5. At the
beginning of the program LED is defined as bit 0 of PORTB (PORTB.0).
Port direction register TRISB is then cleared so that al PORTB pins are
outputs. Main program starts with label AGAIN where the port pin is
turned on and off with 1sintervals.

ek kkkkkkkkkhkkhkhkkhkkhkhkkkhhkkhkkhhkkhhkkhkkhhkkkhkkhkhkhhkkkhkhhkxdhkkkhkkhkxkx*x

. LED FLASHING PROGRAM

» This program flashes an LED connected to port RBO of PORTB. The
* LED isflashed with 1 second intervals.

* Author: Dogan Ibrahim
* Date: Octaber, 2005
e Compiler: PicBasic Pro

* File: LED2.BAS

* Modifications

ekkkkkhkkkhkkkkhkkhkhkkkhkkhkkkhhkkhkkhhkhhkhkhkkhhkkdhkhhkdhkhkdkhhkxdkhkkhkxdhkxkhkkx*k

* DEFINITIONS

LED VAR PORTB.O * Define RBO asLED

* START OF MAIN PROGRAM

TRISB=0 Set PORTB pins as outputs
AGAIN:

LED=1 e Turn ON LED

PAUSE 1000 » Wait 1 second

LED =0 * Turn OFF LED

PAUSE 1000 » Wait 1 second

GOTOAGAIN * Repeat

END « End of program

Figure5.5 PicBasic Pro program of Project 1

136 PIC BASC projects

Using a different microcontroller

In this project a PIC16F84-type microcontroller has been used. Recently, PIC16F627 has become
one of the popular low-cost PIC microcontrollers. Thisis an 18-pin microcontroller, pin compat-
ible with the PIC16F84, having 16 /O ports and built-in 4-MHz-clock oscillator. In this section
we shall be using the PIC16F627 to flash the LED.

Figure 5.6 shows the circuit diagram of the PIC16F627-based project. The LED is connected to
bit 0 of PORTB asin Figure 5.1 and the internal oscillator of the microcontroller is used.

v 7 .o
Battery | OSOHF 2 G{”“r i 1

t |
; %
! _L RBO & 330
MCLR =

Fush to
Reset

PIC
16F 627

Vss

Figure5.6 Circuit diagram of the PIC16F627-based project

Figure 5.7 shows the construction of the project on a breadboard. Notice that there are no timing
components in this circuit.

Figure5.7 Construction of the project on a breadboard

PicBasic and PicBasic Pro projects 137

PicBasic and PicBasic Pro programs of the project are same as in Figures 5.4 and 5.5, respect-
ively. The internal 4-MHz-clock oscillator should be selected during programming of the micro-
controller as shownin Figure 5.8.

Set Fuses
Fuse value 3F19H
[~ Code Protect [~ INTRC RAEHD
[~ Data Pratect [~ EC
I~ Low'alts Program [~ HS
[~ Brown Out Enable [~ =T
[~ MCLREn [=hER:
I~ Power Up Timer
[~ Watch Dog
I~ ER RABCKD
[~ ER R&g-0
W INTRC RAE-CKD
Cancel | Clear Fuses | Help |

Figure5.8 Selecting the internal 4 MHz oscillator during programming

138 PIC BASC projects

Project 2

Project title:

Project description:

Hardware:

Flow diagram:

Software:

Complex flashing LED

An LED is connected to one of the port pins of a PIC microcontroller. The
LED isflashed continuously as in the following sequence:

3 flashes with 250ms interval between each flash.
2sdelay.
3 flashes with 250ms interval between each flash.

The hardware of thisproject issameasin Figure 5.6. A PIC16F627 micro-
controller isused in this project with built-in 4 MHz oscillator and an LED
is connected to bit 0 of PORTB using a 330) current-limiting resistor.

The software consists of an indefinite loop where the LED is turned on
and off as described in the project description. The flow diagram of the
software is shown in Figure 5.9.

PicBasic

The software for PicBasic language is shown in Figure 5.10. At the begin-
ning of the program LED is defined as a symbol and is assigned to zero
(bit O of PORTB). Also, the port-direction register TRISB and PORTB
addresses are defined. The main program is an indefinite loop and starts
with label AGAIN. Inside the main program a OR loop is formed and the
LED is flashed three times with 250ms intervals. After a 2s delay the
process is repeated. Variable Cnt is used as the loop-count variable.

PicBasic Pro

The software for PicBasic Pro language is shown in Figure 5.11. At the
beginning of the program port-direction register TRISB is cleared so that
all PORTB pins are outputs. Main program starts with label AGAIN.
Inside the main program a FOR loop is formed and the LED is flashed
threetimes with 250 msintervals. After a2 sdelay the processis repeated.
Variable Cnt is used as the loop-count variable.

PicBasic and PicBasic Pro projects 139

BEGIN

Set port directions

N|
v
1=0

—

Turn on LED

!

Wait for 250ms

!

Turn off LED

!

Wait for 250ms

L

+1

Wait for 2 seconds

}

Figure5.9 Flow diagram of Project 2

ekkkkkkhkkhhkhhkkhhkkhhkhhkkhhkkhhkkhhhhhhkhhkhhhhhhhhkhhhhhhhhkkhhkhhhkhkkhhkkdhhkhkddx*x

. LED FLASHING PROGRAM

* This program flashes an LED connected to port RBO of PORTB. The
* LED isflashed continuously as follows:

. Flash 3 times with 250ms intervals
. Wait 2 seconds

Figure5.10 (Continued)

140 PIC BASC projects

. Flash 3 times with 250ms intervals
* Author: Dogan Ibrahim

* Date: October, 2005

e Compiler: PicBasic

* File: LED3.BAS

* Modifications

okkkkkkhkkhkhkkhhkhhkkhhkhhhkhhhhhkhdhhkhhhdhhhhhkhhhhhhhhhhhhhhdhhhhhdhhdrhhrdrrdx

* SYMBOLS

Symbol LED =0 * DefineRBO asLED
Symbol TRISB = $86 * TRISB address
Symbol PORTB = $06 » PORTB address

* VARIABLES

Symbol Cnt = BO * Declare Cnt asa byte

* START OF MAIN PROGRAM

POKETRISB, 0 » Set PORTB pins as outputs
AGAIN:

FORCnt=1TO3
HIGH LED *Turn ON LED
PAUSE 250 » Wait 250ms
LOW LED * Turn OFF LED
PAUSE 250 » Wait 250ms

NEXT Cnt

PAUSE 2000 » Wait 2 seconds

GOTOAGAIN * Repeat

END * End of program

Figure5.10 PicBasic program of Project 2

PicBasic and PicBasic Pro projects

141

ekkkkkhkhkkhhkhhkkhhkkhhkhhkkhhhkhhkhhhhhhdhhhhhkhhhhhkhhhhhhdhhkhhhhhhdrhhrdhrdrddxx

. LED FLASHING PROGRAM

* This program flashes an LED connected to port RBO of PORTB. The
* LED isflashed continuously as follows:

. Flash 3 times with 250ms intervals
. Wait 2 seconds

. Flash 3 times with 250ms intervals
* Author: Dogan Ibrahim

* Date: October, 2005

» Compiler: PicBasic Pro

* File: LED4.BAS

» Modifications

ekkkkkkhkkhhhhkkhhkkhhkhhhkkhhhkhhkhhhhhhdhhhhhhhhhhkhhhhhhdhhkhhhdhhhdhdrhhrdhrdrddxx
L]

* DEFINITIONS

Cnt VAR BYTE Declare Cnt as a byte

» START OF MAIN PROGRAM

TRISB =0 » Set PORTB pins as outputs
AGAIN:

FORCnt=1TO3
PORTB.0 =1 *Turn ON LED
PAUSE 250 » Wait 250ms
PORTB.0 =0 Turn OFF LED
PAUSE 250 » Wait 250ms

NEXT Cnt

PAUSE 2000 » Wait 2 seconds

GOTOAGAIN * Repeat

END « End of program

Figure5.11 PicBasic Pro program of Project 2

142 PIC BASC projects

Project 3

Project title:

Project description:

Hardware:

Flashing LED warning lights

In this project, two LEDs are connected to bit O of PORTB of a PIC
microcontroller. The LEDs turn on and off alternately with 1sdelay.

The hardware of this project is similar to the circuit given in Figure 5.6.
But here, two LEDs are connected to the same output pin of the microcon-
troller. When the pin output islogic 1, the microcontroller is sourcing cur-
rent and the lower LED is turned on and the upper LED is off. Similarly,
when the pin output is logic 0, the microcontroller is sinking current and
the upper LED isturned on and the lower LED isoff. 330 Q) current-limiting
resistors are used for each LED. The circuit diagram of the project is
shown in Figure 5.12.The construction of the project on a breadboard is
shown in Figure 5.13.

14 3 +5 5
OV T gaayr 14 330
: 2 0.014F
Batlery T T Ved]
[N
i 47K 4 REg
- MCIR
Fush to 350
Reseat L:i} ch LED
16F627 A
= 5
\!s.s-——L =

Figure5.12 Circuit diagram of Project 3

Flow diagram:

Software:

The flow diagram of the project isasin Figure 5.3, i.e. the output pin of
the microcontroller is turned on and off with 1sintervals.

PicBasic

The software for PicBasic language is exactly sasme asgivenin Figure 5.4.

PicBasic Pro
The softwarefor PicBasic Prolanguageisexactly sameasgivenin Figure5.5.

PicBasic and PicBasic Pro projects

143

Figure5.13

vy i §;
A

Construction of the project on a breadboard

144 PIC BASC projects

Project 4

Project title:

Project description:

Hardware:

+ 78105 -
LT
8V T gsae L 14

Battery
R —

T

Turning on odd numbered LEDs

Inthisproject, 8 LEDs are connected to PORTB of a PIC microcontroller.
When the project is started (or when reset), only the odd numbered
LEDs turn on (i.e. the LEDs connected to bit 1, bit 3, bit 5, and bit 7 of
PORTB).

The circuit diagram of the project is shown in Figure 5.14. A PIC16F627
model PIC microcontroller isused and the microcontroller is operated from
its 4MHz interna clock. The LEDs are connected to 8 pins of PORTB
using 33042 current-limiting resistors. An external reset button is connected
to MCLR input of the microcontroller.

3 BV

ot

o O.04uF
—E— —!' Vid LEDe
; N A

i 47k}, Rae—m—%
“:“ MCLR 7
Bush to ED Rﬁz—m—%
Reset j' RED 8 E!
- RBI&%
PIC RB-#E{:::)—%—
16F627 opsil! o D’f
12

RBES -~—im—mz—m%—~
RBT gt
Vs 5

i

Figure5.14 Circuit diagram of Project 4

Flow diagram:

The construction of the project on a breadboard is shown in Figure 5.15.

Theflow diagram of the project is shown in Figure 5.16. At the beginning
of the program the 1/0O direction is specified. And then the hexadecimal
number $AA is sent to PORTB to turn on the odd-numbered LEDs. Note
that

$AA = 10101010

PicBasic and PicBasic Pro projects 145

Figure5.15 Construction of the project on abreadboard

BEGIN

Set port directions

l

Send $AA to
PORTB

Figure5.16 Flow diagram of Project 4

i.e. the odd numbered bit positions are logic 1, and even-numbered bit
positions are logic 0.

Software: PicBasic
The software for PicBasic language is given in Figure 5.17. At the begin-
ning of the program PORTB and TRISB addresses are defined. TRISB is
then cleared to 0 to make all PORTB pins as outputs. Then the hexadeci-
mal number $AA is sent to PORTB using the POKE statement to turn on
the odd-numbered LEDs.

146 PIC BASC projects

ek kkkkkkhkkhhkkhhkhhkkhhkhhhkhhhkhhhdhhkhhhkhhhhhkhhhhhhhhkhhhhhhdhhkhhhdhhhhrhdhrdrhdhxd

. TURN ON ODD NUMBERED LEDS

* This program turns on odd numbered LEDSs (bit 1, bit 3, bit 5, bit 7) connected
« to PORTB of a PIC16F627 microcontroller.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic

* File: LED5.BAS

* Modifications

ek kkkkkkhkkhhkkhhkhhkkhhkhhkhhhhhhkhhkhhhkhhhhhkhhhhhhhhhhhhhhdhhkhhhdhhhhdhhrdrhdxd

* SYMBOLS
Symbol TRISB = $86 * TRISB address
Symbol PORTB = $06 » PORTB address

* START OF MAIN PROGRAM

POKETRISB, 0 * Set PORTB pins as outputs
POKE PORTB, $AA * Turn on odd numbered LEDs
END * End of program

Figure5.17 PicBasic program of Project 4

PicBasic Pro

The software for PicBasic Pro language is given in Figure 5.18. At the
beginning of the program TRISB is cleared to 0 to make all PORTB pins
as outputs. Then the hexadecima number $AA is sent to PORTB to turn
on the odd-numbered LEDs.

PicBasic and PicBasic Pro projects

147

ekkkkkhhkkhhkhhkkhhkhhkhhkkhhhhhkkhhhhhkhhhhhhdhhkhhhdhhhhhhhhdhhhhdhrhhhhxdxk

. TURN ON ODD NUMBERED LEDS

* This program turns on odd numbered LEDSs (bit 1, bit 3, bit 5, bit 7) connected
* to PORTB of a PIC16F627 microcontroller.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro

* File: LED6.BAS

» Modifications

ekkkkkhhkkhkhhkkhhkkhhkhhkkhhhhhkkhhhhhkhhhkhhhdhhkhhhkhhhhhkhhhdhhhhdhhhhhhxidxkx

* DEFINITIONS

» START OF MAIN PROGRAM

TRISB =0 * Set PORTB pins as outputs
PORTB = $AA * Turn on odd numbered LEDs
END * End of program

Figure5.18 PicBasic Pro program of Project 5

148 PIC BASC projects

Project 5

Project title:

Project description:

Binary counting LEDs

Inthisproject, 8 LEDs are connected to PORTB of a PIC microcontroller.
When the project is started (or when reset), the LEDs count in binary with
a 250ms delay between each count as shown in Figure 5.19. The count
goes from O (binary *00000000Z) to 255 (binary «111111117) and then
repeats forever.

OCO00000O @
OCOO0000OeO

OO0 OO
OO OO
OO OO
OO OO
OO OO
00 00O
_JOROX
@l NOX

OO0 ®
OO0 ®
OO0 ®
OO0 ®
OO0 ®
OO0 ®
L JOX _

Figure5.19 Binary counting LEDs

Hardware:

Flow diagram:

The circuit diagram and the construction of the project are as in Figures
5.14 and 5.15, respectively. A PIC16F627 model PIC microcontroller is
used and the microcontroller is operated from its4 MHz internal clock. The
LEDs are connected to 8 pins of PORTB using 330() current-limiting
resistors. An external reset button is connected to MCLR input of the
microcontroller.

Theflow diagram of the project is shown in Figure 5.20. At the beginning
of the program the I/O directionis specified. A bytevariable called Cnt is
used astheloop variable and it isincremented by one every 250 ms. When
Cnt reaches 255 it overflows and takes the next value 0 and this processis
repeated forever.

PicBasic and PicBasic Pro projects 149

BEGIN

Set port directions

l

Cnt=0

—

Send Cnt to
PORTB

l

250ms Delay

l

Cnt=Cnt+1

!

Figure5.20 Flow diagram of Project 5

Software; PicBasic

The software for PicBasic language is given in Figure 5.21. At the begin-
ning of the program PORTB and TRISB addresses are defined. TRISB is
then cleared to 0 to make all PORTB pins as outputs. Then variable Cnt is
initialised to zero. Inside the program loop the value of Cnt is sent to
PORTB and then incremented by one. Thisloop is repeated forever.

ekkkkkhkkkhkkkhkkhkhkkkhhkkhkkhhkhhkhkhkkhhkhkkhhkkhkhkkhhkkhhkhkhkhhkhkhhkhhkrdkxhhxdhkhkhxhhkxhkxk

. BINARY COUNTING LEDS

8 LEDs are connected to PORTB of a PIC microcontroller. This program
* counts in binary and displays the result on the LEDs with 250ms delay
* between each count.

* Author: Dogan Ibrahim
* Date: Octaber, 2005

Figure5.21 (Continued)

150 PIC BASC projects

» Compiler: PicBasic
* File: LED7.BAS

* Modifications

ek kkkkkkhkkhkkhhkhhkkhhkhhhkhhhhhhdhhkhhhkhhhhhhhhdhhhhkhhhdhhhdhhkhhhdhhhdhhhhddrhdhrdhrix

* SYMBOLS

Symbol TRISB = $86 * TRISB address
Symbol PORTB = $06 » PORTB address
Symbol Cnt = BO * Cnt isabyte variable

* START OF MAIN PROGRAM

POKETRISB, 0 » Set PORTB pins as outputs
LOOP:

POKE PORTB, Cnt * Send Cnt to PORTB

PAUSE 250 » Wait 250ms

Cnt=Cnt +1 * Increment Cnt

GOTO LOOP * Repeat

END * End of program

Figure5.21 PicBasic program of Project 5

PicBasic Pro

The software for PicBasic Pro language is given in Figure 5.22. At the
beginning of the program TRISB is cleared to 0 to make all PORTB pins
as outputs. Then variable Cnt is initidlised to zero. Inside the program
loop the value of Cnt is sent to PORTB and then incremented by one.
Variable Cnt is a byte and increments from 0 to 255 and then overflows
back to 0. Theloop is repeated forever.

ek kkkkkhkkkkkkhkkhkhkhhkhkkhkhhkhkhkhhkhhkhhhkhhhhhhhdrkhdhhdrhhrhkdrhkhrkdrhkhxx

. BINARY COUNTING LEDS

* 8 LEDs are connected to PORTB of a PIC16F627 microcontroller.
« This program countsin binary and displays the result on the LEDs. A
 250ms delay is used between each count.

Figure5.22 (Continued)

PicBasic and PicBasic Pro projects

151

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro

* File: LED8.BAS

» Modifications

ekkkkkhkkkhhkhhkkhhkhhkhhkkhhhkhhkhhhkhhhdhhhhhkhhhhhkhhhhhhdhhkhhhdhhhdrhhrdhrdrddxx

* DEFINITIONS

Cnt VAR Byte

* START OF MAIN PROGRAM
TRISB =0
Cnt=0

LOOP:
PORTB = Cnt
PAUSE 250
Cnt=Cnt+1
GOTO LOOP

END

Figure5.22 PicBasic Pro program of Project 5

* Declare Cnt as aByte variable

» Set PORTB pins as outputs
e InitidliseCntto O

* Send Cnt to PORTB
* 250ms delay

* Increment Cnt

* Repeat

* End of program

152 PIC BASC projects

Project 6

Project title:

Project description:

Left scrolling LEDs

Inthisproject, 8 LEDs are connected to PORTB of a PIC microcontroller.
When the project is started (or when reset), the LEDs scroll to the left
with a 250 ms delay between each output as shown in Figure 5.23. When

theleft-most LED (bit 7) islit, the next LED lit isthe right-most LED (bit
0). This process is repeated forever.

OO00000 @
OCO0000OeO
OCOO000@0OO0
OCO0O0@0O0O0

OCO0OO@O00O0O0

OC®0OO
OO@O
OO0 @
OO00O0O
OO00O0O
OO00O0O
OO00O0O
OO0

Figure5.23 Left scrolling LEDs

Hardware:

Flow diagram:

The circuit diagram and the construction of the project are as in Figures
5.14 and 5.15, respectively. A PIC16F627 model PIC microcontroller is
used and the microcontroller is operated from its4 MHz internal clock. The
LEDs are connected to 8 pins of PORTB using 330() current-limiting
resistors. An external reset button is connected to MCLR input of the
microcontroller.

Theflow diagram of the project is shown in Figure 5.24. At the beginning
of the program the I/O directionis specified. A bytevariable called Cnt is
used astheloop variable and it is shifted | eft by one digit at every iteration
of the loop. When the value of Cnt is 128 (left-most LED ison), it isre-
initialised back to 1. A 250ms delay is used between each outpuit.

PicBasic and PicBasic Pro projects 153

Set port directions

147

Cnt=1

LI

Send Cnt to
PORTB

l

250ms Delay

Left shift Cnt

T N

Cnt =128 ?

Figure5.24 Flow diagram of Project 6

Software:

PicBasic

The software for PicBasic language is given in Figure 5.25. At the begin-
ning of the program PORTB and TRISB addresses are defined. TRISB is
then cleared to O to make all PORTB pins as outputs. Then variable Cnt is
initialised to 1 and itsvalueis sent to PORTB to turn on the right-most LED
(bit 0). Inside the program loop the value of Cnt is shifted left one digit by
multiplying with 2 so that the next higher LED can be turned on. When the
left-most LED (bit 7) is turned on the value of Cnt is 128 and it is
re-initialised to 1 so that the next LED to be turned on isthefirst LED (bit
0). Thisloop isrepeated forever with 250 ms delay between each output.

ekkkkkhkkkhkkkhkkhkhkkkhkkhkkhhkhhkkhkhkkhhkkkhhkkhkhkkhhkkhhkkhkhkkhhkhkhkhhkhhkhkdkxhhkhdhkhkhkdhkxkhkkkxx

. LEFT SCROLLING LEDS

8 LEDs are connected to PORTB of a PIC microcontroller. This program
« scrolls the LEDs to the |eft by one digit. When the LED at bit 7 is turned
« on, then the next LED to be turned on isthe LED at bit position 0. The

* program loop is repeated with 250ms delay between each loop.

Figure5.25 (Continued)

154 PIC BASC projects

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic

* File: LED9.BAS

* Modifications

ekkkkkkhkkhhkhhkhhkkhhkhhhkhhhhhhdhhkhhhkhhhhhkhhhhhhhhkhhhhhhdhhkhhhdhhdhhhhhdhhdhrdhxk

* SYMBOLS

Symbol TRISB = $86 * TRISB address
Symbol PORTB = $06 » PORTB address
Symbol Cnt = BO * Cntisabytevariable

* START OF MAIN PROGRAM

POKETRISB, 0 » Set PORTB pins as outputs
INIT:
CNT =1 e InitialiseCnt to 1
LOOP:
POKE PORTB, Cnt * Send Cnt to PORTB
PAUSE 250 » Wait 250ms
IF Cnt = 128 THEN INIT * |F the left-most LED
Cnt=Cnt* 2 * Left-shift Cnt by 1 digit
GOTO LOOP * Repeat
END * End of program

Figure5.25 PicBasic program of Project 6

PicBasic Pro

The software for PicBasic Pro languageisgivenin Figure 5.26. At the begin-
ning of the program TRISB is cleared to 0 to make all PORTB pins as out-
puts. Then variable Cnt isinitialised to 1 and its value is sent to PORTB to
turn on the right-most LED (LED at hit position 0). Inside the program loop
the value of Cnt is shifted left one digit by using the shift operator »<<Z so
that the next higher LED can be turned on. When the left-most LED (bit 7)
is turned on the value of Cnt is 128 and it is re-initialised to 1 for the next
loop. Thisloop isrepeated forever with a 250 ms delay between each output.

PicBasic and PicBasic Pro projects 155

ekkkkkkhkkhhkhhkkhhkhhkhhhkhhkhhhkhhhhhhdhhkhhhdhhhhhhhhhhhhhhhhdhhhhhhhhddhhhdddhrdrhdhxix

. LEFT SHIFTING LEDS

» 8 LEDs are connected to PORTB of a PIC16F627 microcontroller.
* This program scrolls the LEDs | eft with 250ms delay between each
* output. When the LED at bit 7 is on, the next LED to be on isthe

* one at bit position 0.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro
* File: LED10.BAS

» Modifications

ekkkkkhkhkkhhkhhkkhhkhhkhhhkkhhkhhhkhhhhhhdhhkhhhdhhhhhkhhhhhhdhhkhhhdhhhdhdhhddhhhrdhrdrrk

* DEFINITIONS

Cnt VAR Byte

» START OF MAIN PROGRAM

TRISB =0
INIT:
Cnt=1
LOOP:
PORTB = Cnt
PAUSE 250
IFCnt=128 THEN INIT
Cnt=Cnt<<1
GOTO LOOP
END

Figure5.26 PicBasic Pro program of Project 6

* Declare Cnt as aByte variable

» Set PORTB pins as outputs

« |nitialiseCnt to 1

¢ Send Cnt to PORTB

* Wait 250ms

« If the left-most LED

« Left-shift Cnt by 1 digit
* Repeat

 End of program

156 PIC BASC projects

Project 7

Project title: Right scrolling LEDs

Project description: Inthisproject, 8 LEDsare connected to PORTB of aPIC microcontroller.
When the project is started (or when reset), the LEDs scroll to the right
with a 250 ms delay between each output as shown in Figure 5.27. When

theright-most LED (bit 0) islit, the next LED lit isthe left-most LED (bit
7). This process is repeated forever.

QOO0 0OOOO
OCeO0O0O0OOO
OCO@OO00O0OO
OCO0Oe0O0O0OO

OO000@O0O
OCOO000O@OO0

OO0000OeO
OO0O00000 @
@OOO00OOOO

Figure5.27 Right scrolling LEDs

Hardware: The circuit diagram and the construction of the project are asin Figures5.14
and 5.15, respectively. A PIC16F627 model PIC microcontroller is used
and the microcontroller is operated from its 4MHz internal clock. The
LEDs are connected to 8 pins of PORTB using 330() current-limiting
resistors. An external reset button is connected to MCLR input of the
microcontroller.

Flow diagram: Theflow diagram of the project is shown in Figure 5.28. At the beginning
of the program the I/O directionis specified. A bytevariable called Cnt is
used as the loop variable and it is shifted right by one digit at every iter-
ation of theloop. When the value of Cnt is 1 (the right-most LED ison), it
isre-initialised back to 128. A 250ms delay is used between each output.

PicBasic and PicBasic Pro projects 157

BEGIN

Set port directions

57

Cnt =128

»

v

Send Cnt to
PORTB

l

250ms Delay

Right shift Cnt

Figure5.28 Flow diagram of Project 7

Software: PicBasic

The software for PicBasic language isgiven in Figure 5.29. At the beginning
of the program PORTB and TRISB addresses are defined. TRISB is then
cleared to 0 to make al PORTB pins as outputs. Then variable Cnt is ini-
tialised to 128 and its value is sent to PORTB to turn on the left-most LED
(bit 7). Inside the program loop the value of Cnt is shifted right one digit by
dividing with 2 so that the next lower LED can beturned on. When theright-
most LED (bit 0) isturned on the value of Cnt is1 and it is re-initialised to
128 so that the next LED to be turned on isthe left-most LED (bit 7). This
loop is repeated forever with 250 ms delay between each output.

okkkkkhkkkhkkkhkkhkkkhhkkhkkhhkkkhhkkhhkhhkkkhhkkhhkhhkkkhhkhhkhhkhhkhhkhhkhdxhhkrdhkrkhxdhkxkhkkkxx

. RIGHT SCROLLING LEDS

8 LEDs are connected to PORTB of a PIC microcontroller. This program
« scrollsthe LEDs to the right by one digit. When the LED at bit 0 isturned
« on, then the next LED to be turned on isthe LED at bit position 7. The

* program loop is repeated with 250ms delay between each loop.

Figure5.29 (Continued)

158 PIC BASC projects

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic

* File: LED11.BAS

* Modifications

ek kkkkkkhkkhhkkhhkhhkkhhkhhhkhhkhhkhhhkhhhkhhkhhhkhhhhhhhhhhhhhhhhhhhdhhhhddhhddrhhxidxx

* SYMBOLS

Symbol TRISB = $86
Symbol PORTB = $06
Symbol Cnt = BO

* TRISB address
* PORTB address
* Cntisabytevariable

* START OF MAIN PROGRAM

POKETRISB, 0 » Set PORTB pins as outputs
INIT:
CNT =128 * Initialise Cnt to 128
LOOP:
POKE PORTB, Cnt * Send Cnt to PORTB
PAUSE 250 » Wait 250ms
IFCnt=1THEN INIT * |[F the right-most LED
Cnt=Cnt/2 * Right-shift Cnt by 1 digit
GOTO LOOP * Repeat
END * End of program

Figure5.29 PicBasic program of Project 7

PicBasic Pro

The softwarefor PicBasic Prolanguageisgivenin Figure 5.30. At the begin-
ning of the program TRISB is cleared to 0 to make all PORTB pins as out-
puts. Then variable Cnt isinitialised to 128 and its value is sent to PORTB
toturnontheleft-most LED (LED at hit position 7). Inside the program loop
the value of Cnt is shifted right one digit by using the shift operator « >>Z7 so
that the next lower LED can be turned on. When the right-most LED (bit 0)
isturned on the value of Cnt is 1 and it is re-initialised to 128 for the next
loop. Thisloop isrepeated forever with a250 ms delay between each output.

PicBasic and PicBasic Pro projects 159

ekkkkkkhkkhhkhhkkhhkhhkhhkkhhkhhhkhhhhhhdhhkhhhdhhhhhkhhhhhhdhhhhhhhhdhhhhhdhhhrddhrdrrdxd

. RIGHT SHIFTING LEDS

* 8 LEDs are connected to PORTB of a PIC16F627 microcontroller.
* This program scrolls the LEDs right with 250ms delay between each
* output. When the LED at bit 0 is on, the next LED to be on isthe

* one at bit position 7.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro
* File: LED12.BAS

» Modifications

ekkkkkhkhkkhhkhhkkhhkhhkhhhkkhhkhhhkhhhhhhdhhhhhdhhhhhkhhhhhhhhkhhhdhhhdhhhhhdhhhrhhrdrrdx

* DEFINITIONS

Cnt VAR Byte

» START OF MAIN PROGRAM

TRISB=0

INIT:
Cnt=128

LOOP:
PORTB = Cnt
PAUSE 250
IFCnt=1THEN INIT
Cnt=Cnt>>1
GOTO LOOP

END
Figure5.30 PicBasic Pro program of Project 7

* Declare Cnt as aByte variable

* Set PORTB pins as outputs

* |nitialise Cnt to 128

* Send Cnt to PORTB

» Wait 250ms

* If theright-most LED

* Right-shift Cnt by 1 digit
* Repeat

* End of program

160 PIC BASC projects

Project 8

Project title:

Project description:

Hardware:

Right-left scrolling LEDs

Inthisproject, 8 LEDsare connected to PORTB of aPIC microcontroller.
Also a push-button switch is connected to bit 0 of PORTA using a pull-up
resistor. Normally the LEDs scroll to the left as in Project 6. When the
switch is pressed the LEDs scroll to theright asin Project 7.

The circuit diagram of the project is shown in Figure 5.31. The circuit is
very similar to Figure 5.14, but in this project additionally a switch is con-
nected to bit 0 of PORTA to control the direction of scrolling. A PIC16F627
model PIC microcontroller isused and the microcontroller is operated from
its 4MHz internal clock. The LEDs are connected to 8 pins of PORTB
using 330€) current-limiting resistors. An external reset button is con-
nected to MCLR input of the microcontroller.

1 3 *8V
Eaﬁtgfy 0334F 2 0.015F 1\fdd
. Lig
1] |
T at|| RBOb—EiOD—%
= ~HIMCLR 7
Push to Eﬂ RB1
Reset j' BE2 8 I E
B RBS-%—rm-%—-«
) 14
PIC RBA&—{:::—%
4. RE6}|-2
L2 RAQ Rg“g.l:im....ﬁ..ﬁ
Push to EB v g
Seroll <@ 55--:|
Right _;‘ e I

Figure5.31 Circuit diagram of Project 8

Flow diagram:

Theflow diagram of the project is shown in Figure 5.32. At the beginning
of the program the I/O directionis specified. A bytevariable called Cnt is
used as the loop variable. The program consists of an indefinite loop and
at the beginning of the loop the switch is tested. If the switch is logic 1
(i.e. switch is not pressed) then the scrolling isto the left and if the switch
is pressed the switch is at logic O and scrolling is to the right. A 250 ms
delay is used between each outpuit.

PicBasic and PicBasic Pro projects 161

Set port directions

N
v

Cnt=1

e 1

Send Cnt to
PORT B

Shift Cnt left l Shift Cnt right Cnt = 128

250ms Delay N

Switch
Pressed?

Figure5.32 Flow diagram of Project 8

Software:

PicBasic

The software for PicBasic language is given in Figure 5.33. At the begin-
ning of the program PORTA, PORTB, TRISA, TRISB, and CMCON
register addresses are defined. TRISA isset to 1 so that bit 0 of PORTA is
configured asan input port. Similarly, TRISB iscleared to 0 so that all bits
of PORTB are configured as outputs. Push-button switch is connected to
bit 0 of PORTA (RAO). Normally thispinis pulled high to logic 1 by using
aresistor. When the switch is pressed the pin goes down to logic 0. PORTA
pins on the PIC16F627 microcontroller have dual functions and they can
either be used as analog comparator inputs, or asdigital 1/0 ports. CMCON
register is used to control the function of these pins. Setting CMCON to 7
configures PORTA pinsasdigital 1/O ports.

Inside the LOOR, the value of Cnt is sent to PORTB and the PEEK instruc-
tion is used to read the switch setting. *Bit0Z refers to bit 0 of variable
+B0Z which is where the switch is connected. When the switch is pressed
the program jumps to label PRESSED where the LEDs are scrolled right.
When the switch is not pressed the LEDs are scrolled left. This loop is
repeated forever with 250 ms delay between each outpuit.

162 PIC BASC projects

ek kkkkkkhkkhkkhhkhhkkhhkhhhkhhhhhhdhhkhhhkhhhhhhhhdhhhhkhhhhhhhhkhhhdhhhdhddhrdrhdhrdhrix

. RIGHT-LEFT SCROLLING LEDS

» 8 LEDs are connected to PORTB of a PIC microcontroller. This program

« scrollsthe LEDs to the right or |eft depending on a switch setting. The switch
« is connected to bit 0 of PORT A. If the switch is not pressed the switch

e output is at logic 1 and the LEDs scroll to the left. When the switch is

* pressed the LEDs scroll to the right. A 250ms delay is used between each

* output.
* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic

* File: LED13.BAS

* Modifications

ek kkkkkkhkkhhkkhhkhhkkhhkhhhkkhhhhhkhdhhkhhhkhhhhhkhhhdhhhhkhhhdhhhdhhkhhhdhhhdhddhrdrhhrdhrix

* SYMBOLS

Symbol TRISA = $85
Symbol TRISB = $86
Symbol PORTA = $05
Symbol PORTB = $06
Symbol CMCON = $1F
Symbol Cnt =B1
Symbol Switch = B0

* START OF MAIN PROGRAM

POKE CMCON, 7
POKETRISA, 1
POKETRISB, 0

INIT:
CNT=1
Figure5.33 (Continued)

* TRISA address

* TRISB address

* PORTA address

* PORTB address

* CMCON address

» Cnt isabyte variable

» Switch isabyte variable

* RAO-RA3 aredigital 1/0
* Set PORTA bit 0 asinput
* Set al PORTB pins as outputs

* |nitialiseCnt to 1

PicBasic and PicBasic Pro projects 163

LOOFP:
POKE PORTB, Cnt * Send Cnt to PORTB
PAUSE 250 * Wait 250ms
PEEK PORTA, Switch * Read switch setting
IF Bit0 = 0 THEN PRESSED * If switchis pressed
IFCnt =128 THEN INIT
Cnt=Cnt* 2 * Shift Cnt left
GOTO LOOP

PRESSED: * Switch is pressed
IF Cnt=1THEN NXT
Cnt=Cnt/2
GOTO LOOP

NXT:
Cnt =128
GOTO LOOP
END * End of program

Figure5.33 PicBasic program of Project 8

PicBasic Pro

The software for PicBasic Pro language is given in Figure 5.34. The
PicBasic Pro program is easier to understand. At the beginning of the pro-
gram TRISB is cleared to 0 to make all PORTB pins as outputs. Also,
TRISA isset to 1 so that bit 0 of PORTA isconfigured asinput. CMCON
register is set to 7 to configure PORTA pins as digital 1/0.

The switch setting isthen checked using an | F statement. When the switch
is pressed bit 0 of PORTA goes to logic 0 and the program scrolls the
LEDs to right. When the switch is not pressed bit 0 of PORTA isat logic
1 and the program scrolls the LEDs to the lft.

exXkkkkkhkkkkhkkkkhkkkhkkkhhkkkhkhkhhkhhhhdhkhhhkhdhkhhhhdkhhhkhrkhhkdrkhhkdrkdhkdrkdrkkxx

. RIGHT-LEFT SHIFTING LEDS

* 8 LEDs are connected to PORTB of a PIC16F627 microcontroller.

» This program scrolls the LEDs right or |eft depending on the mode of a

* push-button switch. When the switch is not pressed LEDs are scrolled | eft.
» When the switch is pressed, LEDs are scrolled right. A 250ms delay

* is used between each output.

Figure5.34 (Continued)

164 PIC BASC projects

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro
* File: LED14.BAS

* Modifications

ek kkkkkkhkkhkkhhkhhkkhhkhhhkhhhhhkhdhhkhhhkhhhhhhhhdhhhhkhhhdhhhhhkhhhdhhhhddhrdhhdhrdhrix

* DEFINITIONS

Cnt VAR Byte * Declare Cnt as aByte variable

* START OF MAIN PROGRAM

CMCON =7 * Set PORTA asdigital 1/0
TRISA =1 * Set RAOQ asinput
TRISB =0 Set PORTB pins as outputs
INIT:
Cnt=1 * InitialiseCnt to 1
LOOP:
PORTB = Cnt * Send Cnt to PORTB
PAUSE 250 » Wait 250ms

IF PORTA.0 = 0THEN
IFCnt = 1 THEN Cnt = 128: GOTO LOOP
Cnt=Cnt>>1 * Shift right
GOTO LOOP
ELSE
IFCnt = 128 THEN INIT
Cnt=Cnt<<1 * Shift left
GOTO LOOP
ENDIF

END * End of program
Figure5.34 PicBasic Pro program of Project 8

PicBasic and PicBasic Pro projects 165

Project 9
Project title: LED dice

Project description: Inthisproject, 7 LEDs are connected to PORTB of a PIC microcontroller
and arranged such that they can show the faces of a dice when lit. Also a
push-button switch is connected to bit 7 of PORTB using a pull-up resis-
tor. When the switch is pressed the LEDs are lit randomly to show adice
number between 1 and 6. Figure 5.35 shows the LEDs lit for agiven dice

number.
O O O O O O [[o [[[
Ol NGO | BON) 00 (ONONGO) Ol NGO | BON
O O O O O O [[o [[[
1 2 3 4 5 6
Figure5.35 LED dice
Hardware: Thecircuit diagram of the project isshownin Figure5.36. The 7 LEDs are

connected to bit O to bit 6 of PORTB. Bit 7 of PORTB is connected to a
push-button switch which simulates the throwing of a dice when pressed.

A PIC16F627 model PIC microcontroller is used and the microcontroller
is operated from its 4MHz internal clock. The LEDs are connected to

g
1 3 BV A D& A
+ [-—-—-r T8LOE Y W»H-j
g T[}.S?\HF o) l‘ B0t 14' = =
Battery e
il D6 A
_L 41K 4 HBO
= et RESY BB S
Push to
Throw d] D?ﬁ
Dice REZ
¥ D RB3L =
pIc Red
18F627 grpsili—
RB6|
VS$"£":L

Figure5.36 Circuit diagram of Project 9

166 PIC BASC projects

8 pins of PORTB using 330() current-limiting resistors. External reset
button is not used and power-on-reset is used with the MCLR disabled
during the programming of the device.

The project constructed on a breadboard is shown in Figure 5.37.

it
N B

Figure5.37 Construction of the project

o GEBRRT (T, 2T WA
l."_.*—"“_"]',—'. '-t: o By '.'Z & 4 b 4 ,b ";I;“ }

Flow diagram: The flow diagram of the project isshown in Figure 5.38. At the beginning
of the program the /O direction is specified. When the switch is pressed
arandom number generation is simulated between 1 and 6 and this num-
ber is then displayed on the LEDs which are constructed similar to the
face of areal dice.

Software: PicBasic
The software for PicBasic language is given in Figure 5.39. At the begin-
ning of the program PORTB and TRISB addresses are defined. TRISB is
set to hexadecimal $80 so that bit 7 is configured as input port and bits O
to 6 are configured as output ports. A number is generated between 1 and
6 by using a loop. Inside this loop if the switch is not pressed the dice
number isincremented by one between 1 and 6. When the number reaches
7 itisreset back to 1 so that the generated number isbetween 1 and 6. The
loop is executed so fast that the generated numbers can be considered to
be random. When the switch is pressed, the program jumps to label
NEWNO and here the current number (in variable DICE) is used in a
LOOKUP statement to determine the LEDs to be turned on. If the value
of DICE is 1, variable LEDS isloaded with $08. Similarly, if the value of

PicBasic and PicBasic Pro projects 167

BEGIN

Set port directions

Pressed ?

Determine LEDs
to be turned on

l

Turn on LEDs
DICE =DICE + 1 |

A 4

Figure5.38 Flow diagram of Project 9

DICE is 2, variable LEDS is loaded with $22 and so on. The required
LEDs are then turned on to display the number similar to the dots on a
dice. Table 5.1 shows the rel ationship between the number to be displayed
and the LEDs to be turned on to display this number. For example, to dis-
play number 1 (i.e. only the middle LED is on), we have to turn on D4.
Similarly, to display number 4, we have to turn on D1, D3, D5, and D7.

Table5.1 Required number and LED to be turned on

Required number L EDsto beturned on
1 D4
D2, D6
D2, D4, D6
D1, D3, D5, D7

D1, D3, D4, D5, D7
D1, D2, D3, D5, D6, D7

(2N NI~ ROV I \V]

168 PIC BASC projects

The relationship between the required number and the data to be sent to
PORTB toturn onthe correct LEDsisgivenin Table5.2. For example, to dis-
play dice number 2, we have to send hexadecimal $22 to PORTB. Similarly,
to display number 5, we have to send hexadecimal $5D to PORTB and so on.

Table5.2 Required number and PORTB data

Required number PORTB data (Hex)
1 $08

$22

$2A

$55

$5D

$77

OO~ W|N

ek kkhkkhhkkkkkhkhkhkhkhkhhhhhhhhhhhkhkhhhhhhhhhhhhhhkhdddhhhhhdrhhhhhddddhdddrrrrrdrrid
. LED DICE

« 7 LEDs are connected to PORTB of a PIC microcontroller and arranged as in the faces
« of adice. Also, a push-button switch is connected to bit 7 of PORTB.

» When the switch is pressed the program generates a dice number

* between 1 and 6 and turns on the appropriate LEDs to imitate the faces

« of area dice. The LEDs are turned on for 5 seconds and after thistime

« they are cleared and the program is ready to accept a new push-button

* action.

» The microcontroller is operated with internal 4AMHz clock and internal

* power-on-reset.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic

* File: LED15.BAS

* Modifications

ekkkkkkhkkhkkkhkkhkkhhkkhkkhhkkhhkkkhkkhhkkhhkkhkhhkkhhkkhhkhkkhhkkhhkkhkkhkkhhkkhkkhkhkkhkkkhkkkkkkx*%

Figure5.39 (Continued)

PicBasic and PicBasic Pro projects

169

* SYMBOLS

Symbol TRISB = $86
Symbol PORTB = $06
Symbol Switch = B0
Symbol LEDS=B1
Symbol DICE = B2

» START OF MAIN PROGRAM

POKE TRISB, $80

» Wait until switch is pressed
WAIT:
DICE=1
NXT: PEEK PORTB, Switch
IF Bit7 =0 THEN NEWNO
DICE=DICE+1
IFDICE =7THEN WAIT
GOTO NXT
NEWNO:

* TRISB address

* PORTB address

» Switch isabyte variable

* LEDsto be turned on

* Dice number (between 1 and 6)

* RB7 input, RBO-RB6 outputs

* Check if switch is pressed
* If pressed goto NEWNO
* Increment dice number

* between 1 and 6

* repeat

* Find the LEDs to be turned on. DICE is between 1 and 6. LEDS is the data
* to be sent to PORTB to turn on the required LEDs

LOOKUP DICE, (0, $08, $22, $2A, $55, $5D, $77), LEDS

e Turn on the LEDs

POKE PORTB, LEDS

PAUSE 5000
POKE PORTB, 0
GOTOWAIT

END

Figure5.39 PicBasic program of Project 9

PicBasic Pro

» Wait 5 seconds
e Turn off al LEDs
* Repeat

* End of program

The software for PicBasic Pro language is given in Figure 5.40. At the
beginning of the program TRISB is set to $80 to configure bit 7 of PORTB
asinput and the other PORTB pins as outputs. The switch is then checked

170 PIC BASC projects

inside aloop using an IF statement. If the switch is not pressed variable
DICE isincremented by one between 1 and 6. When the switch is pressed
the current value of DICE is taken and used in a LOOKUP statement to
obtain the data to be sent to PORTB so that the correct LEDs can be
turned on.

ek kkkhkhkhkhkkkkkkkhkhkhhhhhhhhhhhhkhkhhhhhhhhhhhhhhhdddhhhhhhhhhhhdddhhhhhhrrdrrixd
. LED DICE

« 7 LEDs are connected to PORTB of a PIC microcontroller and arranged as in the faces
« of adice. Also, a push-button switch is connected to bit 7 of PORTB.

» When the switch is pressed the program generates a dice number

* between 1 and 6 and turns on the appropriate LEDs to imitate the faces

« of areal dice. The LEDs are turned on for 5 seconds and after thistime

« they are cleared and the program is ready to accept a new push-button

* action.

« The microcontroller is operated with internal 4MHz clock and internal

* power-on-reset.

* Author: Dogan lbrahim
* Date: October, 2005
» Compiler: PicBasic Pro
* File: LED16.BAS

* Modifications

okkkkkhkkkhkhkkkhkkhkkhhkkhkkhkhkkhhkkhkkhhkkhhkkhhkkhkhkkkhhkkhkhhkhhkhkhkxhhkkdkhkhxhhkxkdkkkx*xkx

* DEFINITIONS

LEDS VAR BYTE
DICE VAR BYTE

* START OF MAIN PROGRAM

TRISB = $80 * RB7 input, RBO-RB6 outputs
Figure5.40 (Continued)

PicBasic and PicBasic Pro projects

171

» Wait until switch is pressed

AGAIN:
DICE=1

NXT: IF PORTB.7 =0 THEN NEWNO « If pressed goto NEWNO
DICE=DICE+1 ¢ Increment dice number
IF DICE =7THEN AGAIN * between 1 and 6
GOTO NXT * repeat

NEWNO:

* Find the LEDs to be turned on. DICE is between 1 and 6. LEDS is the data
* to be sent to PORTB to turn on the required LEDs

LOOKUP DICE, [0, $08, $22, $2A, $55, $5D, $77], LEDS

* Turn on the LEDs
PORTB = LEDS « Turn on appropriate LEDs
PAUSE 5000 * Wait 5 seconds
PORTB =0 e Turn off all LEDs
GOTOAGAIN * Repesat
END End of program

Figure5.40 PicBasic Pro program of Project 9

172 PIC BASC projects

Project 10
Project title: 7-segment LED display counter

Project description: In this project, a 7-segment LED display is used as a counter. Numbers
from O to 9 are displayed on the display continuously as0123f 890
12 f with 1 s delay between each count.

Hardware: 7-Segment displays are frequently used in electronic circuits as indicators.
Asshown in Figure 5.41, a 7-segment display basicdly consistsof 7 LEDs
connected such that numbers from 0 to 9 and some | etters can be displayed.
Figure 5.42 shows the segment names of atypical 7-segment display.

Figure5.41 Some 7-segment displays

d

Figure5.42 Segment names of a 7-segment display

PicBasic and PicBasic Pro projects 173

Figure 5.43 shows how numbers from 0 to 9 can be obtained by turning
on different segments of the display.

Figure5.43 Obtaining numbers0...9

7-segment displays are available in two different configurations: common
cathode and common anode. As shown in Figure 5.44, in common cath-
ode displays the cathodes of all the segment LEDs are tied together and
then this common point is connected to ground. A required segment is
then turned on by applying alogic 1 to the anode of this segment. Here,
the output pin of the microcontroller isin current sourcing mode.

TITTT17
Il

Figure5.44 Common cathode display

In a common-anode display, the anodes of all the segment LEDs are tied
together (see Figure 5.45) and then this common point is connected to V
supply voltage. A required segment is turned on by applying alogic O to
the cathode of this segment. Here, the output pin of the microcontroller is
in current sinking mode.

174 PIC BASC projects

+V

TR

Figure5.45 Common-anode display

Inthis project, aKingbright SA52-11 model red common anode display is
used. This is a 13mm height (0.52 inch) display with 10 pins. The pin
configuration is as shown in Table 5.3. The display also has a segment
LED for the decimal point.

Table5.3 SA52-11 pin configuration

Pin Number Segment

E

D

Common anode
C

Decimal point
B

A

Common anode
F

g

[EEY

Ol N|o|O|~|lw|N

=
o

Figure 5.46 showsthe circuit diagram of the project. A PIC16F627 model
PIC microcontroller is used and the microcontroller is operated from its
4MHzinternal clock and internal reset. Thedisplay isconnected to PORTB
of the microcontroller using 3302 current-limiting resistors in each
segment of the display.

The project constructed on a breadboard is shown in Figure 5.47.

The relationship between the displayed numbers and the data to be sent to
PORTB is shown in Table 5.4. The display is connected to the microcon-
troller using segmentsato g. In thisTable, x is a donstcare entry, taken as
0 and isused to make the bit number 8. For example, to display number 2,
we have to send hexadecimal number $5B to PORTB. Similarly, to dis-
play number 8, we have to send hexadecimal number $7F to PORTB.

PicBasic and PicBasic Pro projects 175

+5 Y
1 78005 1

; T o “F o 0.0 uF 4

Eattery e ‘i‘ Veld

i}

RB0
~.~ Raéfm-——-Lifa 31
8 By
RQZWC I I
RE&:&—«Q«mm’"“‘f"d
160 3] 10 e
- pic et ||
{“‘““i 16F827 pps 1 d
op RBELE Kingbright SA52-11
)
i [
Display Top Wisw v 5
55""’1

Figure5.46 Circuit diagram of Project 10

v d~]
€5
55
gn
=3 o

Figure5.47 Construction of the project

Flow diagram: The flow diagram of the project is shown in Figure 5.48. At the beginning
of the program the 1/O direction is specified by loading 0 to TRISB, i.e.
all PORTB pins are configured as output pins. Then aloop is formed to
send numbers 0 to 9 to the display. Inside the loop subroutine CONVERT

176 PIC BASC projects

Table5.4 Displayed number and data sent to PORTB

Number xgfedchba PORTB data
0 00111111 $3F
1 00000110 $06
2 01011011 $5B
3 01001111 $4F
4 01100110 $66
5 01101101 $6D
6 01111101 $7D
7 00000111 $07
8 01111111 $7F
9 01101111 $6F

X isnot used, taken as 0.

BEGIN Subroutine CONVERT

BEGIN

Configure PORTB
as output

Determine bit
pattern to display a
digit on PORT B

|

CNT =0
i RETURN
CONVERT

l

Display number

!

CNT =CNT + 1

Delay 1 second

I

Figure5.48 Flow diagram of Project 10

PicBasic and PicBasic Pro projects 177

Software:

is called to determine the actual datato be sent to PORTB in order to dis-
play the required number. This subroutine uses the LOOK UP statement to
determine the bit segments to be turned on for a required number. The
datato be sent to PORTB isinverted since we are using a common-anode
display (i.e. a segment is turned on by making the segment pin logic 0).
The processis repeated after a 1 s delay between each output.

PicBasic

The software for PicBasic language is given in Figure 5.49. At the begin-
ning of the program PORTB and TRISB addresses are defined. Also, vari-
ables Cnt and Pattern are declared as byte variables. TRISB is cleared to
0 so that PORTB pins are configured as outputs. At the beginning of the
program variable Cnt is cleared to 0 and subroutine CONVERT is called.
This subroutine receives Cnt as the input variable and returns the bit pat-
ternin variable Pattern. For example, if CntisO, Pattern is assigned hexa-
decimal number $3F, if Cnt is 1, Pattern is assigned $06, etc. The bit
pattern is then inverted since we are using a common-anode type display
(asegment is turned on by clearing the segment pin). Variable Pattern is
inverted by performing a bit-wise Exclusive OR with hexadecimal num-
ber $FF (abit isinverted when it is exclusive oreed with 1). Variable Cnt
is then incremented and cleared to 0 when it reaches 10 so that the num-
ber is between 0 and 9. Otherwise, the program jumpsto label NXT where
the next number is displayed. After displaying a number, the program
waits for 1 s and the process repeats forever.

REEEEEE ST LR EEEEE R LR EEE SRS

7-SEGMENT DISPLAY COUNTER

« In this project a common-anode type 7-segment display is connected

* to PORTB of a PIC16F627 model microcontroller. The project displays
» numbers 0 to 9 on the display with 1 second delay between each output.
 The microcontroller is operated with the internal 4MHz clock and also
* theinternal reset is used.

» The connection between the microcontroller and the display is as

« follows:
. RBO
. RB1

segment a
segment b

Figure5.49 (Continued)

178 PIC BASC projects

. RB2 segmentc
. RB3 segmentd
. RB4 segmente
. RB5 segment f
. RB6 segmentg

* The decimal point of the display is not used.

* Author: Dogan Ibrahim
* Date: October, 2005

» Compiler: PicBasic

* File: LED17.BAS

* Modifications

ek kkkkkkhkkhkkhhkhhkkhhkhhhkhhhhhhdhhkhhhhhhhhkhhhhhhhhhhhhhhdhhhhhdhhhhhhhhdrhdhrdhxk

* SYMBOLS

Symbol TRISB = $86
Symbol PORTB = $06
Symbol Cnt = BO
Symbol Pattern = B1

* START OF MAIN PROGRAM

POKETRISB, 0

LOOP:
Cnt=0

NXT:
GOSUB CONVERT
POKE PORTB, Pattern
Cnt=Cnt+1
PAUSE 1000
IFCNT =10 THEN LOOP
GOTO NXT

Figure5.49 (Continued)

* TRISB address

* PORTB address

* Cnt isabyte variable

« Pattern is a byte variable

* PORTB is output

¢ |nitialise CNT to O

« Find the bit pattern to send to PORTB
» Send Pattern to PORTB

¢ |ncrement count

* Wait 1 second

PicBasic and PicBasic Pro projects 179

CONVERT:

* Find the bit pattern to be sent to PORTB in order to turn on the correct segments
* to display the required number. Cnt contains a number between 0 and 9 and

« on return from LOOKUP statement, Pattern contains the bit pattern to send to

» PORTB to display the required number in Cnt. Because we are using a

» common-anode display, a segment is turned on when it islogic 0 and thus the

* bit pattern isinverted before sending to PORTB.

LOOKUP Cnt, ($3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F), Pattern

Pattern = Pattern ~ $FF « Invert bits of variable Pattern
RETURN
END End of program

Figure5.49 PicBasic program of Project 10

PicBasic Pro

The software for PicBasic Pro language is given in Figure 5.50. At the
beginning of the program TRISB is set to 0 to configure PORTB pins as
outputs. Variable Cnt is then cleared to 0 and subroutine CONVERT is
caled to find the bit pattern to be displayed. Statement LOOKUP
receives Cnt as the input variable and returns the required bit pattern in
variable Pattern. The bit pattern is then inverted and sent to PORTB to
turn on the required display segments. Variable Cnt is incremented and
cleared to O when it reaches 10 so that the number is between 0 and 9. The
value of Cnt is sent to the display every second.

ekkkkkhkkkhhkhhkkhhkhhkhhhkkhhhdhhkhhhhhhdhhhhhhhhhhhhhhhhdhhhhhdhhhdhhhhdddrhdrddrdrrdx

. 7-SEGMENT DISPLAY COUNTER

* In this project a common-anode type 7-segment display is connected

* to PORTB of a PIC16F627 model microcontroller. The project displays
» numbers 0 to 9 on the display with 1 second delay between each output.
» The microcontroller is operated with the internal 4AMHz clock and also
* theinternal reset is used.

Figure5.50 (Continued)

180 PIC BASC projects

* The connection between the microcontroller and the display isas

* follows:

. RBO segmenta
. RB1 segmentb
. RB2 segmentc
. RB3 segmentd
. RB4 segmente
. RB5 segment f
. RB6 segmentg

* The decimal point of the display is not used.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro

* File: LED18.BAS

* Modifications

ek kkkkkkhkkhhkkhhkhhkkhhkhhhkhhhhhkhkhhkhhhkhhhhhkhhhdhhhhhhhhhhhhhdhhhdhhhhhdhhdrhhrdhrihxd

* DEFINITIONS

Cnt VAR Byte
Pattern VAR Byte

* START OF MAIN PROGRAM

TRISB=0 * PORTB is output
LOOP:
Cnt=0 ¢ Initialise CNT to O
NXT: GOSUB CONVERT * Find the bit pattern to send to PORTB
PORTB = Pattern Send Pattern to PORTB
Cnt=Cnt+1 ¢ |ncrement count
PAUSE 1000 » Wait 1 second
IFCNT =10 THEN LOOP
GOTO NXT

Figure5.50 (Continued)

PicBasic and PicBasic Pro projects

181

CONVERT:

* Find the bit pattern to be sent to PORTB in order to turn on the correct segments
* to display the required number. Cnt contains a number between 0 and 9 and

« on return from LOOKUP statement, Pattern contains the bit pattern to send to

» PORTB to display the required number in Cnt. Because we are using a

» common-anode display, a segment is turned on when it islogic 0 and thus the

* bit pattern isinverted before sending to PORTB.

LOOKUP Cnt, [$3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F], Pattern

Pattern = Pattern ~ $FF « Invert bits of variable Pattern
RETURN
END * End of program

Figure5.50 PicBasic Pro program of Project 10

182 PIC BASC projects

Project 11

Project title:

Project description:

Hardware:

3V T gzaur

Pattery

O N

+

|

7-segment LED dice

In this project, a 7-segment LED display is used as a dice. Normally the
display shows a«0Z to indicate that it iswaiting for akey press. When the
external push-button switch is pressed, a dice number is displayed
between 1 and 6 for 3s. After this time the display clears back to «0Z to
indicate that it is waiting again for akey press.

The circuit diagram of this project is similar to Figure 5.46. A common-
anode type 7-segment display is connected asin Figure 5.46, and in add-
ition a push-button switch is connected to bit 7 of PORTB. As shown in
Figure 5.51, the switch isnormally held at logic 1 using a pull-up resistor.

3 +5Y

7BLOB _L Y
0.01 pF 14

2
Veid
| 10K

L RBO

RB1

13
Push to RB7
Start 5

fi;
N

a
&
s RB2 c I i
RB3 e
168 é 10 a
I pic Reafe=— g ||
iw; 16F827 ps 1 g
by REE A Kingbright SA52-11
o)
1 5
Dlisplesy Top View s

Vss

,1{

Figure5.51 Circuit diagram of Project 11

Flow diagram:

The project constructed on a breadboard is shown in Figure 5.52.

Theflow diagram of the project is shown in Figure 5.53. At the beginning
of the program the 1/O direction is specified by loading hexadecimal $80
to TRISB, i.e. PORTB pins 0 to 6 are outputs and bit 7 isinput. The pro-
gram then waits for the switch to be pressed. When the switch is pressed,
arandom number is generated between 1 and 65,535 using the PicBasic

PicBasic and PicBasic Pro projects 183

:
l

EWwvunn
JT1DVEN

Figure5.52 Construction of the project

BEGIN

Configure RBO-RB6
as output and RB7
as input

Generate a new
random number

CONVERT I

Display number

Delay 3 seconds

Figure5.53 Flow diagram of Project 11

184 PIC BASC projects

Software:

RANDOM statement. The generated number isbit-wissANDed with 7 so
that it is between 1 and 7. If the number is 7, a new random number is
obtained such that the number is between 1 and 6. Subroutine CONVERT
iscalledtofind the bit pattern to be sent to PORTB to turn on the required
segments. Asin Project 10, this subroutine uses the LOOKUP statement
to determine the bit segmentsto be turned on for arequired number. The
datato be sent to PORTB isinverted since we are using a common-anode
display (i.e. a segment is turned on by making the segment pin logic 0).
The dice number is displayed for 3s. After thistime the display is cleared
to 0 and the program is ready for a new key press.

PicBasic

The software for PicBasic language is given in Figure 5.54. At the begin-
ning of the program PORTB and TRISB addresses are defined. TRISB is
set to $80 so that bits 0 to 6 of PORTB are configured as outputs and bit
7 isconfigured asinput. The program then waits for the push-button to be
pressed. When the key is pressed a new random number is generated
between 1 and 65,535 using the PicBasic Pro RANDOM statement. The
generated number is bit-wise ANDed with 7 so that it is between 1 and 7.
If the number is 7, a new random number is obtained such that the num-
ber is between 1 and 6. Subroutine CONVERT uses statement LOOKUP
to determine the bit pattern to be sent to PORTB. The data to be sent to
PORTB isinverted since we are using a common-anaode display. The dice
number is displayed for 3s. After thistime the display is cleared to 0 and
the program is ready for a new key press. oreed with 1.

ok kkkkkhkkhkkkhkhkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhrkxhrkhrxk

7-SEGMENT DICE

« In this project a common-anode type 7-segment display is connected
« to PORTB of a PIC16F627 model microcontroller. Additionally, a

« push-button switch is connected to bit 7 of PORTB. When the button
« is pressed, the project displays a number between 1 and 6 just like a
« dice. The RANDOM statement is used to generate a random number.

 The microcontroller is operated with the internal 4MHz clock and also
« theinternal reset is used.

Figure5.54 (Continued)

PicBasic and PicBasic Pro projects 185

* The connection between the microcontrolelr and the display is as

* follows:

. RBO segmenta
. RB1 segmentb
. RB2 segmentc
. RB3 segmentd
. RB4 segmente
. RB5 segment f
. RB6 segmentg

* The decimal point of the display is not used.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic

* File: LED19.BAS

* Modifications

ekkkkkkhkkhhkkhkkhhkkhhkhhkkhhkkhhkhkhhkhhkkhhkhhhhhkhhkhhhkkhhkhhkkhhkkhhhdhhkhhhkkhhkhkhhkhkhkdkx*k

* SYMBOLS

Symbol TRISB = $86 * TRISB address

Symbol PORTB = $06 » PORTB address

Symbol Switch = BO * Switch isaword variable
Symbol Pattern = B1 * Pattern is abyte variable
Symbol Dice = W1 * Diceisaword variable

* START OF MAIN PROGRAM

POKE TRISB, $80 * Bits 0-6 are outputs, hit 7 isinput
LOOFP: * Digplay 0 at the beginning
DICE=0
GOSUB CONVERT
POKE PORTB, Pattern * Digplay 0 to show that we are ready
WT: RANDOM Dice » Generate arandom number between O and 65535
PEEK PORTB, Switch
IFBit7=1THEN WT » Wait until switch is pressed

Figure5.54 (Continued)

186 PIC BASC projects

BR: Dice=Dice& 7 * Number between 0 and 7
IF Dice <> 7THEN NXT « If the number is 0 or 7, get a new number
RANDOM Dice
GOTO BR

NXT: GOSUB CONVERT « Find the bit pattern to send to PORTB
POKE PORTB, Pattern * Send Peattern to PORTB
PAUSE 3000 » Wait 3 seconds
GOTO LOOP

CONVERT:

« Find the bit pattern to be sent to PORTB in order to turn on the correct segments
« to display the required number. Dice contains a number between 1 and 6 and

« on return from LOOK UP statement, Pattern contains the bit pattern to send to

» PORTB to display the required number in Dice. Because we are using a

» common-anode display, a segment is turned on when it islogic 0 and thus the

« bit pattern isinverted before sending to PORTB.

LOOKUP Dice, ($3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F), Pattern

Pattern = Pattern * $FF « Invert bits of variable Pattern
RETURN
END End of program

Figure5.54 PicBasic program of Project 10

PicBasic Pro

The software for PicBasic Pro languageis shown in Figure 5.55. The pro-
gramisvery similar to the PicBasic program given in Figure 5.54 with the
exception that the registers are addressed directly.

ekkkkkkhkkhkhkkkhkkhkkhhkkhkkhhkkhhkkkhhkkhhkkhhkkhkhhkkhhkkhhkhkkhhkkhhkkhkhkkhhkkhkkhkhkkhkkkhkkkhkkdkx*%

. 7-SEGMENT DICE

« In this project a common-anode type 7-segment display is connected
« to PORTB of a PIC16F627 model microcontroller. Additionally, a

* push-button switch is connected to bit 7 of PORTB. When the button
* ispressed, the project displays a number between 1 and 6 just like a
« dice. The RANDOM statement is used to generate a random number.

Figure5.55 (Continued)

PicBasic and PicBasic Pro projects 187

» The microcontroller is operated with the internal 4AMHz clock and also

« theinternal reset is used.

* The connection between the microcontroller and the display is as

* follows:

. RBO segmenta
. RB1 segmentb
. RB2 segmentc
. RB3 segmentd
. RB4 segmente
. RB5 segment f
. RB6 segmentg

* The decimal point of the display is not used.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro
* File: LED20.BAS

» Modifications

ekkkkkhkhkkhhkhhkkhhkhhkhhhkkhhkhhhkhhhhhhdhhkhhhhhhhhkhhhhhhdhhkhhhdhhhdhhhhhdhhdrhhrdrrk

* DEFINITIONS
Pattern VAR Byte
Dice VAR WORD

» START OF MAIN PROGRAM

TRISB = $80

LOOP:
DICE=0
GOSUB CONVERT
PORTB = Pattern

WT: RANDOM Dice
IF PORTB.7 = 1THEN WT

Figure5.55 (Continued)

* Bits 0-6 are outputs, bit 7 isinput
* Digplay 0 at the beginning

* Display 0 to show that we are ready

* Generate arandom number between 0 and 65535
» Wait until switch is pressed

188 PIC BASC projects

BR: Dice = Dice& 7
IF Dice<>7THEN NXT
RANDOM Dice
GOTOBR

NXT:
GOSUB CONVERT
PORTB = Pattern
PAUSE 3000
GOTO LOOP

CONVERT:

* Number between 0 and 7
« If the number is O or 7, get anew number

« Find the bit pattern to send to PORTB
¢ Send Pattern to PORTB
* Wait 3 seconds

* Find the bit pattern to be sent to PORTB in order to turn on the correct segments
* to display the required number. Dice contains a number between 1 and 6 and

« on return from LOOKUP statement, Pattern contains the bit pattern to send to

» PORTB to display the required number in Dice. Because we are using a

» common-anode display, a segment is turned on when it islogic 0 and thus the

« bit pattern isinverted before sending to PORTB.

LOOKUP Dice, [$3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F], Pattern

Pattern = Pattern * $FF
RETURN

END

« Invert bits of variable Pattern

 End of program

Figure5.55 PicBasic Pro program of Project 11

PicBasic and PicBasic Pro projects 189

Project 12
Project title:

Project description:

Hardware:

[eabY: fakelndiH

Dual 7-segment LED display

In this project two 7-segment displays are used. Then, a number (in this
case 25) is shown on the displays.

When more than one 7-segment display is used the displays are configured
and controlled as multiplexed units. Here, as shown in Figure 5.56, the seg-
ments of the displays are connected in parallel and their common points
are driven separately, each one for a brief period of time. For example, to
display number 25, we have to send 2 to the first digit and enable its com-
mon point. After afew milliseconds, number 5 is sent to the second digit
and the common point of the second digit is enabled. When this processis
repeated continuously the user sees asif both displays are on continuously.

Digit 1 Enable Digit 2 Enable

DIGET ¢ PHGET 2

Figure5.56 Connecting two 7-segment displaysin parallel

Some display manufacturers provide multiplexed multi-digit displays in
single packages. One such device is the D56 series displays. These are
dual red or green colour common-anode or common-cathode displays
where the segments of both digits are paralleled and each digit has a sep-
arate common control pin. The display used in this project isthe D56E05
which isared colour common-anode two digit display which has the pin
configuration asin Table 5.5. This display can be controlled as follows:

Send the segment data for digit 1 to segmentsato g

Enable digit 1 by connecting digit 1 enable pin to +V supply
Wait for afew milliseconds

Send the segment data for digit 2 to segmentsato g

Enable digit 2 by connecting digit 2 enable pin to +V supply
Wait for afew milliseconds

Repeat this process continuously

190 PIC BASC projects

Table5.5 Pin configuration of D5S6EO5 dual display

Pin number Segment

E

D

C

Digit 1 enable
G

B

A

F

Digit 2 enable
Decimal point

[EnY

Ol |IN[ojO|B~|W|N

=
o

The circuit diagram of the project is shown in Figure 5.57. Display seg-
ments are connected to PORTB. Digit 1 and Digit 2 inputs are connected
to port pins RAO and RA1, respectively, using NPN transistors (e.g.
2N2222 or BC108 or any other type). A display digit is enabled by mak-
ing the base of the corresponding digit transistor logic 1. When the tran-
sistor is turned on, current flows through the collector...emitter junction,
thus enabling the display.

1

+5V

"'_T 78L0OS
N

Battery T
—_
L .

0.014F 14] K K

3
— L
—" . Vdd BC108
75| RAO 6 330 BC108

1

Figure5.57 Circuit

L —RA1 RBO
4

RB1
RB2

‘ ‘ -

RB3

[<e] [s4] ~
= N oy
Q@ "0 o0 T

PIC RB4—‘:'—'_*53
16F627 g5l — — —
RB6 12 D56E05 Common Anode
VSSS—_L

diagram of Project 12

PicBasic and PicBasic Pro projects 191

The project constructed on a breadboard is shown in Figure 5.58.

R, W

Figure5.58 Construction of the project

Flow diagram:

Software:

Theflow diagram of the project is shown in Figure 5.59. At the beginning
of the program PORTA and PORTB pins are configured as outputs.
Variable Cnt stores the number to be displayed (loaded with number 25 in
thisexample). First, 10s digit of the display isobtained by dividing Cnt by
10. Subroutine CONVERT is then called to obtain the segments to be
turned on. Thishit pattern is sent to PORTB and then digit 1 is enabled by
setting bit O of PORTA to logic 1. As aresult of thisthe 10s digit is dis-
played. After 1 ms delay the 1s digit is obtained and the corresponding
segment bit pattern is sent to PORTB and then digit 2 is enabled by set-
ting bit 1 of PORTA to logic 1. Asaresult of thisthe 1s digit is displayed.
The above process is repeated forever.

PicBasic

The software for PicBasic language is given in Figure 5.60. At the begin-
ning of the program TRISA and TRISB registers are cleared so that
PORTA and PORTB pins are configured as outputs. CMCON register is
then set to 7 so that RAO and RA 1 portsare configured asdigital 1/0. Cnt,
Temp, Digit, and Pattern are declared as byte variables. Variable Cnt is set
to number 25 and thisisthe value we wish to display. Cnt isdivided by 10
to obtain the 10s digit of Cnt and this number is stored in variable Digit.

192 PIC BASC projects

BEGIN

Configure PORTA and
PORTB as outputs

l

Cnt =25

|

Get 10s digit

!

CONVERT

!

Send to PORTB

!

Enable Digit 1

l

2ms delay

l

Get 10s digit

!

CONVERT

!

Send to PORTB

!

Enable Digit 2

!

2ms delay

]

Figure5.59 Flow diagram of Project 12

PicBasic and PicBasic Pro projects 193

ekkkkkhkhkkhhkkhhkkhhkhhkhhhkkhhkhhhkhhhhhhdhhhhhhhhhhhhhhhhdhhkhhhdhhhdhhhhhdhhhrhhrdrrdx

. DUAL 7-SEGMENT LED DISPLAY

* In this project two 7-segment LED displays are connected to PORTB
« of aPIC16F627 type microcontroller. The program displays the number
* in variable Cnt on the displays (Cnt is made equal to 25 in this example).

» The conenction between the LEDs and the microcontroller are as follows:

. RBO segmenta
. RB1 segmentb
. RB2 segmentc
. RB3 segmentd
. RB4 segmente
. RB5 segment f
. RB6 segmentg
. RAO digit 1 enable
. RA1 digit 2 enable

« Left digit isDigit 1 and right digit is Digit 2.
* The microcontroller operates with a4MHz internal clock and internal
* power-on reset.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic

* File: LED21.BAS

» Modifications

ekkkkkhkhkkhhkhhkkhhkkhhkhhhkkhhkhhhkhhhhhhdhhkhhhhhhhhkhhhhhhdhhkhhhhhhdhhhhhdhhhhhhrdrrk

* SYMBOLS

Symbol TRISA = $85 * TRISA address
Symbol TRISB = $86 * TRISB address
Symbol PORTA = $05 » PORTA address

Figure5.60 (Continued)

194 PIC BASC projects

Symbol PORTB = $06
Symbol CMCON = $1F
Symbol Cnt = BO
Symbol Temp = B1
Symbol Digit = B2
Symbol Pattern = B3

* START OF MAIN PROGRAM
POKE CMCON, 7
POKETRISA, O
POKETRISB, 0
Cnt =25

NXT:
Digit = Cnt/ 10
GOSUB CONVERT
POKE PORTB, Pattern
POKE PORTA, 1
PAUSE 2

Temp = Digit * 10
Digit = Cnt - Temp
GOSUB CONVERT
POKE PORTB, Pattern
POKE PORTA, 2
PAUSE 2

GOTO NXT
CONVERT:

» PORTB address

* CMCON address

* Cntisabyte variable

* Tempisabyte variable
* Digitisabyte variable

* Pattern isabyte variable

* RAO-RA3 are digital I/O

* Set PORTA as output

* Set al PORTB pins as outputs
* Number to display in Cnt

* Get 10s digit

* Get segmentsto turn on
* Display 10s digit

* Enable Digit 1

» Wait 2ms

» Get 1sdigit

* Get segmentsto turn on
* Digplay 1sdigit

« Enable Digit 2

» Wait 2ms

* Continue displaying

« Find the bit pattern to be sent to PORTB in order to turn on the correct segments
« to display the required number. Digit contains a number between 0 and 9 and

« on return from LOOKUP statement, Pattern contains the bit pattern to send to

» PORTB to display the required number in Digit. Because we are using a

« common-anode display, a segment is turned on when it islogic 0 and thus the

« bit pattern isinverted before sending to PORTB.

LOOKUP Digit, ($3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F), Pattern

Pattern = Pattern * $FF

RETURN

END

Figure5.60 PicBasic program of Project 12

* Invert bits of variable Pattern

* End of program

PicBasic and PicBasic Pro projects 195

Subroutine CONVERT is called to abtain the segments to be turned on.
CONVERT receives Digit as the input variable and returns variable
Pattern as the output. Pattern is then sent to PORTB and bit 0 of PORTA
issetto logic 1 to enable digit 1. After adelay of 1 ms, digit 2 is obtained
invariable Digit. Subroutine CONVERT iscalled again to obtain the seg-
ments to be turned on. The program then sends the segment pattern to
PORTB and setsbit 1 of PORTA to enable digit 2. Program then jumpsto
label NXT and the process is repeated forever.

PicBasic Pro

The software for PicBasic Pro language is shown in Figure 5.61. At the
beginning of the program TRISA and TRISB registers are cleared so that
PORTA and PORTB pins are configured as outputs. CMCON register is
then set to 7 so that RAO and RA1 ports are configured as digital 1/0. Cnt,
Temp, Digit, and Pattern are declared as byte variables. Variable Cnt is set
to number 25 and this is the value we wish to display. PicBasic Pro state-
ment +DIG 17 is used to obtain the first digit of Cnt and subroutine CON-
VERT iscalled to obtain the segmentsto be turned on. CONVERT receives
Digit astheinput variable and returns variable Pattern asthe output. Pattern
isthen sent to PORTB and bit 0 of PORTA isset to logic 1 to enable digit 1.
After adelay of 1ms, digit 2 is obtained by using the PicBasic Pro state-
ment +DIG 0Z and subroutine CONVERT is called again to obtain the seg-
ments to be turned on for digit 2. The program then sends the segment
pattern to PORTB and sets bit 1 of PORTA to enable digit 2. Program then
jumpsto label NXT and the processis repeated forever.

ekkkkkkhkkkhkhkkkhkkhkkhhkkhkkhkhkkhhkkhkkhkhkkhhkkhhkkhhkkhhkkhkhhkhhkhkhkxhhkdhkhkhkxhhkxkdkkkdxdkxk%x

. DUAL 7-SEGMENT LED DISPLAY

« In this project two 7-segment LED displays are connected to PORTB
« of aPIC16F627 type microcontroller. The program displays the number
« invariable Cnt on the displays (Cnt is made equal to 25 in this example).

« The conenction between the LEDs and the microcontroller are as follows:

. RBO segmenta
. RB1 segmentb
. RB2 segmentc

Figure5.61 (Continued)

196 PIC BASC projects

. RB3 segmentd
. RB4 segmente
. RB5 segment f
. RB6 segmentg
. RAO digit 1 enable
. RA1 digit 2 enable

« Left digit isDigit 1 and right digit is Digit 2.
* The microcontroller operates with a4MHz internal clock and internal
* power-on reset.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro

* File: LED22.BAS

* Modifications

ek kkkkkhkkkhkkkhkkhkkhhkkhkkhkhkkkhhkkkhkkhhkkhhkkhhkkhhkhhkhkhhkhhkhdkxhhkdhkhhkxdhkrxkhkkkdxdkxkx

« DEFINITIONS

Cnt VAR Byte e Cntisabytevariable
Digit VAR Byte * Digit isabyte variable
Pattern VAR Byte « Pattern is a byte variable
Digitl VAR PORTA.O « Digit 1 enable bit
Digit2 VAR PORTA.1 « Digit 2 enable bit

* START OF MAIN PROGRAM

CMCON =7 * RAO-RA3 are digital 1/0

TRISA =0 * Set PORTA as output

TRISB=0 * Set al PORTB pins as outputs

Cnt=25 » Number to display in Cnt
NXT:

Digitl = 0 * Disable digit 1

Digit2=0 * Disable digit 2

Figure5.61 (Continued)

PicBasic and PicBasic Pro projects

197

Digit=CntDIG 1
GOSUB CONVERT
PORTB = Pattern
Digitl=1

PAUSE 2

Digit = CntDIG O
GOSUB CONVERT
PORTB = Pattern
Digit2=1

PAUSE 2

GOTO NXT

CONVERT:

* Get 10s digit

* Get segments to turn on
* Display 10s digit
 Enable Digit 1

» Wait 2ms

» Get 1sdigit

* Get segments to turn on
* Digplay 1sdigit

* Enable Digit 2

» Wait 2ms

* Continue displaying

* Find the bit pattern to be sent to PORTB in order to turn on the correct segments
« to display the required number. Digit contains a number between 0 and 9 and

« on return from LOOKUP statement, Pattern contains the bit pattern to send to

» PORTB to display the required number in Digit. Because we are using a

« common-anode display, a segment isturned on when it islogic 0 and thus the

« bit pattern is inverted before sending to PORTB.

LOOKUP Digit, [$3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F], Pattern

Pattern = Pattern * $FF

RETURN

END

Figure5.61 PicBasic Pro program of Project 12

* Invert bits of variable Pattern

* End of program

198 PIC BASC projects

Project 13

Project title:

Project description:

Hardware:

Flow diagram:

Dual 7-segment LED display counter

In this project two 7-segment displays are used asin Project 12. The project
works like a counter where numbers 00 to 99 are shown on the display with
afew seconds delay between each output. The count is repeated after 99.

The circuit diagram of the project is asin Project 12 (Figure 5.57). That
is, display segments are connected to PORTB, and display digits are con-
trolled from bit 0 and bit 1 of PORT A.

One of the problems in this project is that the display digits require to be
updated continuously so that we can see the numbers displayed on each
digit. But at the same time we have to increment the count and wait afew
seconds before sending a new value to the display. This requires a multi-
tasking approach where the display can be updated independent of the
counting function. One solution to this problem is to update the display
inside a timer interrupt routine which can be done independent of other
functions of the program.

The timer interrupt TMRO can be configured to interrupt at required inter-
vals. When the timer interrupt is enabled and a4-MHz clock isused, TMRO
interrupt occurs at the time given by T, where T isin microseconds and

T = Pre-scaler value X (256 ... TMRO value)

In this project we shall set the TMRO to generateinterrupts at every 10ms
and this will be our display update time. If we choose a pre-scaler value
of 256, the value to be loaded into the TM RO register is found to be

TMRO = 256 — 10,000/256
which is about 217.

Theflow diagram of the project is shown in Figure 5.62. At the beginning
of the program PORTA and PORTB pins are configured as outputs, and
timer interrupt TMRO is enabled. The program consists of two sections:
the Main Program and the Interrupt Service Routine (1SR).

Inside the main program variable Cnt is initialised to 0 and the program
increments Cnt by 1 after every second. When Cnt reaches 99, it iscleared
again to 0. Subroutine CONVERT is then called to find the segments to
be turned on to display a required number.

The display is updated inside the ISR every time atimer interrupt occurs,
independent of the main program. Timer register TMRO is re-loaded with
217 as soon as an interrupt is generated.

PicBasic and PicBasic Pro projects 199

BEGIN

Configure PORTA and
PORTB as outputs

|

Configure INTCON
and OPTION_REG

l

Define interrupt
service routine

I

Cnt=0

bi

Determine segments to turn
on to display the number

l

Delay 1 second

l

Cnt=Cnt+1

>

ISR

Re-load TMRO

l

Enable digit 1

l

Enable digit 2

RETURN

Figure5.62 Flow diagram of Project 13

200 PIC BASC projects

Software:

PicBasic
PicBasic language does not support the use of interrupts from high-level
and thus only the PicBasic Pro program is given for this project.

PicBasic Pro

Figure 5.63 shows the program listing. At the beginning of the program
PORTA and PORTB pins are configured as outputs, and timer interrupt
TMRO is enabled. The program consists of two sections: the Main
Program, and the ISR.

Inside the main program variable Cnt is initialised to 0 and the program
increments Cnt by 1 after every second. When Cnt reaches 99, it is cleared
again to 0. Interrupt control register INTCON is configured so that timer
TMRO interrupts are enabled. Also, the OPTION_REG register is config-
ured so that the pre-scaler value is 256. PicBasic Pro statements «DIG 17
and «DIG 0Z are used to extract the 10s and the 1s digit of a number.
Subroutine CONVERT isthen called to find the segmentsto be turned on
to display a required number. Variables First and Second store the seg-
ments to be turned on for digit 1 and digit 2, respectively.

The display is updated inside the ISR every time atimer interrupt occurs,
independent of the main program. Timer register TMRO is re-loaded with
217 as soon as an interrupt is generated.

Note that in PicBasic Pro language, interrupts are only recognised
between the statements. This is why the 1s delay is made up of a FOR
loop with aloop count of 1000 and a delay of 1 ms inside the loop. This
way, interrupts can be recognised in between the 1 ms delays.

ek kkkkkkhkkhhkkhhkhhkkhhkhhhkhhhhhhdhhkhhhdhhhhhhhhdhhhhhhhhhhdhhkhhhdhhhdhhdhrdrhdhrdhrdxx

DUAL 7-SEGMENT LED COUNTER

* In this project two 7-segment LED displays are connected to PORTB

« of aPIC16F627 type microcontroller. The program works as a counter

» where numbers 00 to 99 are displayed with afew seconds delay between

« each output.

* The program consists of two sections: the main program and the interrupt

* service routine (1SR). The counter increments inside the main program and
 the TMRO interrupt routine is used to update the displays.

Figure5.63 (Continued)

PicBasic and PicBasic Pro projects

201

» The conenction between the LEDs and the microcontroller are as follows:

. RBO segmenta
. RB1 segmentb
. RB2 segmentc
. RB3 segmentd
. RB4 segmente
. RB5 segment f
. RB6 segmentg
. RAO digit 1 enable
. RA1 digit 2 enable

« Left digit isDigit 1 and right digit is Digit 2.
* The microcontroller operates with a4MHz internal clock and internal
* power-on reset.

* Author: Dogan Ibrahim
* Date: October, 2005
» Compiler: PicBasic Pro

* File: LED23.BAS

» Modifications

ekkkkkhkhkkhhkhhkkhhkhhkhhhkkhhkhhhkhhhhhhdhhkhhhhhhhhkhhhhhhdhhkhhhhhhdhhhhhdhhhrhhrdrrk

* DEFINITIONS

Cnt VAR Byte * Cnt isabytevariable
Digit VAR Byte * Digit isabyte variable
Pattern VAR Byte * Pattern is a byte variable
Digitl VAR PORTA.O * Digit 1 enable bit

Digit2 VAR PORTA.1 « Digit 2 enable bit

Firss VAR Byte * Firstisabyte variable
Second VAR Byte » Second is a byte variable
i VAR Word * i isaword variable

Figure5.63 (Continued)

202 PIC BASC projects

* START OF MAIN PROGRAM
CMCON =7
TRISA=0
TRISB=0

* Enable TMRO timer interrupts
INTCON = %00100000
OPTION_REG = %00000111
TMRO =217
ON INTERRUPT GOTO ISR
INTCON = 910100000

LOOP:
Cnt=0

NXT:
Digit=CntDIG 1
GOSUB CONVERT
First = Pattern

Digit=CntDIGO
GOSUB CONVERT
Second = Pattern

FOR i =1to 1000
Pause 1
NEXT i

Cnt=Cnt+1
IF Cnt > 99 THEN LOOP
GOTO NXT

* RAO-RA3 aredigital I/0
» Set PORTA as output
* Set all PORTB pins as outputs

 Enable TMRO interrupts
« Initialise the prescale
* Load TMRO register

* Enable Interrupts

¢ |nitialiseCnt to 0

* Get 10s digit
* Get segments to turn on
* Display 10s digit

* Get 1sdigit
» Get segments to turn on
* Display 1sdigit

* Wait 1 second

* |ncrement Cnt
* If Cnt > 99 then goto LOOP
« Continue

* Thisisthe Interrupt Service Routine (ISR). The program jumps to this
* routine whenever atimer interrupt is generated.

DISABLE

ISR:
TMRO = 216
PORTB = First
Digit2=0
Digitl=1
PAUSE 5

Figure5.63 (Continued)

* Disable further interrupts

PicBasic and PicBasic Pro projects

203

Digitl=0
PORTB = Second
Digit2=1
PAUSE 1

INTCON.2=0 * Re-enable TMRO interrupts
RESUME * Return to main program
ENABLE * Enableinterrupts

CONVERT:

* Find the bit pattern to be sent to PORTB in order to turn on the correct segments
* to display the required number. Digit contains a number between 0 and 9 and

« on return from LOOKUP statement, Pattern contains the bit pattern to send to

» PORTB to display the required number in Digit. Because we are using a

» common-anode display, a segment is turned on when it islogic 0 and thus the

* bit pattern isinverted before sending to PORTB.

LOOKUP Digit, [$3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F], Pattern

Pattern = Pattern ~ $FF * Invert bits of variable Pattern
RETURN
END * End of program

Figure5.63 PicBasic Pro program of Project 13

204 PIC BASC projects

Project 14

Project title:

Project description:

Hardware:

+
L pFI

Batiery ,,_.;_m ‘j‘

.

Dual 7-segment LED event counter

In this project two 7-segment displays are used as in Project 13. A push-
button switch is connected to bit 7 of PORTB. The project counts and dis-
plays the number of times the switch is pressed. This project can be used
to count eventsin many other applications, such as counting the number of
products passing on aconveyor belt, number of people entering abuilding,
number of cars entering a car park, and so on.

The circuit diagram of the project is similar to Figure 5.57, but here, as
shown in Figure 5.64, a push-button switch is connected to bit 7 of PORTB.
A pull-up resistor is used so that the switch is normally at logic 1 and goes
tologic O when it is pressed.

Thetimer TMRO interrupt asin Project 13 is used to display the count on
the dual 7-segment display.

3 BV
TOLOS -L
a0 4 1K
BCi0B
T : Vdd
T RAG
1 WU 1 RAT REO
i RE1 ¢
1 J—
Push te O 2 RBT REZ s
Count ‘ |
0 I RE3
- PIC RE4 l
18F627 rps
FEG : DREBEDS Common Anode
Vss»smmim

Figure5.64 Circuit diagram of Project 14

Flow diagram:

Theflow diagram of the project is shown in Figure 5.65. At the beginning
of the program PORTA and PORTB pins are configured as outputs, and
timer interrupt TMRO is enabled. The program consists of two sections:
the Main Program, and the ISR.

PicBasic and PicBasic Pro projects 205

BEGIN

Configure PORT A and
PORT B as outputs

l

Configure INTCON
and OPTION_REG

l

Define interrupt
service routine

Switch
pressed?

Cnt=Cnt+1

ISR

BEGIN

Re-load TMRO

!

Determine
segments to turn on

!

Display Cnt

RETURN

Figure5.65 Flow diagram of Project 14

206 PIC BASC projects

Software:

Inside the main program variable Cnt isinitially cleared to 0 and the switch
is tested continuously and the program waits until the switch is pressed.
Every timetheswitchispressed variable Cnt isincremented by 1. Thevalue
of Cnt isdisplayed insidethe | SR every 10ms. In apractical application the
program should check to make sure that Cnt does not become greater than
99 and give an alarm or some other warning before this happens.

The display is updated inside the ISR every time atimer interrupt occurs,
independent of the main program. Timer register TMRO is re-loaded with
217 assoon as an interrupt is generated. Asin Project 13, timer interrupts
are generated at 10msintervals.

PicBasic
PicBasic language does not support the use of interrupts from high-level
and thus only the PicBasic Pro program is given for this project.

PicBasic Pro

Figure 5.66 shows the program listing. At the beginning of the program
PORTA and PORTB pins are configured as outputs, and timer interrupt
TMROisenabled. The program consists of two sections: the Main Program
andthe ISR

Insidethe main program INTCON register is configured so that timer TMRO
interrupts are enabled. Also, the OPTION_REG register is configured so
that the pre-scaler value is 256. Variable Cnt is initialised to 0 and the pro-
gram increments Cnt by 1 every time the switch is pressed (or whenever an
external event occurs). In this program PicBasic Pro statement BUTTON is
used to find out when the switch is pressed. The statement is configured to
eliminate switch-bouncing problems. Switch-contact bouncing happens
when aswitch is pressed or released. Switch contacts oscillate and generate
noise which may cause the microcontroller to read multiple on/off readings
or wrong switch state when the switch is pressed or rel eased.

The display is updated inside the I SR. PicBasic Pro statements“DIG 1” and
“DIG 0" areused to extract the 10 sand the 1sdigits of variable Cnt. PicBasic
Pro statement LOOKUP is used to find the segments to be turned on to dis-
play each digit of Cnt. The bitsareinverted before they are sent to the display.
Thisisdone because adisplay segment isturned on when alogic O isapplied
(common-anode display) to the segment. The inversion is done by bit-wise
exclusive-or'ing the bit data with hexadecima number $FF (abit exclusive-
or’'ed with 1 isinverted). At the beginning of the ISR, timer register TMRO is
re-loaded with 217 so that the next interrupt is generated after 10ms.

PicBasic and PicBasic Pro projects 207

fhkkhhkhhhdhhkhhhdhhhhhhhhdhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhddhhddhddrddhrdrhhrdhrix

‘ DUAL 7-SEGMENT EVENT COUNTER

In this project two 7-segment LED displays are connected to PORTB
of aPIC16F627 type microcontroller. Also, a push-button switch is
connected to bit 7 of PORTB. The program counts and displays how
many times the switch is pressed. Although a simple switch is used

in this example, the project can be used to count events such as the
number of objects passing on a conveyor belt, number of cars entering
acar park etc.

In this project the switch is debounced to eliminate the contact problems
‘ using the PicBasic Pro BUTTON statement.

The program consists of two sections. the main program and the interrupt
* service routine (ISR). The counter increments inside the main program and
‘ the TMRO interrupt routine is used to update the displays.

* The conenction between the LEDs and the microcontroller are as follows:

‘ RBO segment a

‘ RB1 segmentb

‘ RB2 segmentc

‘ RB3 segmentd

‘ RB4 segment e

‘ RB5 segment f

‘ RB6 segmentg

‘ RAQ digit 1 enable
‘ RA1 digit 2 enable

‘ RB7 push-button switch

‘ Left digitisDigit 1 and right digit is Digit 2.
* The microcontroller operates with a4MHz internal clock and internal
‘ power-on reset.

* Author: Dogan Ibrahim
‘ Date: October, 2005
* Compiler: PicBasic Pro

‘ File: LED24.BAS

Figure5.66 (Continued)

208 PIC BASC projects

* Modifications

(R S R
* DEFINITIONS

Cnt VAR Byte ‘ Cntisabytevariable

Digit VAR Byte ‘ Digitisabyte variable

Pattern VAR Byte * Pattern is abyte variable

Digitl VAR PORTA.O ‘ Digit 1 enable bit

Digit2 VAR PORTA.1 ‘ Digit 2 enable bit

Pbutton VAR PORTB.7 * Push button is bit 7 of PORTB

i VAR Byte ‘“iisabytevariable

* START OF MAIN PROGRAM

CMCON =7 ‘ RAO-RA3 are digita 1/0
TRISA=0 ‘ Set PORTA as output
TRISB = $80 * Bit 7 of PORTB input, others outputs

‘ Enable TMRO timer interrupts

INTCON = 900100000 ‘ Enable TMRO interrupts

OPTION_REG = %00000111 “ Initialise the prescale

TMRO =217 ‘ Load TMRO register

ON INTERRUPT GOTO ISR

INTCON = %10100000 ‘ Enable Interrupts

Cnt=0 ‘ Initialise event counter to 0
LOOP:

BUTTON Phbutton, 0, 255,0, 1, 0, LOOP * Wait until push-buttonis pressed and
debounce switch
Cnt=Cnt+1 ‘ Increment event counter
GOTO LOOP * Continue
‘ Thisisthe Interrupt Service Routine (ISR). The program jumps to this
* routine whenever atimer interrupt is generated. Inside this routine the
* value of variable Cnt is displayed.

DISABLE * Disable further interrupts
ISR:
TMRO =217

Figure5.66 (Continued)

PicBasic and PicBasic Pro projects 209

Digit=CntDIG 1 ‘ Get 10s digit

LOOKUP Digit, [$3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F], Pattern
Pattern = Pattern ~ $FF * Invert bits of variable Pattern
PORTB = Pattern ‘ Display 10s digit

Digit2=0 ‘ Disable digit 2

Digitl=1 ‘ Enable digit 1

Pause 5 * Wait 5ms

Digit=CntDIG O ‘ Get 1sdigit

LOOKUP Digit, [$3F, $06, $5B, $4F, $66, $6D, $7D, $07, $7F, $6F], Pattern
Pattern = Pattern ~ $FF * Invert bits of variable Pattern
Digitl=0 ‘ Disabledigit 1

PORTB = Pattern ‘ Display 1sdigit

Digit2=1 ‘ Enable digit 2

PAUSE 1 Wait 1ms

INTCON.2=0 * Re-enable TMRO interrupts
RESUME ‘ Return to main program
ENABLE ‘ Enable interrupts

END * End of program

Figure5.66 PicBasic Pro program of Project 14

210 PIC BASC projects

Project 15

Project title:

Project description:

Hardware:

4-digit LED display with serial driver — counter project

In this project a 4-digit serial 7-segment display is used as a decimal
counter. The display counts up by one every second from 0000 to 9999.
When it reaches 9999, it goes back to 0000 and the process continues
forever.

Multiplexed 7-segment displays are so important in many display-based
applications that several manufacturers have designed multi-digit, multi-
plexed displays with built-in drivers. One such display isthe 4-digit multi-
plexed 7-segment display BOBM 04N, manufactured by Nexus Machines
Ltd. Thisis afamily of displays with sizes ranging from 8 to 38 mm and
available in red, green, and yellow colours.

In this project, a BO8M04N-R red colour 8mm 4-digit 7-segment display
isused. Figure 5.67 shows the picture of this display.

Figure5.67 BO08MO4N-R display

Thedisplay has 9 pins as shown in Table 5.6. The on-board driver chip has
aseria input format that features serial data, clock and chip enable. A sin-
gle +5V supply isnormally used, although the unit will work with a sup-
ply ashigh as +10V. Serial datais sent as 36 bits of segment information
where alogic 1 turns a segment ON. The displays have 2 spare outputs
that can be used for driving external LEDs, wherethe LED current is pro-
grammed via an on-board resistor.

PicBasic and PicBasic Pro projects 211

Table5.6 BO8MO4N display pin configuration

Pin number Description
LED 1drive
LED 2 drive
Chip enable
Data

Clock

Vdd (+5V)
Brightness
Gnd (0V)
Vied

[EnY

O|lo| N[O |W|IN

Table 5.7 shows how data should be sent to the display unit. First, a start
bit (logic 1) is sent. After this, the segments ato g and the decimal point
of each digit are sent consecutively starting from digit 1, whichisthe digit
at the right-most position. The start bit and the 4-digit display datais sent
in 33 bits. Then the bits for the 2 LED are sent (a logic 1 turns on an
LED). Thelast bit sentisaNULL bit.

Table5.7 Display segment data

Bit 0 START Bit9 | A2 Bit 17 | A3 Bit25 | A4 Bit33 | LED1
Bit 1 Al Bit 10 | B2 Bit 18 | B3 Bit 26 | B4 Bit 34 | LED22
Bit 2 Bl Bit11 | C2 Bit19 | C3 Bit27 | C4 Bit 35 | Null
Bit 3 C1 Bit 12 | D2 Bit20 | D3 Bit28 | D4

Bit 4 D1 Bit 13 | E2 Bit21 | E3 Bit29 | E4

Bit 5 El Bit14 | F2 Bit22 | F3 Bit30 | F4

Bit 6 F1 Bit 15 | G2 Bit23 | G3 Bit31 | G4

Bit 7 Gl Bit 16 | DP2 Bit24 | DP3 Bit 32 | DP4

Bit 8 DP1

Thedisplay control is summarised below (note that each bit should be fol-
lowed by a clock bit):

® Send START hit (logic 1)
® Send Alto G1 of digit 1 (right-most digit)
® Send decimal point (DP1) of digit 1

212 PIC BASC projects

Send A2 to G2 of digit 2

Send decimal point (DP2) of digit 2
Send A3 to G3 of digit 3

Send decimal point (DP3) of digit 3
Send A4 to G4 of digit 4 (Ieft-most digit)
Send decimal point (DP4) of digit 4
Send LED1 hit

Send LED2 hit

Send aNULL bit.

The relationship between adigit number and the segmentsto be turned on
to display this number is given in Table 5.8. For example, to display num-
ber 4 in adigit, we have to send the hexadecimal number $66 to the digit,
i.e. bit pattern “01100110". The segment of each digit must be sent first,
i.e. the bits must be shifted |eft asthey are sent to the display. A display is
blank if a0 issent to al of its segments. This can be useful when we want
to turn off aleading zero when displaying a number. For example, num-
ber “23” can be displayed as“0023" or “023" or as“23" where the spaces
correspond to blank characters. Leading zeroes are usually not shown in
displays and the correct format is“23”.

Table5.8 Relationship between segments and numbers

Number to display abcdefgdp Number (Hex)
0 11111100 $FC
1 01101111 $60
2 11011010 $DA
3 11110010 $F2
4 01100110 $66
5 10110110 $B6
6 10111110 $BE
7 11100000 $EO
8 11111110 $FE
9 11110110 $F6

As an example, suppose that we wish to display nhumber 2478 with both
LEDs turned off. The following data should then be sent to the displays:

® Send a START hit
® Send bit pattern of hexadecimal $FE (i.e. “11111110”) with the MSB
bit sent first to display 8 on digit 1

PicBasic and PicBasic Pro projects 213

® Send bit pattern of hexadecimal $EO (i.e. “11100000”) with the MSB
bit sent first to display 7 on digit 2

® Send bit pattern of hexadecimal $66 (i.e. “01100110") with the MSB
bit sent first to display 4 on digit 3

® Send hit pattern of hexadecimal $DA (i.e. “11011010") with the MSB
bit sent first to display 2 on digit 4

® Send Ofor LED 1toturnoff LED 1

® Send O for LED 2 to turn off LED 2

® Send 0 asthe NULL hit.

That is, the following 36 bits should be sent to the display with aclock bit
sent after each bit (a space character is used between each digit data for
clarity):

“111111110 11100000 01100110 1101101000 0"[s1]

Similarly, for example, number 34 with leading zeroes and with both LEDs
turned on can be displayed by sending the following bit pattern to the

display:

® Send a START bit

® Send bit pattern of hexadecimal $66 (i.e. “01100110") with the MSB
bit sent first to display 4 on digit 1

® Send bit pattern of hexadecimal $F2 (i.e. “11110010") with the MSB

bit sent first to display 3 on digit 2

Send bit pattern O (i.e. “00000000") to blank digit 3

Send bit pattern O (i.e. “00000000”) to blank digit 4

Send 1 for LED 1toturnonLED 1

Send 1 for LED 2toturnon LED 2

Send 0 asthe NULL bit terminator.

That is, the following 36 bits should be sent to the display with aclock bit
sent after each bit (a space character is used between each digit data for
clarity):

“1 01100110 11110010 00000000 00000000 1 1 0"[s2]

The circuit diagram of Project 15 is shown in Figure 5.68. In this project
aPIC16F627-type microcontroller is used with 4MHz internal clock and
internal power-on reset. Display dataand clock are connected to bit 6 (RB6)
and bit 7 (RB7) of PORTB, respectively.

The project built on a breadboard is shown in Figure 5.69. Note that the
project is very simple and consists of only afew connections.

214 PIC BASC projects

1 3 +5V
Ba?tgw | 0.33pF) 0.01F 14
: Vdd 6
—_—
:]
l _L RB6 12 4 Data VDD
= 13 5 BOSMO4N-R
RB7 Clock
CE GND
3 8
PIC 1
16F627 4-Digit 7-Segment Display
5
VSS——l_

Figure5.68 Circuit diagram of Project 15

Figure5.69 Project built on a breadboard

Flow diagram: Theflow diagram of the project is shown in Figure 5.70. At the beginning
of the program PORTB pins are configured as outputs and the states of
LED 1and LED 2 are set as required. Then the bit pattern to be sent to the
display to show the value of variable Cnt is determined and this data is
sent to the display. The program then waitsfor 1 s, increments Cnt by one,
and this processisrepeated forever. Thus, the display shows 000001 002 ...
998999000001

PicBasic and PicBasic Pro projects 215

BEGIN

Configure PORT B
as output

l

Set LED 1 and
LED 2 states

Determine pattern to be sent
to digits D1, D2, D3 and D4

l

Send Data to digits
D1, D2, D3 and D4

!

Wait 1 second

!

Cnt=Cnt+1

}

Figure5.70 Flow diagram of Project 15

Software: PicBasic

Figure 5.71 shows the PicBasic program listing. At the beginning of the
program various program variables are configured as bytes or words. The
main program starts by clearing TRISB register so that PORTB pins are
configured as outputs. Variable Cnt is also cleared to zero since the count
will start from 0. The program loop starts with label NXT. Here, the 4
digits of variable Cnt are extracted by dividing Cnt repeatedly by the powers
of 10 and taking the decimal value and the remainder (PicBasic does not
support the DI G statement which is available only on PicBasic Pro). After
thedigits are obtained, subroutine CONVERT iscalled to find the 7-segment
bit pattern of each digit. Variables D1, D2, D3, and D4 store the it patterns
to be sent to each digit of the display.

216 PIC BASC projects

fhkhkhkkhhhkhhhhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhhhdhhdhhdhhdhhdhdddhddrhdhrddrd

‘ 4-DIGIT 7-SEGMENT LED DISPLAY

* In this project a BO8M 04 type 4-digit 7-segment LED displaysis used.
* The program counts up by one every second. LED 1 and LED 2 are turned
* off in this example.

‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 first, then D2, then D3 and finally D4

* A PIC16F627 type microcontroller is used in the project with 4AMHz

* internal clock and internal reset.

* The connection between the display and the microcontroller is asfollows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA
‘ RB7 Display CLOCK

* Author: Dogan Ibrahim

‘ Date: October, 2005

* Compiler: PicBasic

‘Fle: LED25.BAS

* Modifications

(R S E R SRR R
‘ SYMBOLS

Symbol TRISB = $86 ‘ TRISB address

Symbol PORTB = $06 ‘ PORTB address

Symbol Pattern = BO ‘ Pattern isabyte variable
Symbol | =B1 ‘ Loop counter variable
Symbol Digit = B2 ‘ Digitisabyte variable

Figure5.71 (Continued)

PicBasic and PicBasic Pro projects

217

Symbol D1 =B3
Symbol D2 = B4
Symbol D3 = B5
Symbol D4 = B6
Symbol LED1 = B7
Symbol LED2 = B8
Symbol Cnt = W6
Symbol Temp = W7
Symbol DATA = Pin6
Symbol CLK =7

* START OF MAIN PROGRAM
POKETRISB, 0

LED1=0
LED2=0

Cnt=0

NXT:
Digit = Cnt / 1000
GOSUB CONVERT
D4 = Pattern

Temp = Cnt // 1000
Digit = Temp / 100
GOSUB CONVERT
D3 = Pattern

Temp =Cnt // 100
Digit = Temp/ 10
GOSUB CONVERT
D2 = Pattern

Digit = Temp // 10
GOSUB CONVERT
D1 = Pettern

* Send data to the display

GOSUB SEND_START
Pattern=D1

Figure5.71 (Continued)

‘ Digit 1 pattern

‘ Digit 2 pattern

‘ Digit 3 pattern

‘ Digit 4 pattern

‘ Display LED 1 data

‘ Display LED 2 data

* Cntisaword variable

* Temp isaword variable
‘ Display Datais RB6

‘ Display CLOCK isRB7

* Set PORTB as output

‘ LED 1isto be off
‘ LED 2 isto be off

* Number to display in Cnt

* Get 1000s digit
 Get segmentsto turn on
* Pattern for 1000s digit

* Find remainder

‘ Get 100s digit

 Get segmentsto turn on
* Pattern for 100s digit

* Find remainder

‘ Get 10s digit

 Get segmentsto turn on
* Pattern for 10s digit

* Find remainder

‘ get segmentsto turn on
* Pattern for 1s digit

* Send START bit

218 PIC BASC projects

GOSUB DISPLAY ‘ Send 1s digit
Pattern=D2

GOSUB DISPLAY ‘ Send 10s digit

Pattern = D3

GOSUB DISPLAY ‘ Send 100s digit

Pattern = D4

GOSUB DISPLAY * Send 1000s digit
GOSUB SEND_LEDS * Send LED bits

GOSUB SEND_TERM * Send TERMINATOR bit
PAUSE 1000 “ Wait 1 second
Cnt=Cnt+1 ‘ Increment count

GOTO NXT * Continue counting and displaying

CONVERT:

‘ Find the bit pattern to be sent to the display in order to turn on the correct segments
* to display the required number. Digit contains a number between 0 and 9 and

* on return from LOOKUP statement, Pattern contains the bit pattern to send to

* PORTB to display the required number in Digit.

LOOKUP Digit, ($FC, $60, $DA, $F2, $66, $B6, $BE, $EO, SFE, $F6), Pattern
RETURN

SEND_START:

* This subroutine sends a START hit to the display. START hitisalogic 1

DATA =1 ‘ Data=1
TOGGLE CLK ‘CLK=1
TOGGLE CLK ‘CLK =0
RETURN

SEND_TERM:

* This subroutine sends aTERMINATOR bit to the display. TERMINATOR bit isalogic 0

DATA =0 ‘ Data=0
TOGGLE CLK ‘CLK=1
TOGGLE CLK ‘CLK=0
RETURN

Figure5.71 (Continued)

PicBasic and PicBasic Pro projects 219

SEND_LEDS:
* This subroutine sends the two LED data to the display

DATA =LED1
TOGGLE CLK
TOGGLE CLK
DATA = LED2
TOGGLE CLK
TOGGLE CLK
RETURN

DISPLAY:

* This subroutine sends data and clock bits to the display. Data bits are sent by left shifting
‘ the value in variable Pattern. A clock pulseis sent after sending each data bit.

FORI1=1TO8
DATA = Bit7 ‘ Get bit 7 of Pattern
TOGGLE CLK ‘CLK =1
Pattern = Pattern * 2 * Shift left pattern 1 digit
TOGGLE CLK ‘CLK=0

NEXT |

RETURN

END ‘ End of program

Figure5.71 PicBasic program of Project 15

Subroutine SEND_START is called to send the START hit to the display.
Then the bit pattern of each digit is sent, starting with digit 1. After send-
ing the four-digit data, subroutine SEND_LEDS iis called to send the two
LED bit data. Data transfer is complete when the terminator NULL char-
acter is sent by calling subroutine SEND_TERM.

The program given in Figure 5.71 can be improved and made easier to
understand if the display subroutines are all collected and stored inside a
common subroutine. This is shown in Figure 5.72. Here, a subroutine
called DISPLAY iscreated and all the display related programs are stored
inside this subroutine. The main program consists of the counter Cnt only
which is incremented every second. Subroutine DISPLAY is then called
to display the value of Cnt. The advantage of this approach is that the
DISPLAY subroutine can be used in other programs after it has been
tested and working correctly.

220 PIC BASC projects

fhkhdhhkkhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhhhhhhdhhhhhdhhhhhdhhhdhdhdhddrhdhdddrdrddxd

‘ 4-DIGIT 7-SEGMENT LED DISPLAY

* In this project a BO8M 04 type 4-digit 7-segment LED displaysis used.
* The program counts up by one every second. LED 1 and LED 2 are turned
* off in this example.

‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 first, then D2, then D3 and finally D4

* A PIC16F627 type microcontroller is used in the project with 4AMHz

* internal clock and internal reset.

* The connection between the display and the microcontroller is asfollows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA
‘ RB7 Display CLOCK

* Author: Dogan Ibrahim

‘ Date: October, 2005

* Compiler: PicBasic

‘Fle: LED26.BAS

* Modifications

(R R R R R SRR R
‘ SYMBOLS

Symbol TRISB = $86 ‘ TRISB address

Symbol PORTB = $06 ‘ PORTB address

Symbol Pattern = BO ‘ Pattern isabyte variable
Symbol | =B1 ‘ Loop counter variable
Symbol Digit = B2 ‘ Digitisabyte variable

Figure5.72 (Continued)

PicBasic and PicBasic Pro projects

221

Symbol D1 =B3
Symbol D2 = B4
Symbol D3 = B5
Symbol D4 = B6
Symbol LED1 = B7
Symbol LED2 = B8
Symbol Cnt = W6
Symbol Temp = W7
Symbol DATA = Pin6
Symbol CLK =7

* START OF MAIN PROGRAM
POKETRISB, 0

LED1=0
LED2=0
Cnt=0

NXT: GOSUB DISPLAY
PAUSE 1000
Cnt=Cnt+1
GOTO NXT

DISPLAY:

SUBROUTINES

Digit 1 pattern

Digit 2 pattern

Digit 3 pattern

Digit 4 pattern

Display LED 1 data
Display LED 2 data
Cntisaword variable
Temp isaword variable
Display Datais RB6
Display CLOCK isRB7

Set PORTB as output

LED 1isto be off
LED 2 isto be off
Number to display in Cnt

Display number in Cnt

Wait 1 second

Increment count

Continue counting and displaying

* This subroutine displays the number in variable Cnt on the 4-digit 7-segment display

Digit = Cnt / 1000
GOSUB CONVERT
D4 = Pattern

Temp = Cnt // 1000
Digit = Temp / 100
GOSUB CONVERT
D3 = Pattern

Temp =Cnt // 100
Digit = Temp/ 10
GOSUB CONVERT
D2 = Pattern

Figure5.72 (Continued)

‘

Get 1000s digit
Get segments to turn on
Pattern for 1000s digit

Find remainder
Get 100s digit
Get segments to turn on

* Pattern for 100s digit

Find remainder
Get 10s digit
Get segments to turn on

* Pattern for 10s digit

222 PIC BASC projects

Digit = Temp // 10 * Find remainder
GOSUB CONVERT ‘ get segmentsto turn on
D1 = Pattern * Pattern for 1sdigit

* Send data to the display
GOSUB SEND_START ‘ Send START hit
Pattern = D1
GOSUB SEGMENTS * Send 1s digit
Pattern = D2
GOSUB SEGMENTS * Send 10s digit
Pattern = D3
GOSUB SEGMENTS * Send 100s digit
Pattern = D4
GOSUB SEGMENTS ‘ Send 1000s digit
GOSUB SEND_LEDS * Send LED hits
GOSUB SEND_TERM * Send TERMINATOR bit
RETURN

CONVERT:

* Find the bit pattern to be sent to the display in order to turn on the correct segments
* to display the required number. Digit contains a number between 0 and 9 and

* on return from LOOKUP statement, Pattern contains the bit pattern to send to

* PORTB to display the required number in Digit.

LOOKUP Digit, ($FC, $60, $DA, $F2, $66, $B6, $BE, $EO, $FE, $F6), Pattern
RETURN

SEND_START:

* This subroutine sends a START hit to the display. START bitisalogic 1

DATA =1 ‘ Data=1
TOGGLE CLK ‘CLK=1
TOGGLE CLK ‘CLK=0
RETURN

SEND_TERM:

* This subroutine sends aTERMINATOR hit to the display. TERMINATOR bit isalogic O

DATA =0 ‘ Data=0
TOGGLE CLK ‘CLK=1
TOGGLE CLK ‘CLK =0
RETURN

Figure5.72 (Continued)

PicBasic and PicBasic Pro projects 223

SEND_LEDS:
* This subroutine sends the two LED data to the display

DATA =LED1
TOGGLE CLK
TOGGLE CLK
DATA = LED2
TOGGLE CLK
TOGGLE CLK
RETURN

SEGMENTS:

* This subroutine sends data and clock bits to the display. Data bits are sent by left shifting
‘ the value in variable Pattern. A clock pulseis sent after sending each data bit.

FORI1=1TO8
DATA = Bit7 ‘ Get bit 7 of Pattern
TOGGLE CLK ‘CLK =1
Pattern = Pattern * 2 * Shift left pattern 1 digit
TOGGLE CLK ‘CLK=0

NEXT |

RETURN

END ‘ End of program

Figure5.72 Improved PicBasic program of Project 15

PicBasic Pro

Figure 5.73 shows the program listing. The PicBasic Pro program is much
smaller and also easier to understand than the PicBasic program. The digits
of variable Cnt are found using the PicBasic Pro DIG statement. DIG 0
returnsthe 1s digit of avariable, DIG 1 returns the 10s digit and so on.

PicBasic Pro also supports the SHIFTOUT statement which is used to
send dataand clock bitsto the display. The Mode parameter of SHIFTOUT
statement is chosen 1 so that the data is shifted out highest bit first.

The display related code is stored inside a subroutine called DISPLAY.
Main program consists of the counter Cnt only which isincremented every
second and subroutine DISPLAY iscalled to display its value.

224 PIC BASC projects

fhkhkhkkhhhkhhhhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhhhdhhdhhdhhdhhdhdddhddrhdhrddrd

‘ 4-DIGIT 7-SEGMENT LED DISPLAY

* In this project a BO8M 04 type 4-digit 7-segment LED displaysis used.
* The program counts up by one every second. LED 1 and LED 2 are turned
* off in this example.

‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 first, then D2, then D3 and finally D4

* A PIC16F627 type microcontroller is used in the project with 4AMHz

* internal clock and internal reset.

* The connection between the display and the microcontroller is asfollows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA

‘ RB7 Display CLOCK

* In this program the leftmost LEDs which are zero are blanked so that for example
‘ number 25 isdisplayed as*25” and not as “0025”

* Author: Dogan Ibrahim
‘ Date: October, 2005
* Compiler: PicBasic Pro
‘Fle: LED27.BAS

* Modifications

fhkkdhhkkhhhhhhhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhhhdhhdhhdhhdhhhhddhrdrhhrddrd

‘ DEFINITIONS

Pattern VAR Byte ‘ Pattern isabyte variable
| VAR Byte ‘ Loop counter variable
Digit VAR Byte ‘ Digitisabyte
Figure5.73 (Continued)

PicBasic and PicBasic Pro projects 225

LED1 VARBiIt ‘ Display LED 1 data
LED2 VARBiIt ‘ Display LED 2 data
Cnt VAR Word ‘ Cntisaword variable
Symbol DATA_PIN = PORTB.6 ‘ Display Datais RB6
Symbol CLK_PIN = PORTB.7 ‘ Display CLOCK isRB7

* START OF MAIN PROGRAM

TRISB =0 * Set PORTB as output
LED1=0 ‘ LED 1listo be off
LED2=0 ‘ LED 2isto be off
Cnt=0 * Number to display in Cnt
NXT: GOSUB DISPLAY * Display humber in Cnt
PAUSE 1000 * Wait 1 second
Cnt=Cnt+1 * Increment count
GOTO NXT * Continue counting and displaying

‘ SUBROUTINES
DISPLAY:

* This subroutine displays the number in variable Cnt on the 4-digit 7-segment display

‘ Send START bit
DATA_PIN=1 ‘ Data=1
PULSOUT CLK_PIN, 1 * Send aclock
* Send digit bits
FOR1=0TO3
Digit=Cnt DIG | ‘ Get digits of variable Cnt

LOOKUP Digit, [$FC, $60, $DA, $F2, $66, $B6, $BE, $EO, SFE, $F6], Pattern
SHIFTOUT DATA_PIN, CLK_PIN, 1, [Pattern]

NEXT I

* Send LED1 and LED 2 bits
DATA_PIN = LED1 ‘ Data= LED1
PULSOUT CLK_PIN,1 * Send clock
DATA_PIN = LED2 ‘ Data=LED 2
PULSOUT CLK_PIN,1 * Send clock

Figure5.73 (Continued)

226 PIC BASC projects

* Send TERMINATOR bit

DATA_PIN=0 ‘Data=0
PULSOUT CLK_PIN,1 * Send clock
RETURN

END ‘ End of program

Figure5.73 PicBasic Pro program of Project 15

PicBasic and PicBasic Pro projects 227

Project 16
Project title:

Project description:

Hardware:

Flow diagram:

4-digit LED display with serial driver — counter project with leading
zeroes blanked

This project isvery similar to Project 15 where a4-digit 7-segment display
is used as a counter. In this project, the leading zeroes of the display are
blanked. Thus, for example, number “67” isdisplayed as“ 67", number “5”
isdisplayed as“5", and so on.

The hardware and the circuit diagram of the project is as in Figure 5.68
where the display is controlled from bit 6 and bit 7 of PORTB.

The flow diagram of the project isvery similar to the flow diagram given
in Figure 5.70. Here, the difference is that the leading zeroes are blanked
by sending zeroesto all of their segments. Figure 5.74 showsthe flow dia-
gram of the project.

BEGIN

ll

Configure PORTB
as output

I

Set LED 1 and
LED 2 states

Cnt=0

Determine pattern to be sent
to digits D1, D2, D3 and D4

!

Clear any leading
zeroes

I

Send Data to digits
D1, D2, D3 and D4

Wait 1 second

Figure5.74 Flow diagram of Project 16

228 PIC BASC projects

Software: PicBasic
Figure 5.75 shows the PicBasic program listing. The program is very
similar to the one given in Figure 5.72. Here, the values of leading digits
are checked and if they are zero, the segments of these digits are cleared
to zeroes. Leading zero checking is done by introducing the following
code just before sending the segment data to the display:

IF D4 = $FCTHEN BL4
GOTO CONT

BL4: D4=0
IF D3 = $FCTHEN BL3
GOTO CONT

BL3: D3=0
IF D2 = $FC THEN BL2
GOTO CONT

BL2. D2=0

If digit 4 bit pattern (D4) is equal to hexadecimal $FC then this digit is
zero and sinceit isthe left-most digit, it is blanked by clearing D4. If both
D4 and D3 bit patterns are zero then both displays are blanked. Finally, if
D4, D3, and D2 hit patterns are zero then all three digits are blanked.

fhkkhkkhhhkkhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhdddhhhddhrhhddhxdrrsxx

‘ 4-DIGIT 7-SEGMENT LED DISPLAY COUNTER WITH BLANKING

‘ In this project a BO8M 04 type 4-digit 7-segment LED displaysis used.
* The program counts up by one every second. LED 1 and LED 2 are turned
* off in this example.

‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 firgt, then D2, then D3 and finally D4
Figure5.75 (Continued)

PicBasic and PicBasic Pro projects

229

* A PIC16F627 type microcontroller is used in the project with 4AMHz

“ internal clock and internal reset.

* The connection between the display and the microcontroller is as follows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA

‘ RB7 Display CLOCK

* In this program the leftmost LEDs which are zero are blanked so that for example
‘ number 25 isdisplayed as* 25" and not as “0025”

* Author: Dogan Ibrahim

‘ Date: October, 2005

* Compiler: PicBasic

‘Fle LED28.BAS

* Modifications

R R
‘ SYMBOLS

Symbol TRISB = $86 ' TRISB address

PORTB address
Pattern is a byte variable

Symbol PORTB = $06
Symbol Pattern = BO

Symbol | =B1 * Loop counter variable
Symbol Digit = B2 ‘ Digit isabyte variable
Symbol D1 =B3 ‘ Digit 1 pattern
Symbol D2 = B4 ‘ Digit 2 pattern
Symbol D3 = B5 ‘ Digit 3 pattern
Symbol D4 = B6 ‘ Digit 4 pattern

Symbol LED1 = B7
Symbol LED2 = B8 Display LED 2 data
Symbol Cnt = W6 Cntisaword variable
mbol Temp = emp isaword variable
bol Temp = W7 ‘Tempi d variabl
mbo =Pin isplay Datais
bol DATA = Pin6 Display Datais RB6
mbo = i is
bol CLK =7 Display CLOCK isRB7

Figure5.75 (Continued)

Display LED 1 data

230 PIC BASC projects

* START OF MAIN PROGRAM

POKETRISB, 0 * Set PORTB as output
LED1=0 * LED 1isto be off
LED2=0 * LED 2 isto be off
Cnt=0 * Number to display in Cnt
NXT: GOSUB DISPLAY * Display number in Cnt
PAUSE 1000 ‘ Wait 1 second
Cnt=Cnt+1 ‘ Increment count
GOTO NXT * Continue counting and displaying

‘ SUBROUTINES

DISPLAY:

* This subroutine displays the number in variable Cnt on the 4-digit 7-segment display

Digit = Cnt/ 1000 * Get 1000s digit
GOSUB CONVERT ‘ Get segmentsto turn on
D4 = Pattern * Pattern for 1000s digit
Temp = Cnt // 1000 * Find remainder

Digit = Temp / 100 ‘ Get 100s digit

GOSUB CONVERT ‘ Get segmentsto turn on
D3 = Pattern * Pattern for 100s digit
Temp = Cnt // 100 * Find remainder

Digit = Temp/ 10 ‘ Get 10sdigit

GOSUB CONVERT ‘ Get segmentsto turn on
D2 = Pattern * Pattern for 10s digit
Digit = Temp// 10 * Find remainder
GOSUB CONVERT ‘ get segments to turn on
D1 = Pattern * Pattern for 1sdigit

* Send data to the display. First find out if there are any leading zeroes and

* blank them.
IF D4 = $FC THEN BL4 ‘ If Digit D4 is zero...
GOTO CONT * Otherwise continue

Figure5.75 (Continued)

PicBasic and PicBasic Pro projects

231

BL4:D4=0 ‘ Blank D4
IFD3=$FCTHEN BL3 ‘ If Digit D3 is zero...
GOTO CONT ‘ Otherwise continue
BL3:D3=0 ‘ Blank D3
IFD2=$FCTHEN BL2 ‘ If Digit D2is0...
GOTO CONT ‘ Otherwise continue
BL2: D2=0 ‘ Blank D2
CONT:
GOSUB SEND_START * Send START bit
Pattern=D1
GOSUB SEGMENTS * Send 1s digit
Pattern = D2
GOSUB SEGMENTS * Send 10s digit
Pattern = D3
GOSUB SEGMENTS * Send 100s digit
Pattern = D4
GOSUB SEGMENTS * Send 1000s digit
GOSUB SEND_LEDS * Send LED bhits
GOSUB SEND_TERM * Send TERMINATOR bit

CONVERT:

* Find the bit pattern to be sent to the display in order to turn on the correct segments
* to display the required number. Digit contains a number between 0 and 9 and

* on return from LOOKUP statement, Pattern contains the bit pattern to send to

* PORTB to display the required number in Digit.

LOOKUP Digit, ($FC, $60, $DA, $F2, $66, $B6, $BE, $EO, $FE, $F6), Pattern
RETURN

SEND_START:

* This subroutine sends a START bit to the display. START bitisalogic 1

DATA =1 ‘Data=1
TOGGLE CLK ‘CLK =1
TOGGLE CLK ‘CLK =0
RETURN

SEND_TERM:

* This subroutine sends aTERMINATOR bit to the display. TERMINATOR bit isalogic O
Figure5.75 (Continued)

232 PIC BASC projects

DATA =0 ‘ Data=0
TOGGLE CLK ‘CLK=1
TOGGLE CLK ‘CLK=0
RETURN

SEND_LEDS:

* This subroutine sends the two LED data to the display
‘ DATA = LED1

TOGGLE CLK

TOGGLE CLK

DATA = LED2

TOGGLE CLK

TOGGLE CLK

RETURN

SEGMENTS:

* This subroutine sends data and clock bits to the display. Data bits are sent by left shifting

‘ the value in variable Pattern. A clock pulseis sent after sending each data bit.

FORI1=1TO8
DATA = Bit7 * Get bit 7 of Pattern
TOGGLE CLK ‘CLK=1
Pattern = Pattern * 2 * Shift left pattern 1 digit
TOGGLE CLK ‘CLK=0

NEXT |

RETURN

END ‘ End of program

Figure5.75 PicBasic program of Project 16

PicBasic Pro

Figure 5.76 showsthe PicBasic Pro program listing which isagain smaller
and also more efficient than the PicBasic program. Leading zero digitsare
cleared by checking each leading digit before sending datato it. Leading

zero checking is performed as follows:

The bit pattern for al the digit segments are found and if aleading digit is
zero and the digit to its left is also zero (variable First is 1), then variable
Patterniscleared to zero. Bytearray “T[]” storesthe bit patterns of all the
digits. A “FOR” loop isformed to shift out the segment data of each digit,

with digit 1 bits shifted out first.

PicBasic and PicBasic Pro projects 233

fhkkhkhhkkhhhdhhkhhhdhhhhhhhhdhhhhdhhhhhhhdhhdhhhhhdhhhhdhhhddrhhhdhddhdddhddrhhrddrrdrddx

‘ 4-DIGIT 7-SEGMENT COUNTER WITH BLANKING DISPLAY

* In this project a BO8M 04 type 4-digit 7-segment LED displaysis used.
* The program counts up by one every second. LED 1 and LED 2 are turned
* off in thisexample.

‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 first, then D2, then D3 and finally D4

* A PIC16F627 type microcontroller is used in the project with 4AMHz

“ internal clock and internal reset.

* The connection between the display and the microcontroller is as follows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA
‘ RB7 Display CLOCK

* In this program the leftmost LEDs which are zero are blanked so that for example
‘ number 25 isdisplayed as* 25" and not as “0025”

* Author: Dogan Ibrahim
‘ Date: October, 2005
* Compiler: PicBasic Pro
‘Fle LED29.BAS

* Modifications

fhkkhkkhhhdhhkhhhdhhhhhhhhdhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhddrhhddhddrhdhrdrrdhrisx

‘ DEFINITIONS

Pattern VAR Byte ‘ Pattern isabyte variable
I VAR Byte ‘ Loop counter variable
Digit VAR Byte ‘ Digitisabyte
Figure5.76 (Continued)

234 PIC BASIC projects

Firss VAR Byte * Blanking checking variable
T VAR Byte[4] * Digit segment bit patterns
LED1 VARBIt ‘ Display LED 1 data

LED2 VARBIt ‘ Display LED 2 data

Cnt VAR Word ‘ Cntisaword variable
Symbol DATA_PIN = PORTB.6 ‘ Display Datais RB6
Symbol CLK_PIN = PORTB.7 ‘ Display CLOCK isRB7

* START OF MAIN PROGRAM

TRISB =0 * Set PORTB as output
LED1=0 * LED 1isto be off
LED2=0 * LED 2 isto be off
Cnt=0 * Number to display in Cnt
NXT: GOSUB DISPLAY * Display number in Cnt
PAUSE 1000 ‘ Wait 1 second
Cnt=Cnt+1 ‘ Increment count
GOTO NXT * Continue counting and displaying

‘ SUBROUTINES

DISPLAY:

* This subroutine displays the number in variable Cnt on the 4-digit 7-segment display

* Send START hit
DATA_PIN=1 ‘Data=1
PULSOUT CLK_PIN, 1 * Send aclock

* Find out if blanking of leading digits are required or not. Since digit 1 is sent first, we
‘ haveto find al the digits and determine if blanking of any digit isrequired. Array T[I]
* stores the bit pattern of each digit

First=1 * First time round the loop
FOR|1=3TOOSTEP-1
Digit=Cnt DIG | * Get digits of variable Cnt

LOOKUP Digit, [$FC, $60, $DA, $F2, $66, $B6, $BE, $EO, $FE, $F6], Pattern
IF (Digit = 0) AND (First = 1) THEN
Pattern =0
ELSE
First=0
ENDIF
Figure5.76 (Continued)

PicBasic and PicBasic Pro projects 235

Figure5.76 PicBasic Pro program of Project 16

T[] = Pettern
NEXT |

IF Cnt = 0 THEN T[0] = $FC

“If Cnt=0display 0in D1

Display each digit with blanking leading zeroes. Digit 1 is sent first

FORI1=0To 3

SHIFTOUT DATA_PIN, CLK_PIN, 1, [T[1]]

NEXT I

Send LED1 and LED 2 bits
DATA_PIN = LED1
PULSOUT CLK_PIN,1
DATA_PIN = LED2
PULSOUT CLK_PIN,1

Send TERMINATOR bit
DATA_PIN=0
PULSOUT CLK_PIN,1
RETURN

END

‘ Data= LED1
* Send clock

‘ Data=LED 2
* Send clock

‘ Data=0
‘ Send clock

‘ End of program

236 PIC BASC projects

Project 17

Project title:

Project description:

Hardware:

4-digit external interrupt-driven event counter

This project can be used to count external events and to display the event
count on a 4-digit display. An event can be an abject on a conveyor belt,
number of people entering a building, number of cars entering and leav-
ing a car park, etc. External interrupt input of the microcontroller is used
to detect events. An event is detected when the external interrupt pin
changes state from logic 1 to logic O. This project shows how the external
interrupt pin of a PIC microcontroller can be used.

Thecircuit diagram of the project isshown in Figure 5.77. Display is con-
nected to bit 6 and bit 7 of PORTB asin Project 16. Interrupt input of the
microcontroller (INT) is connected to a switch which simulates the
occurrence of an event. The switchisnormally at logic 1 and goesto logic
0 when an external event occurs (i.e. when the switch is pressed).

1 3 Y
‘t_:'""""’I’"’ 78LOS _L .
9V T gsapE 14
: 2 D0t
Battery e ‘i‘ —]- v .
0K .
.L o RB6 12 4 Data vbb
= Push to RBOANT o) 13 5 ook BOSMO4N-R
Interript CE GND
1 3 B
N PIC i
16F627 4-Digit ?—Seément Bisplay
Vssf'-:L

Figure5.77 Circuit diagram of Project 17

Flow diagram:

The flow diagram of the project is given in Figure 5.78. At the beginning
of the program event counter variable Cnt is cleared and external inter-
rupts are enabled. The main program then goes into an endless loop
where the value of Cnt is displayed continuously. Whenever an external
interrupt occurs the value of event counter Cnt isincremented by one and
new value of Cnt is displayed by the main program.

PicBasic and PicBasic Pro projects 237

BEGIN

I

CNT =0

|

Display CNT

IS

BEGIN

0

CNT =CNT +1

!

Re-enable interrupts

RETURN

i

Figure5.78 Flow diagram of Project 17

Software:

PicBasic
Interrupts are not directly supported from the PicBasic language and thus
only the PicBasic Pro program of this project is given.

PicBasic Pro

Figure5.79 showsthe PicBasic Pro program listing. At the beginning of the
program TRISB is set to 1 so that RBO is configured asinput and other bits
of PORTB are configured as outputs. Register OPTION_REG isthen con-
figured so that external interrupts are recognised on the falling edge (high
to low trangition) of the interrupt input. Register INTCON is configured to
enable external interrupts and the routine starting with label ISR has been
assigned to be the interrupt service routine. Notice that the statement “ON
INTERRUPT GOTO ISR” assigns label ISR to be the starting address of
the interrupt service routine (any other label name can be used here).

Inside the main program variable Cnt is cleared and the program calls to
subroutine DISPLAY to show the value of variable Cnt continuously.

238 PIC BASC projects

Inside the ISR variable Cnt is incremented by 1, external interrupts are
re-enabled, and the program returnsto the main program. Notice that inter-
rupts are disabled just before entering the ISR, and they are re-enabled
just after leaving the ISR.

thhkkhhkkhhhhhhdhhhhhhhhhhhhhhhhdhhhhhdhhhdhhhhhdhhhhhhhdhhhhhhhdhhdhddhhddkrdrddxix

‘ 4-DIGIT INTERRUPT BASED EVENT COUNTER

* In this project a BO8M 04 type 4-digit 7-segment LED displaysis used.

* A switch is connected to the external interrupt input of the microcontroller.
* The program counts external interrupts (i.e. external events) and displays

* the result on a 4-digit 7-segment display. Interrupts are detected on the

‘ high to low transition of the interrupt pin (RBO/INT) of the microcontroller.
‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 first, then D2, then D3 and finally D4

* A PIC16F627 type microcontroller is used in the project with 4AMHz

* internal clock and internal reset.

* The connection between the display and the microcontroller is as follows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA

‘ RB7 Display CLOCK

* In this program the leftmost LEDs which are zero are blanked so that for example
‘ number 25 is displayed as* 25” and not as “0025”

* Author: Dogan Ibrahim
‘ Date: October, 2005
* Compiler: PicBasic Pro
‘Fle: LED30.BAS

* Modifications

(SRS E RS TR EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEE RS

Figure5.79 (Continued)

PicBasic and PicBasic Pro projects

239

‘ DEFINITIONS

Pattern VAR Byte ‘ Pattern isabyte variable

I VAR Byte ‘ Loop counter variable
Digit VAR Byte ‘ Digitisabyte

Firss VAR Byte * Blanking checking variable
T VAR Byte[4] ‘ Digit segment bit patterns
LED1 VAR Bit ‘ Display LED 1 data
LED2 VAR Bit ‘ Display LED 2 data

Cnt VAR Word ‘ Cntisaword variable
Symbol DATA_PIN = PORTB.6 ‘ Display Datais RB6
Symbol CLK_PIN = PORTB.7 ‘ Display CLOCK isRB7

* START OF MAIN PROGRAM

TRISB=1 ‘ RBO isinput, others output
ON INTERRUPT GOTO ISR ‘ Interrupt service routine
OPTION_REG = %01000000 ‘ External interrupt on falling edge of RBO
LED1=0 ‘ LED listo be off
LED2=0 * LED 2isto be off
Cnt=0 * Clear the event counter, Cnt
INTCON = %10010000 ‘ Enable external interrupt RBO
NXT: GOSUB DISPLAY * Display number in Cnt
GOTO NXT * Continue counting and displaying

‘ Thisistheinterrupt service routine, ISR. The program jumps here whenever an external
“ interrupt (i.e. whenever an event occurs) occurs

DISABLE ‘ Disable interrupts

ISR: ‘ Entry point of the ISR
Cnt=Cnt +1 ‘ Increment event counter, Cnt
INTCON = %10010000 ‘ Enable external interrupts
RESUME * Resume main program
ENABLE ‘ Enable interrupts

‘ SUBROUTINES
DISPLAY:

* This subroutine displays the number in variable Cnt on the 4-digit 7-segment display
Figure5.79 (Continued)

240 PIC BASC projects

* Send START hit
DATA_PIN=1 ‘ Data=1
PULSOUT CLK_PIN, 1 * Send aclock

‘ Find out if blanking of leading digits are required or not. Since digit 1 is sent first, we
‘ haveto find al the digits and determine if blanking of any digit isrequired. Array T[I]
* stores the bit pattern of each digit

First=1 * First time round the loop
FORI=3TOOSTEP-1
Digit=Cnt DIG | ‘ Get digits of variable Cnt

LOOKUP Digit, [$FC, $60, $DA, $F2, $66, $B6, $BE, $EO, SFE, $F6], Pattern
IF (Digit = 0) AND (First = 1) THEN
Pattern=0
ELSE
First=0
ENDIF
T[I] = Pettern
NEXT |
IFCnt=0THEN T[O] = $FC “If Cnt =0 display 0in D1 position

Display each digit with blanking leading zeroes. Digit 1 is sent first
FORI1=0To3
SHIFTOUT DATA_PIN, CLK_PIN, 1, [T[I]]
NEXT |

* Send LED1 and LED 2 bits

DATA_PIN = LED1 ‘ Data= LED1
PULSOUT CLK_PIN,1 * Send clock
DATA_PIN = LED2 ‘ Data=LED 2
PULSOUT CLK_PIN,1 * Send clock

* Send TERMINATOR bit

DATA_PIN=0 ‘ Data=0
PULSOUT CLK_PIN,1 * Send clock
RETURN

END * End of program

Figure5.79 PicBasic Pro program of Project 17

PicBasic and PicBasic Pro projects 241

Project 18
Project title:

Project description:

Hardware:

Flow diagram:

4-digit timer interrupt-driven chronograph

This project is a chronograph with three push-button switches labelled:
START, STOR and CLEAR. The chronograph is configured to count up
accurately in 10 ms intervals using the timer interrupts of the microcon-
troller. The count is displayed continuously on a 4-digit 7-segment dis-
play. Counting starts when the START button is pressed, and stops when
the STOP button is pressed. When the counter isin stopped, pressing the
CLEAR button clears the display so that a new count can be started.

Thecircuit diagram of the project is shown in Figure 5.80. Display iscon-
nected to bit 6 and bit 7 of PORTB as in Project 16. START, STOPR, and
CLEAR buttons are connected to bit O, bit 1, and bit 2 of PORTB, respect-
ively. A PIC16F627-type microcontroller is used in this project with
4MHz internal clock and the internal master clear circuit of the micro-
controller is enabled to minimise external component count.

The flow diagram of the project is given in Figure 5.81. At the beginning
of the program event counter variable Cnt is cleared and the program waits

3 +5V

78L05 _L '
) 0.01pF 14
T Vdd 6
10K
5 RB6 12 4 Data VoD
13 5 B08MO4N-R
STARTI:I:| RBO RB7 Clock CE GND
1 1
) PIC
V) 16F627 =

10K 4-Digit 7-Segment Display

I:U I RB1
STOP
1

\%
+5V SS_J

10K
8

[D RB2
CLEAR

Figure5.80 Circuit diagram of Project 18

242 PIC BASC projects

until switch START is pressed. When START is pressed timer interrupt
TMRO is enabled and Cnt is incremented every 10ms. Counting stops
when the STOP button is pressed. At this mode, pressing the CLEAR
switch clears the display and the process repeats from the beginning.

Configure TMRO

CNT =0

RT
pressed ?
Y

Start TMRO and
enable interrupts

Display count
STOP

pressed ?

Stop count

AR
pressed ?

ISR

CNT =CNT +1
Re-enable interrupts
RETURN

Figure5.81 Flow diagram of Project 18

PicBasic and PicBasic Pro projects 243

Software:

PicBasic
Interrupts are not directly supported from the PicBasic language and thus
only the PicBasic Pro program of this project is given.

PicBasic Pro

Figure 5.82 shows the PicBasic Pro program listing. At the beginning of
the program TRISB is set to 7 so that RBO, RB1, and RB2 are configured
as inputs and other pins of PORTB are configured as outputs. Then, the
ISR address is defined and OPTION_REG register is set so that the
TMRO pre-scaler is 64. The program then waits until the START button
(PSTART) is pressed. When the START button is pressed the timer inter-
rupt is enabled so that Cnt isincremented automatically every 10ms. The
program also checksto seeif the STOP button (PSTOP) is pressed and if
S0, jumps to label STP to stop the timer interrupt. The final value of Cnt
can be seen on the display at this point. The BUTTON statement is used
with debouncing to check the state of the push-button switches.

Theinterrupt service routine starts with label ISR. Inside thisroutine Cnt
isincremented by 1, TMRO is re-loaded with 100 so that timer interrupts
are generated every 10 ms. Timer interrupt flag (bit 2 of INTCON) isalso
cleared inside this routine so that further timer interrupts can be accepted
by the microcontroller. Assuming a4-MHz clock is used, the timer inter-
rupt TMRO interval is given by

Interval (us) = pre-scaler X (256 — TMRO)

with a pre-scaler value of 64 and a TMRO value of 100 the TMRO inter-
val isgiven by

Interval = 64* (256 — 100) = 9.984ms

which isclose enoughto 10ms.... .

Ekkkkhhhkhkhkhhhhkhhhhhhhhhhhhhhkhkhkhhhhhhhhhhhkhkhkhhhhhhhhrhhhdkrhhhhhhhrrrrxrxk

4-DIGIT TIMER INTERRUPT BASED CHRONOGRAPH

“ In this project aBO8M 04 type 4-digit 7-segment LED display is used.

* Three switches are connected to the microcontroller: START, STOP and
* CLEAR. When START switch is pressed counting starts with

* 10msintervals. When the STOP switch is pressed counting stops.

Figure5.82 (Continued)

244 PIC BASC projects

* When the count stops, pressing the CLEAR button clears the display,
‘ ready for the next count.

‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 first, then D2, then D3 and finally D4

* A PIC16F627 type microcontroller is used in the project with 4AMHz

* internal clock and internal reset.

* The connection between the display and the microcontroller is as follows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA
‘ RB7 Display CLOCK

* The switches are connected as follows:

‘ RBO START
‘ RB1 STOP
‘ RB2 CLEAR

* In this program the leftmost LEDs which are zero are blanked so that for example
‘ number 25 isdisplayed as*25” and not as “0025”

* Author: Dogan Ibrahim
‘ Date: October, 2005
* Compiler: PicBasic Pro
‘Fle: LED31.BAS

* Modifications

fhkhdhkkhhhhhhhhhhhdhhhhhdhhhhhhhhdhhdhhhhhhhhhhhhhdhhhhhdhhhdhdhhhdddrhdhrdhrdrrdxd

‘ DEFINITIONS

Pattern VAR Byte ‘ Pattern isabyte variable
I VAR Byte ‘ Loop counter variable

Figure5.82 (Continued)

PicBasic and PicBasic Pro projects

245

Digit VAR Byte
First VAR Byte
temp VAR Byte

T VAR Byte[4]
LED1 VARBIt
LED2 VARBIt
Cnt VAR Word

Symbol DATA_PIN = PORTB.6
Symbol CLK_PIN = PORTB.7
Symbol PSTART = PORTB.O
Symbol PSTOP = PORTB.1
Symbol PCLEAR = PORTB.2

* START OF MAIN PROGRAM

TRISB =7

ON INTERRUPT GOTO ISR
OPTION_REG = %00000101

LED1=0
LED2=0

BEGIN:
Cnt=0
GOSUB DISPLAY
INTCON = %10010000

 Wait until the START button is pressed

BT:temp=0
BUTTON PSTART, 0, 255, 0, temp, 1, STRT
GOTO BT

* START button is pressed. Start the counting

STRT:

TMRO =100

INTCON = %10100000
GOSUB DISPLAY

IF PSTOP=0THEN STP

GOTOWT

Figure5.82 (Continued)

WT:

Digitisabyte

Blanking checking variable
Temporary byte variable
Digit segment bit patterns
Display LED 1 data
Display LED 2 data

Cnt isaword variable
Display Datais RB6
Display CLOCK isRB7
START button

STOP button

CLEAR button

RBO, RB1, RB2 are inputs, others output

Interrupt service routine
Configure TMRO for prescaler=64

LED 1isto be off
LED 2 isto be off

Clear the event counter, Cnt
Display Cnt
Enable timer interrupt TMRO

‘ Goto STRT if START pressed

* count = 64* (256 — 100) = 9984us

‘ Enable TMRO interrupts
‘ Display Cnt

‘ If STOP switch is pressed
‘ Repest

246 PIC BASC projects

* STOP button is pressed. Stop the counting
STP:
INTCON =0 * Stop counting
ST:temp=0
BUTTON PCLEAR, 0, 255, O, temp, 1, BEGIN
GOTO ST
‘ Thisisthe timer interrupt service routine, ISR. The program jumps here whenever atimer
“ interrupt occurs (i.e. every 10ms)

DISABLE ‘ Disable interrupts

ISR: * Entry point of the ISR
TMRO =100 * TMRO value for 10ms count
Cnt=Cnt +1 ‘ Increment event counter, Cnt
INTCON.2=0 ‘ Re-enable TMRO interrupts
RESUME ‘ Resume main program
ENABLE ‘ Enable interrupts

‘ SUBROUTINES

DISPLAY:

* This subroutine displays the number in variable Cnt on the 4-digit 7-segment display

* Send START hit
DATA_PIN=1 ‘ Data=1
PULSOUT CLK_PIN, 1 * Send aclock

* Find out if blanking of leading digits are required or not. Since digit 1 is sent first, we
‘ haveto find al the digits and determine if blanking of any digit isrequired. Array T[I]
* stores the bit pattern of each digit

First=1 * First time round the loop
FORI1=3TOOSTEP-1
Digit=Cnt DIG | * Get digits of variable Cnt

LOOKUP Digit, [$FC, $60, $DA, $F2, $66, $B6, $BE, $EO, $FE, $F6], Pattern
IF (Digit = 0) AND (First = 1) THEN
Pattern =0
Figure5.82 (Continued)

PicBasic and PicBasic Pro projects 247

ELSE
First=0
ENDIF
T[I] = Pettern
NEXT |

IFCnt=0THEN T[Q] = $FC “If Cnt =0 then display 0in D1 position

* Display each digit with blanking leading zeroes. Digit 1 is sent first

FOR1=0To3
SHIFTOUT DATA_PIN, CLK_PIN, 1, [T[1]]
NEXT |

* Send LED1 and LED 2 bits
DATA_PIN = LED1 ‘ Data= LED1
PULSOUT CLK_PIN,1 * Send clock
DATA_PIN = LED2 ‘ Data= LED 2
PULSOUT CLK_PIN,1 * Send clock

* Send TERMINATOR bit

DATA_PIN=0 ‘Data=0
PULSOUT CLK_PIN,1 * Send clock
RETURN

END * End of program

Figure5.82 PicBasic Pro program of Project 18

248 PIC BASC projects

Project 19

Project title:

Project description:

Car park control system

This project is a simple car park control system. Two barriers are used,
one at the entry and one at the exit of a car park. When a barrier is lifted
to alow a car to pass through, switches are activated which send logic O
pulses to the microcontroller. A 4-digit 7-segment display is connected to
the output of the control system. The system counts the difference of the
number of cars entering and leaving the car park. If the count is less than
100 (assuming the car park can take up to 100 cars) the message SPCS
(i.e. spaces) will be displayed. When the car park is full, the message
FULL will be displayed. Assume that the barriers lift-up automatically
when a vehicle approaches them. Also assume that the entry barrier hasa
locking mechanism and this mechanism is enabled to lock the barrier so
that it does not lift-up when the car park isfull.

Figure 5.83 shows the block diagram of the car park control system.

ENTRY barrier @——» o Egl(T:EY barrier
PIC
Microcontroller 4-Digit 7-Segment
EXIT barrier @———» Display

Figure5.83 Block diagram of Project 19

Hardware:

Flow diagram:

Thecircuit diagram of the project is shown in Figure 5.84. Display is con-
nected to bit 6 and bit 7 of PORTB as in Project 16. ENTRY and EXIT
switches are connected to bit 0 and bit 1 of PORTB, respectively. ENTRY
barrier lock output is connected to bit 2 of PORTB. In Figure 5.84, the
barrier switches are shown as simple push-button switches. Also, the
ENTRY lock mechanism is an output from RB2 and is shown as a small
circle.

In this project a PIC16F627-type microcontroller is used and the micro-
controller is operated with its 4MHz internal clock and internal master
clear circuit.

The flow diagram of the project is given in Figure 5.85. At the beginning
of the program event counter variable Cnt is cleared and the program
checksthe value of Cnt. If Cnt = 100 then the car park is assumed to be
full and message “FULL” is displayed. If on the other hand Cnt < 100
then it is assumed that there are spaces in the car park and message

A%
Battery

1

+5V

0.33 uF

3
78L05
I
0.01pF

2

10K

ENTRY[I] O—_l__

+5V,
10K

EXIT|:1:| 01

ENTRY 8
LOCK (}

Figure5.84 Circuit diagram of Project 19

14

7]

RBO

RB1

RB2

Vdd 6
RB6 12 VDD
13 5 BOSMO4N-R
RB7 Clock
CE GND
3 8
PIC
16F627 -

Vss j

A 4

Display SPCS

EXIT
Pressed?

CNT =CNT +1

| CNT =CNT -1 |

Lock ENTRY
barrier

!

Figure5.85 Flow diagram of Project 19

!

Unlock ENTRY
barrier

I

4-Digit 7-Se£;ment Display

250 PIC BASC projects

Software:

“SPCS’ is displayed. The program then checks the ENTRY switch and
Cnt isincremented when a car entersthe car park. Similarly, Cnt is decre-
mented when a car leaves the car park. When the car park isfull, the lock
mechanism is activated which stops The ENTRY barrier to open when a
car approaches it. The lock mechanism is disabled as soon as spaces are
available in the car park.

PicBasic

Figure 5.86 shows the PicBasic program listing of Project 19. At the
beginning of the program symbol CAPACITY is assigned to 100 and
TRISB is set to 3 so that bit 0 and bit 1 of PORTB are inputs, other pins
outputs. The main program begins with label BEGIN. Here, if Cnt is
greater than or equal to the CAPACITY, the car park is assumed to be full
and subroutine DFULL is called to display the message FULL. If on the
other hand Cnt islessthan the CAPACITY then the car park is assumed to
have spaces and subroutine DSPCS is called to display the message
SPCS. ENTRY and EXIT switches are checked inside the LOOR. When a
vehicle enters the car park, ENTRY switch is activated and program
jumps to label LENTRY. Similarly, when a vehicle leaves the car park,
EXIT switch is activated and program jumpsto label LEXIT.

Inside subroutine LENTRY, Cnt isincremented by 1 and LOCK is set to
1 if Cnt is greater than or equal to the CAPACITY. The program then
jumps to label BEGIN to repeat the process. Inside the LEXIT subrou-
tine, Cnt is decremented By 1 and LOCK is cleared. The program then
jumpsto label BEGIN to repeat the process.

Characters FULL and SPCS are obtained by loading D1 — D4 with the
correct bit patterns for these characters. Table 5.9 shows how to obtain
characters FULL and SPCS by sending hexadecimal data to the display.

Thus, to FULL will be displayed if the following hexadecimal numbers
are sent to the display:

$1C $1C $7C $8E

Similarly, SPCS will be displayed if the following hexadecimal numbers
are sent to the display:

$B6 $9C $CE $B6

Bit patterns are sent to the display using subroutine SHIFTO which sends
out data bitsin serial form with clock.

PicBasic and PicBasic Pro projects 251

FULL

Table5.9 Bit patterns for characters FULL and SPCS

Character abcdefgdp Hexadecimal
F 10001110 $8E
U 01111100 $7C
L 00011100 $1C
S 10110110 $B6
P 11001110 $CE
C 10011100 $9C

252 PIC BASC projects

fhkhhhkkhhhhhhhhhhhhhhhhdhhhhhhhhdhhhhhhhhhhhhhhhdhhhhhdhhdhrhhddrhhrddhrdrrdxx

‘ CAR PARK CONTROL SYSTEM

‘ In this project aBO8M 04 type 4-digit 7-segment LED display is used.

* Two switches are connected to the microcontroller inputs: ENTRY switch
* and EXIT switch. These switches are operated by the barriers at the

* entrance and the exit of the car park. The switches are normally at logic
‘1 and they go to logic O when a barrier islifted up.

* Assume that a barrier lifts up automatically when a vehicle approaches

“ abarrier. The ENTRY barrier also has alocking mechanism and is

* used to lock the barrier when the car park is full. Assume that the lock

‘ isactivated when alogic 1 is sent to it.

* Assume that the capacity of the car park is 100. If the number of vehicles
* inside the car park isless than 100 the the message SPCS (i.e. spaces)

* isdisplayed. If the car park isfull (i.e. there are 100 carsinside the car

* park), then the message FULL is displayed.

‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 first, then D2, then D3 and finally D4

* A PIC16F627 type microcontroller is used in the project with 4AMHz

* internal clock and internal reset.

* The connection between the display and the microcontroller is as follows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA
‘ RB7 Display CLOCK

* The switches are connected as follows:

‘ RBO ENTRY
‘ RB1 EXIT
‘ RB2 LOCK

Figure5.86 (Continued)

PicBasic and PicBasic Pro projects

253

‘

* Author: Dogan Ibrahim

‘ Date: Octaber, 2005

* Compiler: PicBasic

‘ File: CAR_PRK1.BAS

‘ Modifications

RS S LS LSS LS EE ST LS LS L LS EEE R RS
‘ DEFINITIONS

Symbol TRISB = $86 ‘ TRISB address

Symbol PORTB = $06 * PORTB address
Symbol Pettern = BO

Symbol | = B1 ‘ Loop counter variable
Symbol temp = B2 ‘ Temporary byte variable
Symbol LED1 = B3 ‘ Display LED 1 data
Symbol LED2 = B4 ‘ Display LED 2 data
Symbol D1 = B5 ‘ Digit 1 data

Symbol D2 = B6 ‘ Digit 2 data

Symbol D3 = B7 ‘ Digit 3 data

Symbol D4 = B8 ‘ Digit 4 data

Symbol Cnt = W5

Symbol DATA = Pin6 ‘ Display Datais RB6
Symbol CLK =7 ‘ Display CLOCK isRB7
Symbol PENTRY = 0 * START button

Symbol PEXIT =1 * STOP button

Symbol LOCK = 2 * LOCK output

Symbol CAPACITY = 100 * Car park capacity is 100 vehicles

* START OF MAIN PROGRAM

POKE TRISB, 3 ‘ RBO, RB1 are inputs, others output
LED1=0 ‘ LED 1isto be off

LED2=0 ‘ LED 2isto be off

Cnt=0 * Clear the car park count

BEGIN:
IF Cnt>= CAPACITY THEN LARGER
IF Cnt < CAPACITY THEN SMALLER

Figure5.86 (Continued)

254 PIC BASC projects

LARGER: GOSUB DFULL
GOTO LOOP
SMALLER: GOSUB DSPCS

* Check if ENTRY barrier islifted up

LOOP:
temp=20
BUTTON PENTRY, 0, 255, O, temp, 1, LENTRY

temp=20

BUTTON PEXIT, 0O, 255, O, temp, 1, LEXIT
GOTO LOOP

* START button is pressed. Start the counting
LENTRY:
Cnt=Cnt+1
IF Cnt < CAPACITY THEN BEGIN
HIGH LOCK
GOTO BEGIN

LEXIT:
Cnt=Cnt—-1
LOW LOCK
GOTO BEGIN

DFULL:
D1 = $1C; D2 = $1C: D3 = $7C:
GOSUB DISPLAY
RETURN

DSPCS:
D1 = $B6: D2 = $9C: D3 = $CE:
GOSUB DISPLAY
RETURN

DISPLAY:

* Goto LENTRY if
“ ENTRY switch=0

* Goto LEXIT if EXIT switch = 0

* A vehicle entered the car park
‘ Lock the ENTRY barrier

* A vehicle |eft the car park
* Unlock the ENTRY barrier

D4 = $8E

D4 = $B6

* This subroutine displays the the 4 byte datain D1,D2,D3,D4.

‘ D1 dataissent first to the display.

* Send start bit
Figure5.86 (Continued)

PicBasic and PicBasic Pro projects

255

DATA =1
TOGGLE CLK
TOGGLE CLK

* Send segment data

BO=D1
GOSUB SHIFTO
BO=D2
GOSUB SHIFTO
BO = D3
GOSUB SHIFTO
BO = D4
GOSUB SHIFTO

* This subroutine sends the two LED data to the display

DATA = LED1
TOGGLE CLK
TOGGLE CLK
DATA = LED2
TOGGLE CLK
TOGGLE CLK

* Send terminator bit

DATA =0
TOGGLE CLK
TOGGLE CLK
RETURN

SHIFTO:

* This subroutine shifts out data with clock
FORI =1TO8
DATA = Bit7
TOGGLE CLK
Pattern = Pattern * 2
TOGGLE CLK
NEXT |
RETURN

END
Figure5.86 PicBasic program of Project 19

Daa=1
CLK =1
CLK =0

Display D1
Display D2
Display D3

Display D4

‘Data=0
‘CLK =1
‘CLK =0

* Get bit 7 of Pattern

‘CLK =1
* Shift left pattern 1 digit
‘CLK=0

‘ End of program

256 PIC BASC projects

PicBasic Pro

Figure 5.87 showsthe PicBasic Pro program listing. At the beginning of the
program, the capacity of the car park, symbol CAPACITY is assigned value
100. TRISB register is set to 3 so that bit 0 and bit 1 of PORTB are inputs,
the other pins outputs. The main program loop begins with label BEGIN.
Here, if Cnt is greater than or equal to the CAPACITY, the car park is
assumed to be full and subroutine DFULL is called to display the message
FULL. If onthe other hand Cnt islessthan the CAPACITY then the car park
is assumed to have spaces and subroutine DSPCS is called to display the
message SPCS. The ENTRY and EXIT switches are checked inside the
LOOR When avehicle entersthe car park, ENTRY switch is activated and
program jumps to label LENTRY. Similarly, when a vehicle leaves the car
park, EXIT switch is activated and program jumpsto label LEXIT.

Inside subroutine LENTRY, Cnt isincremented by 1 and LOCK is set to
1if Cnt is greater than or equal to the CAPACITY. The program then
jumps to label BEGIN to repeat the process. Inside the LEXIT subrou-
tine, Cnt is decremented By 1 and LOCK is cleared. The program then
jumpsto label BEGIN to repeat the process. Data bits are sent out using
the SHIFTOUT command of PicBasic Pro.

Ekkkhkhhhhhhhkhkhhhhhhhhhhhhhhhhdkhkhkhhdhhhhhhhhhdhdhdkhhhhhhhhhhdddkhhddddhhhrrxx

‘ CAR PARK CONTROL SYSTEM

* In this project aBO8M 04 type 4-digit 7-segment LED display is used.

* Two switches are connected to the microcontroller inputs: ENTRY switch
* and EXIT switch. These switches are operated by the barriers at the

* entrance and the exit of the car park. The switches are normally at logic

* 1 and they go to logic O when abarrier islifted up.

* Assume that a barrier lifts up automatically when a vehicle approaches

“ abarrier. The ENTRY barrier also has alocking mechanism and is

* used to lock the barrier when the car park is full. Assume that the lock

‘ isactivated when alogic 1 issent to it.

* Assume that the capacity of the car park is 100. If the number of vehicles
* inside the car park isless than 100 the the message SPCS (i.e. spaces)

‘ isdisplayed. If the car park isfull (i.e. there are 100 carsinside the car

* park), then the message FULL is displayed.

Figure5.87 (Continued)

PicBasic and PicBasic Pro projects

257

‘ The display digits are organised as follows:

‘ D4 D3 D2 D1

‘ Datais sent: D1 first, then D2, then D3 and finally D4

* A PIC16F627 type microcontroller is used in the project with 4AMHz
“ internal clock and internal reset.

* The connection between the display and the microcontroller is as follows:
* (display CE pin is connected to ground permanently)

‘ RB6 Display DATA
‘ RB7 Display CLOCK

* The switches are connected as follows:

‘ RBO ENTRY

‘ RB1 EXIT

‘ RB2 LOCK

* Author: Dogan Ibrahim

‘ Date: October, 2005

* Compiler: PicBasic Pro

‘Fle CAR_PRK2.BAS

‘ Modifications

IR R R R R SRR R
‘ DEFINITIONS

I VAR Byte ‘ Loop counter variable
temp VAR Byte * Temporary byte variable
T VAR Byte[4] * Digit segment bit patterns
LED1 VAR Bit ‘ Display LED 1 data
LED2 VAR Bit ‘ Display LED 2 data

Cnt VARWord * Cntisaword variable

Figure5.87 (Continued)

258 PIC BASC projects

Symbol DATA_PIN = PORTB.6 ‘ Display Datais RB6

Symbol CLK_PIN = PORTB.7 ‘ Display CLOCK isRB7

Symbol PENTRY = PORTB.O * START button

Symbol PEXIT = PORTB.1 * STOP button

Symbol LOCK = PORTB.2 * LOCK output

Symbol CAPACITY = 100 * Car park capacity is 100 vehicles

* START OF MAIN PROGRAM

TRISB =3 ‘ RBO, RB1 are inputs, others output
LED1=0 ‘ LED listo be off
LED2=0 ‘ LED 2 isto be off
Cnt=0 * Clear the car park count
BEGIN:
IF Cnt >= CAPACITY THEN
GOSUB DFULL
ELSE
GOSUB DSPCS
ENDIF

* Check if ENTRY barrier islifted up

LOOP:
temp=20
BUTTON PENTRY, 0, 255, O, temp, 1, LENTRY * Goto LENTRY if ENTRY =0
temp=20
BUTTON PEXIT, 0, 255, 0, temp, 1, LEXIT * Goto LEXIT if EXIT switch = 0
GOTO LOOP

* START button is pressed. Start the counting

LENTRY:
Cnt=Cnt+1 * A vehicle entered the car park
IF Cnt>= CAPACITY THEN LOCK =1 ‘ Lock the ENTRY barrier
GOTO BEGIN

LEXIT:
Cnt=Cnt—1 * A vehicle | eft the car park
LOCK =0 ‘ Unlock the ENTRY barrier

Figure5.87 (Continued)

PicBasic and PicBasic Pro projects 259

GOTO BEGIN
DFULL:

T[O] = $1C: T[1] = $1C:

GOSUB DISPLAY
RETURN

DSPCS:

T[O] = $B6: T[1] = $9C:

GOSUB DISPLAY
RETURN

T[2] = $7C: T[3] = $8E

T[2] = $CE: T[3] = $B6

* This subroutine displays the 4 byte datain array T[I]. T[0] isthe

* first data sent to the display.

DISPLAY:

‘ Send START hit

DATA_PIN =1

PULSOUT CLK_PIN, 1

FORI =0To3

Display each digit. Digit 1 issent first

‘Data=1
* Send aclock

SHIFTOUT DATA_PIN, CLK_PIN, 1, [T[1]]

NEXT I

* Send LED1 and LED 2 hits

DATA_PIN = LED1
PULSOUT CLK_PIN,1
DATA_PIN = LED2
PULSOUT CLK_PIN,1

* Send TERMINATOR bit

DATA_PIN =0
PULSOUT CLK_PIN,1
RETURN

END

Figure5.87 PicBasic Pro program of Project 19

‘ Data= LED1
* Send clock

‘ Data= LED 2
‘ Send clock

‘Data=0
‘ Send clock

‘ End of program

260 PIC BASC projects

Project 20

Project title:

Project description:

Seconds counter with LCD display

In this project a seconds counter is used and the count is displayed on a
LCD display asfollows:

CNT = nnn

Figure 5.88 shows the block diagram of the project. A PIC microcon-
troller is used with its outputs connected to a parallel LCD.

PIC
Microcontroller

LCD

Figure5.88 Block diagram of Project 20

Hardware:

The circuit diagram of the project is shown in Figure 5.89. A PIC16F627
microcontroller is used in the project with a4 MHz internal clock and the
internal master clear circuit enabled during programming of the chip. In
this project a2 row LCD isused but any type LCD can be used aslong as
it is compatible with the HD44780 chip. The LCD display is connected to
the microcontroller using the default connections described in Section
4.3, i.e. the following connections are made between the microcontroller
and the LCD display:

LCD Microcontroller
D4 RAO
D5 RA1
D6 RA2
D7 RA3
E RB3
RS RA4

Notice that pin RA4 of the microcontroller is open-drain output and
should be connected to the +V supply with a10K resistor.

The project constructed on a breadboard is shown in Figure 5.90.

PicBasic and PicBasic Pro projects 261

+

1 7605 |2
oV To.sspF_|, J—L 14]

set brightness

7 0.01pF
Battery 1 T vdd 9 3
T 17 1 VDD VEE
T RAO DB4
= Ra1H8 12pgs
rA2[13 bas LCD
2 14
RA3 DB7 _ .o ves RW
RB3 g o 4 T 5
PIC RA4 1
16F627 ok sV
5
Vss—_L

Figure5.89 Circuit diagram of Project 20

Figure5.90 Project 20 constructed on a breadboard

Flow diagram:

The flow diagram of the project is given in Figure 5.91. At the beginning
of the program PORTA and PORTB directions are configured. The pro-
gram then waits for about 0.5s for the LCD to initialise. Variable Cnt is
incremented every second and the result is displayed on the LCD in the

following format:

CNT = nnn

262 PIC BASC projects

Figure5.91 Flow diagram of Project 20

Software: PicBasic Pro

Figure 5.92 shows the PicBasic Pro program listing of the project. At the
beginning of the program PORTA and PORTB are configured as outputs.
is set to 7 so that PORTA pins are configured as digital
[/O. Cnt is declared as a word variable and program waits 500ms for the
initialisation of the LCD. The LCD is cleared and the cursor is set to the
home position using the $FE,1 and $FE,2 LCD commands, respectively.
Variable Cnt is then displayed on the LCD in decimal format using the
LCDOUT statement. The program waits for 1 sand the processis repeated

Register CMCO

]

Configure port
directions

l

Wait 0.5 second

l

Cnt=0

Display Cnt on LCD

l

Increment Cnt

l

Wait 1 second

S

after Cnt isincremented by one.

fhkhdhkkhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhhhhhhhhhhhdhhhhhdhhhdhhdhhdrhdhrddrrdrrdxd

‘ LCD SECONDS COUNTER

“ Inthis project an LCD display is connected to a PIC16F627 microcontroller.
* The microcontroller is configured to operate with a4MHz internal clock.

Figure5.92 (Continued)

PicBasic and PicBasic Pro projects

263

‘ Variable Cnt isincremented by 1 every second and the result is displayed on

‘ the LCD.

* The connection between the LCD display and the microcontroller is as follows:

‘ Display
‘ DB4

‘ DB5

‘ DB6

‘ RB7

‘ E

‘ RS

Microcontroller pin

RAO
RA1
RA2
RA3
RB3
RA4

* A 10K resistor is used to pull-up pin RA4 of the microcontroller.

* RW pin of the LCD is connected to ground. The brightness of the LCD is
* controlled by connecting a 5K variable resistor to pin VEE of the display.

fhkkhhhkhhhdhhkhhhdhhhhhhhhdhhhhhhhhhhhhdhhdhhhhhdhhhdhhhhhddhhddhddrddhrdhhhrdhrix

* Author: Dogan Ibrahim

‘ Date: November, 2005
* Compiler: PicBasic Pro
‘Fle LCD1.BAS

* Modifications

‘ DEFINITIONS

Cnt VAR Word
* START OF MAIN PROGRAM

CMCON =7

TRISA=0
TRISB=0

PAUSE 500

Cnt=0

LCDOUT $FE,1

Figure5.92 (Continued)

‘ Cntisaword variable

‘ RAO-RA3 are digita 1/0
* PORTA is output
* PORTB is output

* Wait 0.5 second to initialize LCD
‘ Clear Cnt to zero
‘* Clear LCD

264 PIC BASC projects

RPT:
LCDOUT $FE,2 ‘ Home cursor
LCDOUT “CNT =", DEC Cnt * Display count
PAUSE 1000 * Wait 1 second
Cnt=Cnt +1 * Increment Cnt
GOTO RPT ‘ Repeat
END * End of program

Figure5.92 PicBasic Pro program of Project 20

PicBasic

PicBasic language does not provide any instructions to drive an LCD
directly. It is however possible to develop low-level routines to initialise
and drive LCD displays. The details of these routines require a detailed
knowledge of the internal operations of the LCDs and are only described
here briefly.

The stepstoinitialisean LCD are given below. Here, we are assuming that
the LCD is connected to the microcontroller in the standard way as shown
in Figure 5.89.

® \Wait 20 ms after power up

® DO 3times

— Send3to LCD

— Wait 10ms

— Toggle Enableline

ENDDO

Wait 10ms

Send 2to LCD (LCD in 4-bit mode)

Wait 1 ms

Toggle Enable line

Send $28 to LCD (4-hit, 2-lines, 5 X 7 font)
Send $0C to LCD (display on, no cursor, no blink)
Send $06 to LCD (LCD entry mode, no shift)

Figure 5.93 shows the PicBasic program listing of the project. The major-
ity of the code used isto initialise and drive the LCD. At the beginning of
the program the addresses of the SFR registers used in the program are
defined. Then, PORTA and PORTB ports are configured as outputs. The
program then jumps to subroutine INITLCD to initialise the LCD. The
initialisation is basically in three steps: resetting mode of the LCD, func-
tion setting of the LCD, display on routine, and the entry mode. The LCD
can be operated in either 4-bit or 8-bit modes. Operating in 4-bit mode has

PicBasic and PicBasic Pro projects 265

the advantage that only 4 data lines and 2 control lines, i.e. atotal of 6
lines are required to initialise and control the LCD. At the beginning of
the initialisation routine the program waits for 20 msfor theinternal logic
of the LCD to be initialised. At this point the LCD is by default in 8-bit
mode. Then the resetting mode starts where a data byte 3 should be sent to
the LCD datalines with adelay between each data output, and the Enable
line of the LCD should be toggled after each output. The recommended
delay is at least 4.1 ms after the first output and at least 100 s after the
other two outputs. In thisexample, a10 msdelay is used after each output
and the PULSOUT statement is used to toggle the Enable line (bit 3 of
PORTB — RB3) of the LCD.

LCD isthenin function setting mode where the LCD is put into the 4-bit
mode and the character font is selected. In the display on mode the display
and the cursor are turned on. The final stage of the initialisation is the
entry mode where the cursor movement mode and cursor blinking are
specified.

Subroutine LCDDATA can be used to display the character in register B2
on the current cursor position. The high nibble is first obtained by shift-
ing the dataright by 4 bits. This nibble is sent to the LCD and the Enable
lineistoggled. Thelow nibbleisthen sent to the LCD. LCD pin RSis set
tologic 1 during the data mode.

Subroutine SENDCOM s used to send a command to the LCD. LCD pin
RSiscleared tologic 0 during the command mode. The command in regis-
ter B2 is sent to the LCD. The Enable line is toggled after sending each
nibble of the command.

Subroutine CLRLCD is used to clear the LCD display. Similarly, subrou-
tine HOMEL CD can be used to set the cursor to the home position. Other
L CD commands (e.g. to move the cursor left or right, to move to the second
ling, etc.) can easily be added to the program.

Variable Cnt is declared as a word and initialised to zero. The FOR loop
after label RPT uses statement LOOKUP to extract the characters of the
string to be displayed (“CNT=" in this case) where the characters are
stored in register B2 and then displayed by calling subroutine LCDDATA.

The 100s, 10s, and 1sdigits of variable Cnt are then extracted and stored
in registers B4, B5, and B6, respectively. For example, if Cnt = 573, then
B4 =5, B5 = 7, and B6 = 3. Leading zeroes are suppressed by not dis-
playing them. The extracted numbers are then converted into ASCII by
adding 48 (ASCII “0”) to each digit. The digits are assigned to register B2

266 PIC BASC projects

and displayed onthe LCD by calling subroutine LCDDATA. The maximum
value of Cnt that can be displayed is 999 (this value can be increased by
extracting the 1000s digit of Cnt).

The program then waitsfor 1s, variable Cnt isincremented by one and the
program repests.

thkkkhkkhhkhhkhhhkkhhhkhhkhhhkkhhhhhkhhhkkhhhhkkhhhkhhkkhhkhhkhhkkhhhkdhhkhhkkhhhkhkkhhkdhkkkdkdkx*%

‘

‘ LCD SECONDS COUNTER

‘

‘

“ In this project an LCD display is connected to a PIC16F627 microcontroller.
* The microcontroller is configured to operate with a4MHz internal clock.

‘

‘ Variable Cnt isincremented by 1 every second and the result is displayed on
‘ the LCD.

* The connection between the LCD display and the microcontroller is as follows:

‘ Display Microcontroller pin
‘ DB4 RAO
‘ DB5 RA1
‘ DB6 RA2
‘ RB7 RA3
‘ E RB3
‘ RS RA4

* A 10K resistor is used to pull-up pin RA4 of the microcontroller.
* RW pin of the LCD is connected to ground. The brightness of the LCD is
* controlled by connecting a 5K variable resistor to pin VEE of the display.

* LCD isinitialized and controlled by using low-level LCD routines.

‘

‘

* Author: Dogan Ibrahim

‘ Date: November, 2005
* Compiler: PicBasic

‘File LCD2.BAS

Figure5.93 (Continued)

PicBasic and PicBasic Pro projects

267

‘ Modifications

IR R R R R SRR R
‘ DEFINITIONS

Symbol PORTA =5 ‘ PORTA address

Symbol TRISA = $85 ‘ TRISA address

Symbol PORTB =6 ‘* PORTB address

Symbol CMCON = $1F * CMCON address

Symbol TRISB = $86 ‘* PORTB address

Symbol Cnt = W0 ‘ Cntisaword variable

* START OF MAIN PROGRAM

POKE CMCON, 7 ‘ RAO-RA3 are digita 1/0
POKETRISA, 0 * PORTA is output
POKE TRISB, 0 * PORTB is output
GOSUB INITLCD ‘ Initialize LCD
Cnt=0 * Clear Cnt to zero
GOSUB CLRLCD ‘ Clear LCD
RPT:

GOSUB HOMELCD * Home cursor
FORB4=0TO3

LOOKUPB4, (“CNT ="), B2

GOSUB LCDDATA ‘ Display CNT =
NEXT B4

* Find the 100s, 10s, and 10s digits and store in registers B4, B5, B6 respectively.

‘ For example, if the number (Cnt) is 234, then B4 = 2, B5 = 3 and B6 = 4. Numbers

‘ up to 999 can be displayed. i.e. maximum value of Cnt is999. The program also blanks
* zeroes from the beginning. e.g. if Cnt =5, then only 5 isdisplayed. i.e.

* 005 is not displayed.

B4=Cnt/ 100 ‘* B4 = leftmost digit
B6 = Cnt // 100
B5=B6/10 ‘ B5 = middle digit

Figure5.93 (Continued)

268 PIC BASC projects

B6=B6//10 ‘ B6 = rightmost digit
IFB4=0THEN NO1
B2=B4 +48
GOSUB LCDDATA ‘ Display top digit
CONT:
B2=B5+48
GOSUB LCDDATA * Display middle digit
B2=B6+48
GOSUB LCDDATA * Display rightmost digit
GOTO NXT
NOL1:
IFB5=0THEN NO2
GOTO CONT
NO2:
B2=B6+48
GOSUB LCDDATA

 Wait 1 second, increment Cnt and repeat

NXT: PAUSE 1000 * Wait 1 second
Cnt=Cnt+1 ‘ Increment Cnt
GOTO RPT ‘ Repeat

‘ SUBROUTINES

‘ This subroutine initializes the LCD

INITLCD:

PAUSE 20 * Wait 20ms

FORB2=1TO3 ‘ Do 3times
POKE PORTA, 3
PULSOUT 3, 100 ‘ Toggle Enable line
PAUSE 10 * Wait 10ms

NEXT B2

PAUSE 10 * Wait 10ms

POKE PORTA, 2 “Send2to LCD

PULSOUT 3, 100 ‘ Toggle Enable line

B2 = $28 * Send $28 to LCD

GOSUB SENDCOM
Figure5.93 (Continued)

PicBasic and PicBasic Pro projects 269

B2=$0C * Send $0C to LCD
GOSUB SENDCOM

B2 = $06 * Send $06 to LCD
GOSUB SENDCOM

RETURN

* This subroutine clears the LCD
CLRLCD:
B2=1
GOSUB SENDCOM
PAUSE 2
RETURN

* This subroutine homes the cursor
HOMELCD:
B2=2
GOSUB SENDCOM
PAUSE 5
RETURN
* This subroutine sends data to the LCD. Datato be output is assumed to be
“inregister B2.

LCDDATA:
B3=B2/16 * Shift B2 right 4 times
B3=B3+16 * Add the LCD RS hit
POKE PORTA, B3 “Sendto LCD
PULSOUT 3, 100 ‘ Toggle Enable line
B3=B2& $0F * Extract 4 low order bits
B3=B3+16 * Add the LCD RS hit
POKE PORTA, B3 “Sendto LCD
PULSOUT 3, 100 ‘ Toggle Enable line
PAUSE 2 * Wait 2msto complete
RETURN

Figure5.93 (Continued)

270 PIC BASC projects

* This subroutine sends a command to the LCD. The comamnd isin B2.
‘ We have to shift top 4 bits down to the bottom 4 bits.

SENDCOM:
B3=B2/16 * Shift B2 right 4 times
B3=B3 & $EF ‘Clear RS=0
POKE PORTA, B3 * Send B3to LCD
PULSOUT 3, 100 ‘ Toggle Enable line
B3=B2& $0F * Get 4 low order hits
POKE PORTA, B3 ‘ Send B3to LCD
PULSOUT 3, 100 ‘ Toggle Enable line
PAUSE 2 * Wait 2msto complete
POKE PORTA, $10 ‘SetRS=1
RETURN
END * End of program

Figure5.93 PicBasic program listing of Project 20

PicBasic and PicBasic Pro projects 271

Project 21
Project title:

Project description:

Hours —— ———»

L CD-based clock with hours—minutes—seconds display

Inthis project an LCD-based digital clock isdesigned. Hours, minutes, and
seconds are displayed on the LCD in the following format:

HH:MM:SS

Two push-button switches are used to set the hours and minutes. Pressing the
hours button incrementsthe hours between 00 and 23. Similarly, pressing the
minutes button increments the minutes between 00 and 59 so that the time
can be st

Figure 5.94 shows the block diagram of the project.

PIC
Microcontroller

HH:MM:SS

Minutes ——— ——» LCD

Figure5.94 Block diagram of Project 21

Hardware:

The circuit diagram of the project is shown in Figure 5.95.

A PIC16F627 microcontroller isused in the project witha4 MHz internal
clock and its master clear circuit is enabled during programming of the
chip. The LCD is connected in the default mode as described in project
20. Hours and minutes buttons are connected to RBO and RB1 pins of
PORTB, respectively.

The I/O connections are summarised bel ow:

PORT pin Mode Connection
RAO Output LCD D4
RA1 Output LCD D5
RA2 Output LCD D6
RA3 Output LCD D7
RB3 Output LCDE
RA4 Output LCD RS
RBO Input Hours button

RB1 Input Minutes button

272 PIC BASC Projects

4 +BV st brightness
78LO5 j -
P = Q.010F 4 .
T Vdd 2 3
VI VEE
ol RAG j; :; B4
REBG RA DBS
HOURS [ﬂ ’ 13 LCD
01 RAZ 5 = RS
RA3 DOB7 ERs VSS RW

45y =

MINUGTES D] RB1 10K
PIC

18F827

+5 ¥,
RE3 g 6{ 4' i 5
10K RA4
7

5

Wes
L

Figure5.95 Circuit diagram of Project 21

Flow diagram:

Software:

Notice that pin RA4 of the microcontroller is open-drain output and
should be connected to the +V supply with a 10K resistor.

The flow diagram of the project is given in Figure 5.96. The operation of
the project is based on atimer interrupt. The timer interrupt is set to gen-
erate an interrupt every second. Insidethe ISR thetimeisadvanced by 1s
and the minutes and hours are adjusted if necessary and the hours, min-
utes, and seconds are displayed every second on the LCD.

In addition to displaying the time, the hours and minutes buttons can be
used to set the time at the beginning of a session. Pressing the hours but-
ton advances the hours display by 1 h. Similarly, pressing the minutes but-
ton advances the minutes display by 1 min.

PicBasic

The program in this project is based on the timer interrupt. PicBasic lan-
guage does not support interrupts from high-level language and therefore
only the PicBasic Pro program of this project is given.

PicBasic Pro

Figure 5.97 shows the PicBasic Pro program listing of the project. At the
beginning of the program Hrs_button and Mins_button are assigned to
RBO and RB1, respectively. The following variables are then declared:

Hour Stores the hoursfield of time
Minute Stores the minutes field of time

PicBasic and PicBasic Pro projects 273

Increment
seconds count

Configure I/O ports

l

Configure timer
interrupt for 1 sec

Seconds
=607

interrupts
Display time Seconds = 0
play Increment minutes

Minutes
=607

Hours button
pressed?

Increment hours ——

Minutes = 0
Increment hours

Increment minutes ——

Set display flag

l

Re-enable
timer interrupt

RETURN

Second Stores the seconds field of time

Ticks This variable stores the tick number. It isincremented
by one whenever a timer interrupt occurs. A second
consists of 61 Ticks

Disp This variable controls writing to the LCD.
When Disp = 1, the LCD is updated

Delay This variable is used in the delay loop of the contact
debouncing subroutine

Minutes button
pressed?

Figure5.96 Flow diagram of Project 21

Initially the Hour, Minute, Second, and Ticksareall cleared to zero. Timer
pre-scaler is set to 64 by loading the OPTION_REG to bit pattern
“00000101" (hexadecimal $05). Timer interrupt register TMRO isthen left

274 PIC BASC Projects

to count from 0 to 255 so that the timer interrupts occur at 16.384 msinter-
vals (64 X 256 = 16.384ms). Interrupt service routine starting addressis
named as ISR and global and timer interrupts are enabled by setting the
INTCON register to bit pattern “10100000” (i.e. hexadecimal $A0).

Inside the main program the hours and minutes buttons are checked con-
tinuously so that the time can be set at the beginning of the program. If the
hour button is pressed, variable Hour isincremented by 1. When Hour is
equal to 24 it is cleared to zero. Similarly, when the minute button is
pressed, variable Minute isincremented by 1. When Minute reached to 60
it iscleared to zero.

The LCD is updated whenever any of the buttons are pressed or when the
secondsfield is updated inside the I SR.

Subroutine Debounce is used to debounce the switch contacts. A 200ms
delay isinserted after a button is pressed. This delay debounces the con-
tacts and also gives time to the user to set the time correctly. Notice that
the delay loop consists of a FOR loop which is repeated 200 times and the
actual delay is 1msinside the loop. The reason for doing it this way and
not using the PAUSE 200 statement is because we want the timer inter-
rupts to be accepted during the waiting period. If PAUSE 200 is used then
interrupts will not be checked for 200 ms and we may get wrong counts.

The interrupt service routine starts with label 1SR. Inside this routine
variable Ticks is incremented by 1. When Ticks reaches 61 then it is
assumed that 1s has elapsed (61 X 16.384ms = 999.424ms) and vari-
able Second isincremented by 1. When Second reaches 60 it is cleared to
zero and Minute isincremented by 1. Similarly, when Minute reaches 60
it is cleared to zero and Hour is incremented by 1. At the end of the ISR
variable Disp is set to 1 if the time has been updated and timer interrupts
are re-enabled by clearing bit 2 of register INTCON.

Notice that the actual timer interrupt interval is 999.424ms which is
576 ms short of a second. If we take into account the delay caused by the
operationsinside the ISR our timer intervals are probably very closeto 1s
(itisnot possible to calcul ate the exact delay when using a high-level lan-
guage since the exact execution times of the instructions are not known).

In this project theinternal clock of the microcontroller isused asthe clock
source. This clock is not accurate and for more accurate results, use of an
external crystal clock source is recommended.

PicBasic and PicBasic Pro projects 275

fhkkhhkhhhdhhhhhdhhhhhhhhdhhhhhhhhhhhhdhhdhhhhhdhhhhhdhhhddhhhdddhddrddhddrhdrdhrdxd

‘ LCD BASED CLOCK

“ Inthis project an LCD display is connected to a PIC16F627 microcontroller.
* The microcontroller is configured to operate with a4MHz internal clock.

* The project is aclock, showing the hours, minutes, and seconds in the

* following format:

‘ HH:MM:SS

* The connection between the LCD display and the microcontroller is as follows:

‘ Display Microcontroller pin
‘ DB4 RAO
‘ DB5 RA1
‘ DB6 RA2
‘ RB7 RA3
‘ E RB3
‘ RS RA4
‘ Hrs button RBO

‘ Mins button RB1

* Two push-button switches are connected to RBO and RB1 pins of PORTB
* in order to set the time (hours and minutes fileds of the time).

* The hours button is connected to RBO and pressing this button increments
‘ hours by 1. When hours reaches 24, it isreset back to 0. Similarly, the

‘ minutes button is connected to RB1 and pressing this button increments

* the minutes by 1. When minutes reached 60, it is reset back to O.

‘ The timer interrupt TMRO is used to update the time. The timer is configured
‘ to interrupt at every 16.384ms. When the count is 61, one second is el apsed

* and the seconds variable is incremented by 1. The minutes or the hours

‘ variables are incremented if necessary.

* A 10K resistor is used to pull-up pin RA4 of the microcontroller.

* RW pin of the LCD is connected to ground. The brightness of the LCD is
* controlled by connecting a 5K variable resistor to pin VEE of the display.
Figure5.97 (Continued)

276 PIC BASC Projects

fhkhkhhkkhhhdhhhhhhhhdhhhhhdhhhhhhhhdhhdhhhhhdhhhhhhhhdhhhhhddhhddhhdhdddrhdhrdhrdrrdrdxk

‘ Author: Dogan Ibrahim

‘ Date: November, 2005
* Compiler: PicBasic Pro
‘Fle: LCD3.BAS

* Modifications

‘ DEFINITIONS

Symbol Hrs_button = PORTB.O
Symbol Mins_button = PORTB.1

Ticks VAR byte
Hour VAR byte
Minute VAR byte
Second VAR byte
Disp VAR byte
Delay VAR byte

TRISA=0
TRISB=3
CMCON =7

PAUSE 500

* Hour setting button
‘ Minute setting button

* Tick count (61 ticks = 1 sec)
* Hour variable

* Minute variable

* Second variable

‘ Disp = 1 to update display

* Used to Debounce button

* PORTA is output
‘ RBO,RB1 are inputs
‘* PORTA digita 1/0

* Wait 0.5sec for LCD to initidize

* Clear Hour, Minute, Second and Ticksto zero

Hour =0
Minute=0
Second =0
Ticks=0

‘ Initialize timer interrupt. The prescaler is set to 64 and the
* TMRO isleft to run from O to 255. With a clock frequency of 4AMHz,
‘ Thetimer interrupt is generated at every 256 * 64 = 16.384ms.

Figure5.97 (Continued)

PicBasic and PicBasic Pro projects 277

‘ Inside the ISR, variable ticksisincremented by 1. When Ticks = 61
* then time for atimer interrupt is: 61* 16.384 = 999.424ms and variable
* Second is then updated. i.e. Second is updated nearly every second.

OPTION_REG = $05 * Set prescaler = 64

ON INTERRUPT GOTO ISR ‘ISR routine

INTCON = $A0 * Enable TMRO interrupt and global interrupts
LCDOUT $FE, 1 ‘ Clear LCD

‘ Beginning of MAIN program loop
LOOFP:

* Check Hour button and if pressed increment variable Hour
IF Hrs_button= 0 THEN
Hour = Hour + 1
IF Hour = 24 THEN Hour =0
Gosub Debounce
ENDIF

* Check Minute button and if pressed increment variable Minute

IF Mins_button = 0 THEN
Minute = Minute +1
IF Minute = 60 THEN Minute=0
Gosub Debounce
ENDIF
* Display update section. The display is updated when variable
‘ Dispis 1. Thisvariableis set to 1 inside the ISR when the
* seconds changes. The cursor is set to home position and the
‘ timeis displayed on the LCD

IF Disp=1THEN
LCDOUT $FE, 2
LCDOUT DEC2 Hour, “:",DEC2 Minute, “:" ,DEC2 Second
Disp=0

ENDIF

GOTO LOOP

Figure5.97 (Continued)

278 PIC BASC Projects

* This subroutine Debounces the buttons. Also, adelay is introduced when
“ abutton is pressed so that the variable attached to the button (Hour or Second)
* can be incremented after asmall delay.

Debounce:
FOR Delay = 1 To 200
Pause 1 ‘ Delay Imsinside aloop. Thisway,
NEXT Delay * timer interrupts are not stopped
Disp=1 ‘ Set display flagto 1
RETURN

‘ Thisisthe Timer interrupt Service Routine. The program jumpsto this code

* whenever the timer overflows from 255 to 0. i.e. every 256 count. The prescaler

‘ isset to 64 and the clock frequency is4MHz. i.e. the basic instruction cycle

‘ timeis 1 microsecond. Thus, timer interrupts occur at every 64* 256 = 16.384ms.

‘ Variable Ticks isincremented by 1 each time atimer interrupt occurs. When Ticks
‘ isequal to 61, then one second has elapsed (16.384* 61 = 999.424ms) and then

* variable Second is incremented by 1. When Second is 60, variable Minuteis

‘ incremented by 1. When Minute is 60, variable Hour isincremented by 1.

‘ Timer TMRO interrupts are re-enabled just before the program exits this routine.
DISABLE
ISR:

Ticks=Ticks+ 1

IF Ticks < 61 THEN NoUpdate

* 1 second has elapsed, now update seconds and if necessary minutes and hours.

Figure5.97 (Continued)

PicBasic and PicBasic Pro projects

279

Ticks=0
Second = Second + 1
IF Second = 60 THEN
Second =0
Minute = Minute + 1
IF Minute= 60 THEN
Minute=0
Hour = Hour + 1
IF Hour = 24 THEN
Hour =0
ENDIF
ENDIF
ENDIF
Disp=1

‘ End of time update

NoUpdate:
INTCON.2=0
Resume
ENABLE
END

END

Figure5.97 PicBasic Pro program of Project 21

* Update second

* Update Minute

* Update Hour

* Set to update display

‘ Re-enable TMRO interrupts

‘ Re-enable interrupts

‘ End of program

280 PIC BASC Projects

Project 22

Project title:

Project description:

START —— ————p

STOP — ———» HH:MM:SS

LCD-based chronometer

In this project an LCD-based chronometer is designed. The chronometer
counts the elapsed time in seconds and displays in hours, minutes, and
seconds in the following format:

HH:MM:SS

Three push-button switches are used to start, stop, and clear the chronom-
eter. Pressing button START starts the chronometer which counts in sec-
onds. Pressing button STOP stops the counting. Pressing button CLEAR
clearsthe display so that the chronometer is ready for the next count.

Figure 5.98 shows the block diagram of the project.

PIC

Microcontroller

CLEAR ——— ————»p LCD

Figure5.98 Block diagram of Project 22

Hardware:

The circuit diagram of the project is shown in Figure 5.99.

A PIC16F627 microcontroller isused in the project with a4 MHz internal
clock. The LCD is connected in the default mode as described in project
21. START, STOR, and CLEAR buttons are connected to RBO, RB1, and
RB2 pins of PORTB, respectively.

The 1/O connections are summarised bel ow:

PORT pin Mode Connection
RAO Output LCD D4
RA1 Output LCD D5
RA2 Output LCD D6
RA3 Output LCD D7
RB3 Output LCDE
RA4 Output LCD RS
RBO Input START button
RB1 Input STOP button

RB2 Input CLEAR button

PicBasic and PicBasic Pro projects 281

1

Battery |

T

=

+
AR HLIT

5 BV st brightness
7805 -
e 0.0% UF 4 —
T Vet 9 3
VoD VEE |
T ;i’im RA ;; I; DB4 ;
= RB0 RAS DRS !
START [E LCD ;
RAQp———3 DB ;
H
= RA3 DB7 oo V8S RAW |
*5 V. 9 64 T
RB3|
10K RA4
7 5y =
STOP [E RB1 mxl
°1 PIC
e 18F627
=3, VSS“Q‘:L
K =
[E [
CLEAR

Figure5.99 Circuit diagram of Project 22

Flow diagram:

Software:

Notice that pin RA4 of the microcontroller is open-drain output and
should be connected to the +V supply with a 10K resistor.

Theflow diagram of the project isgiven in Figure 5.100. The operation of
the project is based on atimer interrupt. The timer interrupt is set to gen-
erate an interrupt every second when the chronometer is started. Pressing
the START button clears the timer register TMRO and enablesinterrupts.
Pressing STOP button disables interrupts so that the final count can be
displayed and viewed on the LCD. Pressing the CLEAR button clears the
hours, minutes, seconds, and ticks so that a new count can start.

PicBasic

The program in this project is based on the timer interrupt. PicBasic lan-
guage does not support interrupts from high-level language and therefore
only the PicBasic Pro program of this project is given.

PicBasic Pro
Figure 5.101 shows the PicBasic Pro program listing of the project. At the
beginning of the program START_button, STOP_button, and CLEAR_button

282 PIC BASIC Projects

BEGIN

Configure 1/O ports

l

Configure timer
interrupt for 1 sec
interrupts

ISR

BEGIN

Increment
seconds count

Seconds
=607

Seconds = 0
Increment minutes

TMRO =0
Enable interrupts

Minutes
=607

M

v

Minutes = 0
Stop interrupts | Increment hours

1‘7

Figure5.100 Flow diagram of Project 22

Set display flag

Clear Hour, Minute,
Second, Ticks

I

Re-enable
timer interrupt

RETURN

are assigned to RBO, RB1, and RB2, respectively. The following variables

are then declared:

Hour
Minute
Second
Ticks

Disp

Stores the hours field of time

Stores the minutes field of time

Stores the seconds field of time

This variable stores the tick number. It isincremented
by one whenever a timer interrupt occurs. A second
consists of 61 Ticks

This variable controls writing to the LCD When
Disp = 1, the LCD is updated

PicBasic and PicBasic Pro projects 283

Initially the Hour, Minute, Second, and Ticks are all cleared to zero. Timer
pre-scaler is set to 64 by loading the OPTION_REG to hit pattern
“00000101" (hexadecimal $05). Timer interrupt register TMRO is then
left to count from O to 255 so that the timer interrupts occur at 16.384 ms
intervals (64 X 256 = 16.384ms).

When the START button is pressed, timer register TMRO is reset to zero
and timer interrupts are enabled. Thus, an interrupt is generated every
second and the display shows the elapsed time in HH:MM:SS. When the
STOP button is pressed timer interrupts are disabled and the final count is
displayed on the LCD. Pressing the CLEAR button clears the time vari-
ables so that the chronometer is ready for the next count.

The interrupt service routine starts with label 1SR. Inside this routine
variable Ticks is incremented by 1. When Ticks reaches 61 then it is
assumed that 1s has elapsed (61 X 16.384ms = 999.424 ms) and vari-
able Second isincremented by 1. When Second reaches 60 it is cleared to
zero and Minute isincremented by 1. Similarly, when Minute reaches 60
it is cleared to zero and Hour isincremented by 1. At the end of the ISR
variable Disp is set to 1 if the time has been updated and timer interrupts
are re-enabled by clearing bit 2 of register INTCON.

Notice that the actual timer interrupt interval is 999.424ms which is
576 ms short of a second. If we take into account the delay caused by the
operationsinside the ISR our timer intervals are probably very closeto 1s
(itisnot possible to calculate the exact delay when using ahigh-level lan-
guage since the exact execution times of the instructions are not known).

Inthisproject theinternal clock of the microcontroller isused asthe clock
source. The interna clock is not accurate and for more accurate results,
use of an externa crystal clock source is recommended.

Ekkkhkhhhhkhhhhhkhhhhhhhhhhhhhkhkhhkhhhhhhhhhdhkhkhkhhhhhhhhrhhhhkhkhkhhhhhhhhrhkrrrhkxd

LCD BASED CHRONOMETER

“ Inthis project an LCD display is connected to a PIC16F627 microcontroller.
‘ The microcontroller is configured to operate with a4MHz internal clock. For
‘ more accurate results, an external crystal clock source should be used.

‘ The project is a chronometer, counting in seconds and displaying the hours,
‘ minutes, and seconds in the following format:

HH:MM:SS

Figure5.101 (Continued)

284 PIC BASC Projects

* The connection between the LCD display and the microcontroller is as follows:

‘ Display Microcontroller pin
‘ DB4 RAO
‘ DB5 RA1
‘ DB6 RA2
‘ RB7 RA3
‘ E RB3
‘ RS RA4

‘ START button RBO
‘ STOP button RB1
‘ CLEAR button RB2

* Three push-button switches are connected to RBO, RB1 and RB2 pins of

* PORTB. Pressing START starts the chronometer counting in seconds. Pressing

* STOP button stops the chronometer and displays the elapsed timein HH:MM:SS
* format. Pressing the CLEAR button clears the chronometer so that it is ready for
* the next count.

‘ Thetimer interrupt TMRO is used to update the time. The timer is configured

‘ to interrupt at every 16.384ms. When the count is 61, one second is el apsed

* and the seconds variable is incremented by 1. The minutes or the hours

‘ variables are incremented if necessary.

* A 10K resistor is used to pull-up pin RA4 of the microcontroller.

* RW pin of the LCD is connected to ground. The brightness of the LCD is
* controlled by connecting a 5K variable resistor to pin VEE of the display.

* Author: Dogan Ibrahim

‘ Date: November, 2005
* Compiler: PicBasic Pro
‘Fle: LCD4.BAS

* Modifications

fhkhkdhhkkhhhhhhhhhhhhhhhhhhhhhhdhhhhhdhhhhdhhhhdhhhhhhhdhhdhhdhhdhhhhhdhddrhhrddxd

Figure5.101 (Continued)

PicBasic and PicBasic Pro projects

285

‘ DEFINITIONS

Symbol START _button = PORTB.O * START button

Symbol STOP_button = PORTB.1 * STOP button

Symbol CLEAR_button = PORTB.2 * CLEAR button

Ticks VAR byte * Tick count (61 ticks = 1 sec)

Hour VAR byte * Hour variable

Minute VAR byte * Minute variable

Second VAR byte * Second variable

Disp VAR byte ‘ Disp = 1 to update display

Delay VAR byte * Used to Debounce button
TRISA =0 ‘ PORTA is output
TRISB=7 ‘ RBO,RB1,RB2 are inputs
CMCON =7 * PORTA digita 1/0
PAUSE 500 * Wait 0.5 sec for LCD to initidize

* Clear Hour, Minute, Second and Ticksto zero

Hour =0 * Clear hours

Minute=0 * Clear minutes

Second =0 * Clear seconds

Ticks=0 * Clear ticks

Disp=1 * Force to display 00:00:00 at startup

‘ Initialize timer interrupt. The prescaler is set to 64 and the

* TMRO isleft to run from O to 255. With a clock frequency of 4MHz,

‘ Thetimer interrupt is generated at every 256 * 64 = 16.384ms.

‘ Inside the ISR, variable ticksisincremented by 1. When Ticks = 61

* then time for atimer interrupt is: 61* 16.384 = 999.424ms and variable
* Second isthen updated. i.e. Second is updated nearly every second.

OPTION_REG = $05 * Set prescaler =64
ON INTERRUPT GOTO ISR “ ISR routine
LCDOUT $FE, 1 ‘ Clear LCD

‘ Beginning of MAIN program loop
Figure5.101 (Continued)

286 PIC BASC Projects

LOOP:

* Check if START button is pressed and enable timer interrupts so that
* counting starts if this button is pressed

IF START_button = 0 THEN

TMRO=0 ‘ Initialize TMRO register
INTCON = $A0 * Enable timer interrupt
Disp=1 ‘ Enable display

ENDIF

* Check if STOP button is pressed and disable timer interrupt so that
* counting stops and displays the elapsed time in HH:MM:SS format

|F STOP_button = 0 THEN
INTCON =0 * Disable timer interrupt
Disp=1 ‘ Enable display
ENDIF

* Check if CLEAR button is pressed and clear the display and time variables
* 50 that a new count can start.

IF CLEAR_button = 0 THEN
Hour =0
Minute=0
Second =0
Ticks=0
Disp=1
ENDIF
* Display update section. The display is updated when variable Disp = 1.
‘ Thisvariableis set to 1 inside the | SR when the seconds changes.
‘ The cursor is set to home position and the time is displayed on the LCD.
IF Disp=1THEN
LCDOUT $FE, 2
LCDOUT DEC2 Hour, “:” ,DEC2 Minute, “:” ,DEC2 Second
Disp=0
ENDIF
GOTO LOOP

‘ Thisisthe Timer interrupt Service Routine. The program jumpsto this code
Figure5.101 (Continued)

PicBasic and PicBasic Pro projects

287

* whenever the timer overflows from 255 to 0. i.e. every 256 count. The prescaler

‘ is set to 64 and the clock frequency is4MHz. i.e. the basic instruction cycle

‘ timeis 1 microsecond. Thus, timer interrupts occur at every 64* 256 = 16.384ms.

‘ Variable Ticks isincremented by 1 each time atimer interrupt occurs. When Ticks
‘ isequal to 61, then one second has elapsed (16.384* 61 = 999.424ms) and then

* variable Second isincremented by 1. When Second is 60, variable Minuteis

“ incremented by 1. When Minute is 60, variable Hour isincremented by 1.

‘ Timer TMRO interrupts are re-enabled just before the program exits this routine.
DISABLE
ISR:

Ticks=Ticks + 1

IF Ticks < 61 THEN NoUpdate

* 1 second has elapsed, now update seconds and if necessary minutes and hours.
Ticks=0
Second = Second + 1
IF Second = 60 THEN
Second =0
Minute = Minute + 1
IF Minute = 60 THEN
Minute=0
Hour = Hour + 1
IF Hour = 24 THEN
Hour =0
ENDIF
ENDIF
ENDIF

Disp=1 * Set to update display

‘ End of time update

NoUpdate:
INTCON.2=0 * Re-enable TMRO interrupts
Resume
ENABLE ‘ Re-enable interrupts

END

END * End of program
Figure5.101 PicBasic Pro program of Project 22

288 PIC BASIC Projects

Project 23

Project title:

Project description:

\oltage to be PIC
measured ———P V = nnnn

(0to +5V)

L CD-based voltmeter using A/D converter

In this project an LCD-based voltmeter is designed. The project can be
used to measure and display analog voltagesto up to +5V. Thevoltageis
displayed in millivoltsin the following format:

V = nnnn

where nnnn is the measured voltage. Figure 5.102 shows the block dia-
gram of the project where the voltage to be measured is applied to one of
the analog-to-digital converter (A/D) channels of a PIC microcontroller
having built-in A/D converters.

Microcontroller

LCD

Figure5.102 Block diagram of Project 23

Hardware:

Thecircuit diagram of the project is shown in Figure 5.103. In this project
a PIC16F73-type microcontroller isused. Thisisa28-pin microcontroller
with built-in 5 channel A/D converters, each having 8-bits of resolution.
Other PIC microcontrollers such as PIC16F630 or PIC16F877, or others
with built-in A/D converters can easily be used in this project.

PIC16F73 is a 28-pin microcontroller with the following features:

8K flash program memory

368 bytes RAM memory

Up to 20MHz operation

3 timer circuits

Analog capture, compare and PWM circuits
8-bit 5 channel A/D converter

Built-in USART

SPI and 12C bus compatibility.

In this project, the microcontroller is operated from a 4 MHz resonator
and the voltage to be measured is applied to analog input ANO of the

PicBasic and PicBasic Pro projects 289

microcontroller. The analog channels are named ANO to AN4 and they
correspond to the following PORTA names:

Pin Channel
RAO ANO
RA1 AN1
RA2 AN2
RA3 AN3
RA4 AN4

The default LCD connections also use pins RAO to RA4. In order to
reserve pins RAO to RA4 for analog channels, the LCD is connected to
PORTB as shown below.

PORTB LCD pin
RBO D4
RB1 D5
RB2 D6
RB3 D7
RB4 E
RB5 RS
1 3 5V set brightness
tﬁ 78L05 _L ' [o
Ba?t}e/'“/_i_o'33 HFT 2 _‘, 0.01WF Z\de 2 < I
T : AL 47K 1 EE? ;; 1; g:: vDD VEE
MeLR RB2 23 13 DB6 LCD
RB3 24 14 DB7 ERs VSS RW

RB4 gg 6| 4 1 5
RB5

Voltage to be 2 ANO
Measured

PIC
16F73

Vss
Vss %
0OSC1 OSC2
9 L;I_ho ’
4 MHz resonator

Figure5.103 Circuit diagram of Project 23

290 PIC BASC Projects

Flow diagram:

Software:

The new LCD connection is defined using a set of DEFINE statements as
described in the programming section. The operation of the project issim-
ple: Analog voltage is sampled every second and converted into digital
form. The voltage is then scaled and displayed on the LCD.

Theflow diagram of the project isgiven in Figure 5.104. At the beginning of
the program, LCD connections, port directions, and the A/D converter are
configured. The voltage to be measured is then converted into digital form,
scaled and displayed on the LCD. After 1sdelay this processis repeated.
PicBasic

The PicBasic program of this project is complex since LCDs are not sup-
ported directly and the LCD routines developed in Project 20 use the
default LCD connections. Only the PicBasic Pro program listing of this

project is given.

Configure LCD
connections

|

Configure port
directions

I

Configure A/D
converter

I

Start conversion

d of
conversion ?
Y

Convert to mV

I

Display result on
the LCD

I

Wait 1 second

]

Figure5.104 Flow diagram of Project 23

PicBasic and PicBasic Pro projects 291

PicBasic Pro

The PicBasic Pro program listing of the project is given in Figure 5.105.
At the beginning of the program a set of DEFINE statements are used to
define the connections between the LCD and the microcontroller.

Variable Res stores the converted digital data. Variable \olts stores the result
of conversion in millivolts. In order to convert the measured voltage to mil-
livolts, it isnecessary to multiply the result of the conversion with 19.53 (256
steps correspond to 5000 mV, thus, each step is5000mV/256 = 19.53mV).
But since the PicBasic Pro language does not support floating point
arithmetic, an approximation is made here and the result is multiplied
with 19 only.

The steps for an A/D conversion using the PIC16F73 microcontroller are
as follows (assuming that the A/D conversion interrupt is not used):

® Configure the A/D module

— Configure analog pins, reference voltage, and digital 1/0 (register
ADCON1)

— Select A/D conversion clock (register ADCONO)

— Turn on A/D module (register ADCONO)

Select an A/D input channel

Start A/D conversion

— Set GO/DONE bit of register ADCONO

Wait for the conversion to complete

— Wait until GO/DONE hit of register ADCONO is cleared

Read the A/D result register (ADRES)

® Goto step 2 or 3 for next conversion.

In Figure 5.105, register ADCONL1 isinitialy cleared so that ANOto AN4
are analog inputs and the A/D converter reference is the supply voltage,
VDD. Register ADCONO is then set to bit pattern “11000001” to select
theinternal RC oscillator asthe source of clock for the A/D. Analog chan-
nel ANO is also selected and the A/D module isturned on.

A/D conversion is started by setting the GO/DONE bit of register
ADCONQ, i.e. ADCONO.2 = 1. The program then waits until the conver-
sion iscomplete which isindicated by the GO/DONE bit going to logic O,
i.e. ADCONO.2 = 0. Theresult of the conversion is then read from regis-
ter ADRES and is stored as a digital value between 0 and 255 in variable
Res. Resis multiplied with 19 (it should be 19.53 for an exact result) and
stored in variable \blts. \olts stores the measured voltage in millivolts.
This voltage is then displayed on the LCD as a 4-digit decimal number.

The program repeats after a one-second delay.

292 PIC BASC Projects

fhkhkhkkhhhkhhhhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhhhdhhdhhdhhdhhdhdddhddrhdhrddrd

‘ LCD BASED VOLTMETER

‘ Inthis project an LCD display is connected to a PIC16F73 microcontroller.

* The microcontroller is configured to operate with a 4MHz external resonator.

‘ The project is avoltmeter, which can measure the voltage applied to the analog
* input ANO. The voltage to be measured must be between 0V and +5V.

* The connection between the LCD display and the microcontroller is as follows:

‘ Display Microcontroller pin
‘ DB4 RBO
‘ DB5 RB1
‘ DB6 RB2
‘ RB7 RB3
‘ E RB4
‘ RS RB5

‘ Analoginput ANO (RAQ)

* RW pin of the LCD is connected to ground. The brightness of the LCD is
* controlled by connecting a 5K variable resistor to pin VEE of the display.

* The PIC16F73 microcontroller has built in 8-bit 5 channel A/D converters.
* The A/D reference voltage is set to +5V. With 8-bit converters, operating with
* areference voltage of +5V, the bit resolution is 5000/256 = 19.53mV.

‘ Theresult isdisplayed in mV in the following format:

‘ V =nnnn

‘ Author: Dogan Ibrahim

‘ Date: November, 2005
* Compiler: PicBasic Pro

‘ File: LCD5.BAS

* Modifications

fhkhhhkhhhhhhhhhhhdhhhhhdhhhhhhhdhhdhhhhhhhhhhdhhhdhdhhhhdhhddhdhhhddrhdhdddrdrddhxd

Figure5.105 (Continued)

PicBasic and PicBasic Pro projects

293

‘ DEFINITIONS

‘ Define LCD connections

DEFINELCD_DREG PORTB * LCD Databits on PORTB
DEFINELCD_DBIT 0 * PORTB starting address
DEFINE LCD_RSREG PORTB ‘ LCD RS bit on PORTB
DEFINE LCD_RSBIT 5 * LCD RS bit address
DEFINELCD_EREG PORTB * LCD E bit on PORTB
DEFINELCD_EBIT 4 * LCD E bit address
DEFINELCD_BITS 4 * LCD in 4-bit mode
DEFINE LCD_LINES 2 ‘ LCD has 2 rows
Res Var Word * A/D converter result
Volts Var Word ‘* Result of conversionin mV
Conv Con19 * 5000/256 = 19.53, take 19
TRISA=1 “ RAO (ANO) isinput
TRISB=0 * PORTB is output
PAUSE 500 * Wait 0.5sec for LCD to initidlize
‘ Initialize the A/D converter
ADCON1=0 * Make ANO to AN4 as analog inputs,
‘ make reference voltage = VDD
ADCONO = 911000001 * A/D clock isinternal RC, select ANO
* Turn on A/D converter
LCDOUT $FE, 1 ‘ Clear LCD
AGAIN:
* Start A/D conversion
ADCONO0.2=1
* Wait until conversion is complete
WT: PAUSE1
IFADCONO0.2=1THEN WT
Res= ADRES ‘ Get result of conversion
Volts = Res* Conv ‘ Result in mV

Figure5.105 (Continued)

294 PIC BASIC Projects

LCDOUT $FE,2“V =" ,DEC4Volts ‘ Display result

PAUSE 1000 * Wait 1 second
GOTOAGAIN ‘ Repeat
END ‘ End of program

Figure5.105 PicBasic Prolisting of Project 23

The displayed voltage by the program in Figure 5.105 is not accurate
since the converted signal is multiplied by 19 and not by 19.53. The rea-
son for thiswas because the PicBasic Pro language does not support float-
ing point arithmetic. The result could however be made more accurate by
performing the multiplication with 19.53 as follows:

Consider 19.53 as 19 + 0.53

Read the A/D result into variable Res

Multiply Reswith 19 and store in \Voltsl

Multiply Res with 53 and store in \olts2

Divide \Wlts2 to \Wolts100

Add \Wlts2 to Wltsl. Woltsl now contains a number which is more
closely related to Res*19.53

The program given in Figure 5.106 implements the changes described
above. In this program variable Voltsl stores the measured voltagein milli-
volts and thisvariable is displayed as a 4 digit decimal number.

XSS S S EEEE LSS SRS EEEEEEE LSS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

‘ LCD BASED VOLTMETER

* In this project an LCD display is connected to a PIC16F73 microcontroller.

* The microcontroller is configured to operate with a 4MHz external resonator.

‘ The project is avoltmeter, which can measure the voltage applied to the analog
* input ANO. The voltage to be measured must be between 0V and +5V.

* The connection between the LCD display and the microcontroller is as follows:

Display Microcontroller pin
‘ DB4 RBO

Figure5.106 (Continued)

PicBasic and PicBasic Pro projects 295

‘ DB5 RB1
‘ DB6 RB2
‘ RB7 RB3
‘ E RB4
‘ RS RBS5

‘ Analoginput ANO (RAO)

* RW pin of the LCD is connected to ground. The brightness of the LCD is
* controlled by connecting a 5K variable resistor to pin VEE of the display.

* The PIC16F73 microcontrolelr has built in 8-bit 5 channel A/D converters.
‘ The A/D reference voltage is set to +5V. With 8-bit converters, operating with
* areference voltage of +5V, the bit resolution is 5000/256 = 19.53 mV.

‘ Theresult isdisplayed in mV in the following format:

‘ V =nnnn
‘ This program is similar to LCD5.BAS, but here the result is more accurate since
* the conversion factor istaken as 19.53 and not just 19.

* Author: Dogan Ibrahim

‘ Date: November, 2005

* Compiler: PicBasic Pro

‘Fle LCD5-1.BAS

* Modifications

LR R

‘ DEFINITIONS

‘* Define LCD connections

DEFINE LCD_DREG PORTB * LCD Data bits on PORTB
DEFINE LCD_DBIT 0 * PORTB starting address
DEFINE LCD_RSREG PORTB * LCD RS bit on PORTB
DEFINE LCD_RSBIT 5 * LCD RS bit address
DEFINELCD_EREG PORTB ‘ LCD E bit on PORTB
DEFINE LCD_EBIT 4 * LCD E bit address

Figure5.106 (Continued)

296 PIC BASC Projects

DEFINE LCD_BITS 4
DEFINE LCD_LINES 2

Res Var Word
Voltsl Var Word
Volts2 Var Word

Convl Con 19
Conv2 Con53

TRISA=1
TRISB =0

PAUSE 500

‘ Initialize the A/D converter

ADCON1=0
ADCONO = %11000001
LCDOUT $FE, 1

:A\GAI N:

* Start A/D conversion

ADCONO0.2=1

* Wait until conversion is complete

WT: PAUSE1

IFADCONO.2=1THEN WT

Res= ADRES

Voltsl = Res* Conv1l
Volts2 = Res* Conv2
Volts2 = Volts2 / 100

Voltsl = Voltsl + Volts2
LCDOUT $FE,2,“V =" DEC4 Voltsl

PAUSE 1000
GOTOAGAIN

END

* LCD in 4-bit mode
* LCD has 2 rows

* A/D converter result
* First part of result in mV
* Second part of result in mV

* 5000/256 = 19.53, thisisthe decimal part
‘ Thisisthe fractional part

‘ RAO (ANO) isinput
* PORTB is output

* Wait 0.5sec for LCD to initialize

* Make ANO to AN4 as analog inputs,
‘ make reference voltage = VDD

* A/D clock isinternal RC, select ANO
‘ Turn on A/D converter

* Clear LCD

‘ Get result of conversion

* Multiply by 19
* Multiply by 53

* Result in mV
‘ Display result
* Wait 1 second
‘ Repeat

‘ End of program

Figure5.106 More accurate PicBasic Pro program

PicBasic and PicBasic Pro projects 297

PicBasic Pro language provides ahigh-level instruction called ADCIN for
starting an A/D conversion and reading the result of the conversion. The
format of thisinstructionis

ADCIN channel, var

Where channel is the A/D channel used, and var is the variable which is
to store the result of the conversion. Using this instruction, simplifies the
programming of an A/D converter channel. Figure 5.107 gives the pro-
gram listing which makes use of the ADCIN instruction.

Notice that the width of the A/D is defined with ADC_BITS, the A/D clock
isdefined with ADC_CLOCK (3 correspondsto theinternal RC clock), and
theA/D sampling timeisdefined withADC_SAMPLEUS. Although we are
using the ADCIN statement to read the anal og input, we till haveto config-
ure the ADCONO and ADCONL registers before starting a conversion.

Ekkkhkhhhhkhhhhhkhhhhhhhhhhhhkhkhkhkhkhhhhhhhhhkhhhkhkhkhhkhhhhhhrhhhhdkhkhhhhhhrrrxxxxkx

LCD BASED VOLTMETER

“ Inthis project an LCD display is connected to a PIC16F73 microcontroller.
‘ The microcontroller is configured to operate with a 4MHz external resonator.

‘ The project is a voltmeter, which can measure the voltage applied to the analog
“ input ANO. The voltage to be measured must be between 0V and +5V.

* The connection between the LCD display and the microcontroller is as follows:

Display
DB4
DB5
DB6
RB7

E

RS

Analog input

Microcontroller pin
RBO
RB1
RB2
RB3
RB4
RB5

ANO (RAO)

RW pin of the LCD is connected to ground. The brightness of the LCD is

* controlled by connecting a 5K variable resistor to pin VEE of the display.
Figure5.107 (Continued)

298 PIC BASIC Projects

* The PIC16F73 microcontroller has built in 8-bit 5 channel A/D converters.
* The A/D reference voltage is set to +5V. With 8-bit converters, operating with
* areference voltage of +5V, the bit resolution is 5000/256 = 19.53mV.

‘ Theresult isdisplayed in mV in the following format:

‘ V =nnnn

* This program is similar to LCD5.BAS, but here the result is more accurate since

* the conversion factor istaken as 19.53 and not just 19.

* In this program PicBasic statement ADCIN is used to read analog data

fhkhkdhhkkhhhhhhhhhhhhhhhhhhhhhhdhhhhhdhhhhhhhhdhhdhhhhhdhhdhhdhhdhhhddhrdrhhrddxd

* Author: Dogan Ibrahim

‘ Date: November, 2005
‘ Compiler: PicBasic Pro
‘Fle: LCD5-2.BAS

* Modifications

‘ DEFINITIONS

‘* Define LCD connections

DEFINE LCD_DREG PORTB

DEFINE LCD_DBIT 0
DEFINE LCD_RSREG PORTB
DEFINE LCD_RSBIT 5

DEFINE LCD_EREG PORTB

DEFINE LCD_EBIT 4
DEFINE LCD_BITS 4
DEFINE LCD_LINES 2

‘ Define A/D converter parameters
DEFINEADC BITS 8
DEFINEADC_CLOCK 3
DEFINEADC_SAMPLEUS 50

Figure5.107 (Continued)

* LCD Databitson PORTB
* PORTB starting address

* LCD RS bit on PORTB

* LCD RS bit address

* LCD E hit on PORTB

* LCD E bit address

* LCD in 4-bit mode

‘ LCD has 2 rows

* A/D number of bits
* Use A/D internal RC clock
* Set sampling timein us

PicBasic and PicBasic Pro projects 299

‘ Variables

Res Var Word
Voltsl Var Word
Volts2 Var Word

* Congtants
Corwvl Con19
Conv2 Con53

TRISA=1
TRISB =0

PAUSE 500

‘ Initialize the A/D converter

ADCON1=0
ADCONO = %11000001

LCDOUT $FE, 1

AGAIN:

* Start A/D conversion

ADCIN 0, Res

Voltsl = Res* Convl

Volts2 = Res* Conv2

Volts2 = Volts2 / 100

Voltsl = Voltsl + Volts2

LCDOUT $FE,2,V =" ,DEC4 Voltsl
PAUSE 1000

GOTOAGAIN

END

* A/D converter result
* First part of result in mV
* Second part of result in mV

* 5000/256 = 19.53, thisisthe decimal part
* Thisisthe fractional part

* RAO (ANO) isinput
* PORTB is output

* Wait 0.5sec for LCD to initialize

* Make ANO to AN4 as analog inputs,

‘ make reference voltage = VDD

“ A/D clock isinternal RC, select channel ANO
* Turn on A/D converter

‘ Clear LCD

* Read Channel 0 data

* Multiply by 19
* Multiply by 53

* ResultinmV
* Display result
* Wait 1 second
‘ Repest

* End of program

Figure5.107 PicBasic program using the ADCIN instruction

300 PIC BASC Projects

Project 24

Project title:

Project description:

Temperature PIC
sensor TP » Temp = nnC

L CD-based thermometer using A/D converter

In this project an L CD-based thermometer is designed. The project can be
used to display the temperature in degrees centigrade every second in the
following format:

Temp = nnC
Where nn isthe measured temperature. Figure 5.108 shows the block dia-

gram of the project where the temperature sensor is connected to one of
the analog-to-digital converter (A/D) channels of a PIC microcontroller.

Microcontroller

LCD

Figure5.108 Block diagram of Project 24

Hardware:

The circuit diagram of the project is shown in Figure 5.1009.

In this project a PIC16F73-type microcontroller is used. Thisis a 28-pin
microcontroller with built-in 5 channel A/D converters, each having 8-
bits of resolution. The microcontroller is operated from a 4MHz res-
onator. The temperature sensor used is the LM35DZ (see Figure 5.110)
3-pin analog sensor with a range of 0°C to +100°C. LM35DZ provides
an analog output voltage which is proportional to the measured tempera-
ture. The device has 3 pins: Vs, Gnd, and Vo. Vs and Gnd are connected to
the supply voltage and the ground, respectively. It is recommended by the
manufacturersto use a 10} resistor and a 1 pF capacitor filter at the out-
put of the sensor to minimise electrical noise. Vo isthe analog output volt-

age given by
Vo = 10mV/°C
For example, at a temperature of 20°C the output voltage is 200mV. In

this project LM35DZ is connected to analog input ANO of the PIC16F73
microcontroller.

PicBasic and PicBasic Pro projects 301

1

3 OV

se brighdness

+ 78105 y
“'L::M I 1e4
8Y 1 gasape -]— s 20 s
Battery | Pa 0.0% Uk ;
+ T T Vi 2 3
VoD VEE !
T o] RB0 i; :; B4 ;
B RB1 DRS :
MCLR : LCD i
RB2 ii z: PBS ;
R Y L H
A RB DR7 ERs VSS RAW |
- ;g G T
RBS
Femparailre o
Sensor LM3B07 ANG
‘[pj{) PIC
16F73
F
| 1p Vgs 18
— yeiu]
: 0SCt 082

Figure5.109 Circuit diagram of Project 24

Figure5.110 LM35DZ temperature sensor

Flow diagram:

QLCE'JG

4 Mz resonator

The operation of the project is very simple: the output of the temperature
sensor is converted into digital, scaled, and then displayed on the LCD.
This processis repeated after one-second delay.

The flow diagram of the project is given in Figure 5.111. At the beginning
of the program LCD connections, port directions and the A/D converter are
configured. Analog temperature is then read and converted into digital. The

302 PIC BASC Projects

reading is scaled, converted into true degrees centigrade temperature and
then displayed on the LCD. This process s repeated after one-second delay.

BEGIN

Configure LCD
connections

l

Configure port
directions

l

Configure A/D
converter

Start conversion

conversion ?

Read temperature

l

Scale and display
temperature

l

Wait 1 second

Figure5.111 Fow diagram of Project 24

Software: PicBasic
The PicBasic program of this project is complex since LCDs are not sup-
ported directly and the LCD routines developed in Project 20 use the

PicBasic and PicBasic Pro projects 303

default LCD connections. Only the PicBasic Pro program listing of this
project is given.

PicBasic Pro

The PicBasic Pro program listing of the project isgiven in Figure 5.112. At
the beginning of the program LCD connections and the A/D parametersare
defined. Variable Res stores the converted data. A/D conversion is started
using the ADCIN statement. When the conversion is complete, the con-
verted dataisavailablein register Res. The contents of Res can be converted
into millivolts by multiplying it by 19.53 as described in Project 23. But,
sincethe output of the sensor is10mV/°C, it will be necessary to divide Res
by 10 in order to find the real absolute temperature in degrees centigrade.
Thus, the temperature can be obtained by the following operation:

Res* 19.53/10 = Res* 1.953 = 2 * Res

In the program, variable Res is multiplied by 2 to obtain the temperature
with a +1°C accuracy (the resolution of the A/D converter is 19.53mV
which is equivalent to nearly 2°C). The value of Resis then displayed on
the LCD as a two-digit decimal number. The above process is repeated
after one-second del ay.

For more accurate temperature measurements an A/D converter with a
higher resolution will be required, e.g. 10-bit or higher.

Ekkkhkhhhkhkhhhhhhhhhhhhhhhhhhkhkhkhhhhhdhhhhhhhkhkhkhhhhhhhhrhhhdhrkhhhhhhhhrhrrrxrrhkxk

LCD BASED THERMOMETER

“ Inthis project an LCD display is connected to a PIC16F73 microcontroller.
 The microcontroller is configured to operate with a4MHz external rezonator.

‘ The project is athermometer, which can measure the environmental
‘ temperature and then display on the LCD.

“ A LM35DZ type anal og output temperature sensor is used in this project.
* LM35DZ provides an output voltage proportional to the measured temperature.

Figure5.112 (Continued)

304 PIC BASIC Projects

* The connection between the LCD display and the microcontroller is as follows:

‘ Display Microcontroller pin

‘ DB4 RBO
‘ DB5 RB1
‘ DB6 RB2
‘ RB7 RB3
‘ E RB4
‘ RS RB5

‘ LM35DZ ANO (RAO)

* RW pin of the LCD is connected to ground. The brightness of the LCD is

* controlled by connecting a 5K variable resistor to pin VEE of the display.

* The PIC16F73 microcontroller has built in 8-bit 5 channel A/D converters.

* The A/D reference voltage is set to +5V. With 8-bit converters, operating with
* areference voltage of +5V, the bit resolution is 5000/256 = 19.53mV.

* The temperature is displayed in degrees C in the following format:

‘ TEMP=nnC

* In this program PicBasic statement ADCIN is used to read analog data

* Author: Dogan Ibrahim

‘ Date: November, 2005

* Compiler: PicBasic Pro

‘Fle: TEMPBAS

* Modifications

(R T R
‘ DEFINITIONS

‘* Define LCD connections

DEFINE LCD_DREG PORTB * LCD Data bits on PORTB
DEFINE LCD_DBIT 0 * PORTB starting address

Figure5.112 (Continued)

PicBasic and PicBasic Pro projects

305

DEFINE LCD_RSREG PORTB

DEFINE LCD_RSBIT 5
DEFINE LCD_EREG PORTB

DEFINE LCD_EBIT 4
DEFINELCD_BITS 4

DEFINE LCD_LINES 2

‘ Define A/D converter parameters

DEFINEADC_BITS 8
DEFINEADC_CLOCK 3
DEFINEADC_SAMPLEUS 50

‘ Variables

Res Var Word
Templ Var Byte

TRISA=1
TRISB=0

PAUSE 500

‘ Initialize the A/D converter

ADCON1=0
ADCONO = %11000001
LCDOUT $FE, 1
AGAIN:
* Start A/D conversion

ADCIN 0, Res
Templ=2* Res

LCDOUT $FE,2,“TEMP =",DEC2 Templ, “C"

PAUSE 1000
GOTO AGAIN

END

Figure5.112 PicBasic Pro listing of Project 24

* LCD RS bit on PORTB
* LCD RS bit address

* LCD E hit on PORTB

* LCD E bit address

* LCD in 4-bit mode

* LCD has 2 rows

* A/D number of bits
* Use A/D internal RC clock
* Set sampling timein us

* A/D converter result
* Temperature in degrees C

“ RAO (ANOQ) isinput
* PORTB is output

* Wait 0.5sec for LCD to initidize

* Make ANO to AN4 as analog inputs,

‘ make reference voltage = VDD

“ A/D clock isinternal RC, select ANO

* Turn on A/D converter
‘ Clear LCD

‘ Read Channel 0 data
* Convert to degrees C
‘ Display decimal part
* Wait 1 second

‘ Repeat

* End of program

306 PIC BASIC Projects

Project 25

Project title:

Project description:

Temperature PIC serial
sensor ————P b

Serial LCD-based thermometer with external EEPROM memory

In this project an LCD-based thermometer is designed. The project con-
sists of atemperature sensor, aserial LCD display, a PIC microcontroller,
and an externa 12C bus compatible EEPROM memory. Temperature is
measured every minute and stored in the EEPROM memory. During this
time the following message is displayed on the LCD:

COLLECTING DATA

After 1 hthe measurement stops and the program reads from the EEPROM
memory to find the maximum temperature. The maximum temperature is
displayed on the LCD in the following format:

Max=nnC

where nn is the measured maximum temperature in 1h. Figure 5.113
shows the block diagram of the project where the temperature sensor is
connected to one of the analog-to-digital converter (A/D) channels of a
PIC microcontroller.

LCD

Microcontroller

A A

Serial EEPROM
Memory

Figure5.113 Block diagram of Project 25

Hardware:

The circuit diagram of the project is shown in Figure 5.114. In this project
a PIC16F73-type microcontroller is used. Thisis a 28-pin microcontroller
with built-in 5 channel A/D converters, each having 8-bits of resolution.
The microcontroller is operated from a4 MHz resonator. The temperature
sensor used is the LM35DZ 3-pin analog sensor (see Project 24) with a
range of 0°C to +100°C. LM35DZ provides an analog output voltage
which is proportional to the measured temperature. The device has 3 pins:
Vs, Gnd, and Vo. Vs and Gnd are connected to the supply voltage and the

PicBasic and PicBasic Pro projects 307

ground, respectively. It is recommended by the manufacturers to use a
100 resistor and a 1 wF capacitor filter at the output of the sensor to min-
imise electrical noise. Vo isthe analog output voltage given by

Vo = 10mV/°C

EEPROM Memory

Temperature is stored every minute in an ST24C04-type serial 1C bus
compatible EEPROM memory, having a capacity of 512 X 8 bits, organ-
ised as 2 blocks of 256 bytes each. The memory is connected to the micro-
controller as an 1°C device where the clock input (SCL) is connected to
port RBO of the microcontroller and the data pin (SDA) is connected to
port RB1 of the microcontroller. Although any value pull-up resistors
from 1.8 to 47K can be used, in this project 4.7K resistors are used
for the I°C bus. ST24C04 is an 8-pin device with the following pin
descriptions:

Pin 1: No connection

Pin 2: Device addressA1
Pin 3: Device address A2
Pin4: Gnd

Pin 5: Dataline

Pin 6: Clock line

Pin 7: Write protect pin
Pin 8: Vcc.

The device address on the I2C bus consists of 7 bits

4-bit control code
2-bit device address (A1 and A2)
1-bit block select (if more than one block is used).

Addressis sent on the bus as an 8-bit byte where the eighth bit is the R/'W
control bit. R/'W = 0 to write to a device, and R/W = 1 to read from a
device. The 8-bit address format for the ST24C04 consists of the follow-
ing bits (b is the block-select bit sent by the Master):

|1/0]1|0]|A2|A1|B|RW |

In this project A1 and A2 inputs are connected to ground so that the
memory-select address is hexadecimal $A0 (bit pattern “10100000") for
the first block of memory (256 bytes) when B = 0, and $A2 (bit pattern
“10100010") for the other block of memory (256 bytes) when B = 1.
Note that A1 and A2 are not used by this memory chip (i.e. there are no

308 PIC BASIC Projects

internal connections to these pins). Write protect pin should be connected
to ground to enable writing to the device.

After writing a byte to the memory it is recommended by the manufacturers
to wait for about 10 ms before another byte iswritten or read.

1 3 *OV
"'_IT 78L05 _L ‘
9V T 033pF 20
! 2 0.01pF
Battery “' —" vad)
T vDbD
) 23 3|
4.7K RB2 RX
‘l‘ 1 LCD
MCLR ILM-216
A5V 1] serial LCD
PIC +5v4 T
16F73 {
8
Temperature 5 47K 47K Voo 1

A0

Sensor LM35DZ ANO REO 21 6 scL T 2

10 RB1|22 2lspa m2>
1uF o Gnd

J J g Vss 5 24C04 | L
- Vss% WP)
) oscl 0SC2 = 7| Serial EEPROM

Figure5.114 Circuit diagram of Project 25

QLEI—"]O

4 MHz resonator

L Adress = $A0

Pin layout of the ST24C04 serial EEPROM memory is shown in
Figure 5.115.

f

2
B
B

24C04
A0 Vcclg
A1 WP
A2 SCLf|
Vss SDAP|

Figure5.115 Pinlayout of ST24C04 memory

PicBasic and PicBasic Pro projects 309

Flow diagram:

Software:

Serial LCD

AnILM-216-type serial LCD isused in this project where the serial input
of the LCD is connected directly to RB2 port of the microcontroller. The
operation of this serial LCD is described in detail in Section 4.3.2. The
communication parameters have been selected as: 2400 baud, 8 data bits,
and no parity bit.

The operation of the project is very simple: the output of the temperature
sensor is converted into digital format every minute and then stored in
the EEPROM memory. Data is collected for 1h (60 samples) and at the
end of this time the maximum temperature is found and displayed on the
serial LCD.

Theflow diagram of the project isgiven in Figure 5.116. At the beginning
of the program the A/D converter parameters are defined, and port direc-
tionsare configured. A loop is used to read the temperature every minute,
convert into degrees centigrade and store in the EEPROM memory. The
values stored in the EEPROM memory are then read and the maximum
valueisfound and displayed on the LCD.

PicBasic

12C input and output commands by default use the RAO and RA1 pinsfor
data and clock, respectively. Looking a the A/D configuration of
PIC16F73, itisnot possibleto configure RAO and RA1 asdigital pinsand
any other pin of PORTA as an analog channel. Asaresult of this, it is not
possible to implement this project using the PicBasic language unless the
12C routines are modified.

PicBasic Pro

PicBasic Pro program listing of the projectisshownin Figure5.117. At the
beginning of the program the A/D converter parameters are defined, and
port directions are configured. The A/D converter is then initialised and
configured. A FOR loop is used where inside this loop the temperature is
read from the sensor every minute using the ADCIN statement, it is then
converted into degrees centigrade and stored in successive locations of the
EEPROM memory using the I2CWRITE statement. The loop is repeated
60 times (i.e. for 1 h) and the loop index (variable Addr) is used to address
the EEPROM memory. After the data collection another FOR loop is used
to read the temperature values from the EEPROM (using the I2CREAD
statement) memory and then find the largest temperature during the hour.
The maximum temperature is stored in variable Maxone and is displayed
onthe LCD in the following format:

Max = nnC

310 PIC BASC Projects

BEGIN

Define A/D parameters,
configure 1/O ports

l

Display
"COLLECTING DATA"

l

Configure A/D
converter

Get a temperature
value

l

Store in EEPROM

l

Wait 1 minute

l

Cnt=Cnt+1

Y

Find max temperature

l

Display max temperature

Figure5.116 Flow diagram of Project 25

PicBasic and PicBasic Pro projects 311

Notice that the PicBasic Pro statement SEROUT is used to send serid
data to the LCD. RB2 is defined as the serial output port (Sout) and the
baud rate is chosen as 2400. Theinclude file “modedefs.bas’ containsthe
definitions for the various PicBasic Pro baud rates. SEROUT command
assumes a4 MHz oscillator when generating its serial bit timing.

Note that the serial data must beinverted before sending to the serial LCD.
Mode “N2400" defines the baud rate as 2400 and aso inverts the serial
output data.

RS R L LSS SRR EEEEE LSRR EEEEEEE LSS RS LR EEEEEEEEEEEEEEE S

‘ SERIAL LCD BASED THERMOMETER WITH SERIAL EEPROM

“ In this project an LCD display is connected to a PIC16F73 microcontroller.

‘ The microcontroller is configured to operate with a4 MHz external rezonator.
‘ The project is athermometer with an external serial EEPROM.

‘ The temperature is measured every minute and is stored in the EEPROM

* memory. After one hour the measurement stops and the maximum

* temperature during thistime is found and displayed on the serial LCD.

“ A LM35DZ type anal og output temperature sensor is used in this project.
* LM35DZ provides an output voltage proportional to the measured temperature.

* A 24C04 type serial EEPROm is used in the project.

‘ A serial LCD isused in this project. The Baud rate is selected as 2400.
* The connection between the LCD and the microcontroller is as follows:

Display Microcontroller pin

‘ RX RB2

* The connection between the microcontroller and the serial EEPROM is as
‘ follows:

‘ EEPROM Microcontroller pin
‘ SCL RBO
‘ SDA RB1

Figure5.117 (Continued)

312 PIC BASC Projects

* The temperature sensor is connected to the microcontroller as follows:

‘ Sensor Microcontroller pin

‘ LM35Dz ANO (RAO)

* The PIC16F73 microcontroller has built in 8-bit 5 channel A/D converters.

* The A/D reference voltage is set to +5V. With 8-bit converters, operating with
* areference voltage of +5V, the bit resolution is 5000/256 = 19.53mV.

* The maximum temperature is displayed in degrees C in the following format:

‘ Max=nnC

* In this program PicBasic statement ADCIN is used to read analog data

‘ Author: Dogan Ibrahim

‘ Date: November, 2005
* Compiler: PicBasic Pro
‘Fle: SERIAL.BAS

* Modifications

fhkhkkhkkhhhhhhhhhhhdhhhhhhhhhhhhhdhhdhhhhhhhhdhhdhhddhhhhdhhhdhdhhhdddrhhrdhrdrrdx

INCLUDE “modedefs.bas’

‘ DEFINITIONS

‘ Define A/D converter parameters

DEFINEADC BITS 8 * A/D number of bits
DEFINEADC_CLOCK 3 * UseA/D interna RC clock
DEFINEADC_SAMPLEUS 50 * Set sampling timein us

* Variables used

Symbol Sout =2 * RB2isserial output
Symbol SDA = PORTB.1 ‘ EEPROM Data pin
Symbol SCL = PORTB.0 * EEPROM clock pin

Figure5.117 (Continued)

PicBasic and PicBasic Pro projects

313

‘ Variables
Res Var Byte * A/D converter result
Templ Var Byte * Temperature in degrees C
Maxone Var Byte * Maximum temperature
Addr Var Byte * Address of EEPROM
* Start of Program
TRISA=1 * RAO (ANO) isinput
TRISB =0 * PORTB is output
PAUSE 500 * Wait 0.5sec for LCD to initialize

* Clear display and display message “COLLECTING DATA...”
SEROUT Sout, N2400, [12, “COLLECTING DATA..."]

‘ Initialize the A/D converter

ADCON1=0 * Make ANO to AN4 as analog inputs,
‘ make reference voltage = VDD
ADCONO = %11000001 * A/D clock isinternal RC, select channel ANO

* Turn on A/D converter
* Start A/D conversion and get 60 samples for an hour

FORAddr=0TO 59

ADCIN 0, Res ‘ Read Channel 0 data

Templ=2* Res ‘ Convert to degrees C

I2CWRITE SDA, SCL, %10100000,Addr, [Temp1]

PAUSE 60000 * Wait 1 minute
NEXT Addr ‘ Repeat

‘ Read all collected data from EEPROM and find and display the largest one.

TRISB =2 ‘ RB1isinput now
Maxone =0 “ Initially maximum =0
FORAddr=0TO 59

12CRead SDA, SCL, %1010000,Addr, [Templ]

IF Templ > Maxone THEN Maxone = Templ
NEXT Addr

Figure5.117 (Continued)

314 PIC BASC Projects

* Max temperatureisin variable Maxone.
* Clear display and display the value of Maxone

SEROUT Sout, N2400, [12, “Max =" #Maxone,"C"]

END ‘ End of program
Figure5.117 PicBasic Prolisting of Project 25

PicBasic and PicBasic Pro projects 315

Project 26
Project title:

Project description:

Programmabl e thermometer with RS232 serial output

In this project a programmable digital thermometer is designed and the
temperature readings are sent out at required intervals through an RS232
serial line. The project consists of atemperature sensor, a PIC microcon-
troller and an RS232 line.

The temperature is sent out either in degrees centigrade or in degrees
Fahrenheit in the following format:

nnC
nnC

or,
nnF
nnF

The thermometer can be connected to a serial line such as the COM1 or
COM2 port on a PC. A termina emulator program such as Hyperlink,
SmarTerm, etc. can be activated on the PC to communicate with the ther-
mometer. The communication parameters should be set to 2400 Baud, 8
data bit, 1 stop bit, and no parity bit. When the thermometer is connected
to the PC and the terminal emulation program is activated the following
messageswill be displayed on the screen. The texts entered by the user are
in bold for clarity:

Digital Thermometer With RS232 Output

Enter sampling interval in seconds: 1
Output in degrees C (C) or degreesF (F) : C
Press ENTER to start data collection...

Data collection started:

nnC

316 PIC BASC Projects

Figure 5.118 shows the block diagram of the project where the tempera-
ture sensor is connected to one of the analog-to-digital converter (A/D)
channels of a PIC microcontroller.

RS232- >
Temperature PIC

. Level RS232
sensor Microcontroller
Converter |¢

Figure5.118 Block diagram of Project 26

Hardware: The circuit diagram of the project is shown in Figure 5.119. Any type of
PIC microcontroller with a built-in A/D converter can be used. In this
project a PIC16F877-type microcontroller is used. This is a popular
microcontroller having 40-pins and 8 channel 10-bit multiplexed built-in
A/D converter. The reason for choosing this microcontroller is to make
your-self familiar with this popular microcontroller.

LM35DZ analog temperature sensor is connected to bit 0 of PORTA
(ANO). RBO and RB1 are configured as RS232 serial output and input,
respectively. RS232 voltage levelsare =12V where —12V iscalled Mark
(logic 1) and + 12V iscalled Space (or logic 0). Normally RS232 voltage

1 3 +5V
L‘T 78L05 —L ’ .
Ba?tze/ry | 0.33F 2 0.014F 11134 1p|:J__I 16| ToF
+ |] v =2 B
L - T 45
_L 4.7K ; RBO 33 1x 11 13 __50
N MCLR Ra1[P4Rx12] MAX202 [14 Ié.? ToPC
L3 EE o
ATDV 1+|: 1 _L o)
M
PIC 15 5J__|1 ¢ - RS232 Connector
16F877 +“
Temperature 2 T
Sensor LM35DZ ANO -
I
F
_Tw Vss 12
. %
= Vss
= 0SC1 0OSC2 1

13_@_}14 j
4 MHz resonator

Figure5.119 Circuit diagram of Project 26

PicBasic and PicBasic Pro projects 317

levels are converted to CMOS levels using RS232-level converter chips,
such as the MAX202, MAX232, DS275, etc. An RS232-level converter
chip converts the O to +5V output from the microcontroller into =12V
RS232 levels. Similarly, the RS232-level output from a device is con-
verted into O to +5V suitable for the microcontroller inputs.

MAX?202 is a 16-pin IC having dual RS232 transmitters and receivers.
This|C requires external capacitors for its operation. Figure 5.120 shows
the connection diagram when one of the channels of MAX232 is used.

+5V
10 uF
416 —H D‘| 2
+ 10 uF
10 uF ‘; 6 +
T il
4 L
+ -
104F L | MAX232
% 5 ‘
Mi 11 14 -—-OO
icrocontroller TX o {>c ! 0
O
Microcontroller RX o 12 o<} 13 _go
_OO

L
= 9-pin RS232 Connector
Figure5.120 MAX232 RS232-level converter

DS275 is asmaller chip with only 8-pins. This IC aso includes a trans-
mitter and a receiver. The advantage of DS275 is there is no need to use
external capacitors. Figure 5.121 shows the connection diagram when the

DS275 is used.
+5V
2,8
DS275
=10
Microcontroller TX o 3 {>c > _2_60
1 7 o0
Microcontroller RX o 0<} I -OO
-OO
4

S-pin R-8232 Connector
Figure5.121 DS275 RS232 level converter

318 PIC BASC Projects

T TG

In an asynchronous RS232 communication, data is sent and received as
frames. A frame consists of astart bit, 7 or 8 data bits, an even or odd par-
ity bit, and a stop bit. In many applications a 10-bit frame is used to send
a data byte with the following characteristics:

e 1 start bit

® 8 datahits
® no parity bit
e 1 stop hit.

The data line is normally at logic 1 (MARK) and this is the idle state of
the line. Communication starts by sending the start bit which isalogic 0,
sent for the duration of the bit-time. Then the 8 data bits are sent, each
separated with the bit-time. Communication stops by sending the stop bit.
The bit-time depends on the Baud rate chosen. Typical baud rates are:
2400, 4800, 9600, 19,200, 38,400, etc. For example, when using a 9600
baud rate, 9600 bits of information are sent each second. The bit-time is
then 1000/9600 = 0.104 ms, or 104 ms. Since a data byte consists of 10
bits, thisis equivalent to sending 960 characters per second.

RS232-level converter chips invert the data and as a result of this the
SEROUT command should be used in true mode (e.g. T2400 for 2400
baud).

As shown in Figure 5.122, two types of RS232 connector are available:
9-pin D-type, and 25-pin D-type connector. Minimum signals required
for RS232 communication are: transmit (TX), receive (RX), and ground.
The pin numbers for both types of connectors are

Function 9-way 25-way

TX 2 2
RX 3 3
GND 5 7

@?@?@%"Q"Q"Q%O??Q?Q?Q%

=

.

4
it

o
3%

=

i
1

Figure5.122 RS232 connectors

Flow diagram:

The flow diagram of the project is shown in Figure 5.123. At the begin-
ning of the program 1/O ports and the A/D are configured. Then the head-
ing is displayed and the user is prompted to enter the sampling interval

PicBasic and PicBasic Pro projects 319

and the mode as either C (degrees C) or F (degrees F). The program then
enters a loop where the temperature is read from the sensor, converted
into digital, scaled and then sent to the RS232 port of the microcontroller.
The program then waits for the amount of sampling interval and the above
processis repeated.

BEGIN

Configure 1/O ports

l

Configure A/D
converter

l

Display heading

l

Read sampling
interval

l

Read mode (degrees
C or degrees F)

]

Get temperature

l

Scale temperature

l

Send temperature
to RS232 port

l

Wait for
sampling interval

S

Figure5.123 Flow diagram of Project 26

Software:

PicBasic
The PicBasic program listing of the project is shown in Figure 5.124.
At the beginning of the program addresses of SFR registers used in the

320 PIC BASC Projects

program and the variables are defined. Symbols RS232_out and RS232_in
are assigned to 0 and 1, respectively which denote RBO and RB1. PORTA
and PORTB directions are then configured. Notice that when the micro-
controller is powered up the RS232 port output may be at logic 0 and this
may cause some unwanted data to be sent to the receiving device. In order
to avoid this, RS232 port output (RBO) is set to logic 1 for about 100 ms.
Then the heading is sent to the RS232 port and the user is prompted to
enter the sampling interval and the type of output requested, i.e. degrees
Centigrade or degrees Fahrenheit. Serial outputs are sent using the
SEROUT statements. Similarly, seria inputs are received using the SERIN
Statements.

The A/D converter isthen initialised and the conversion is started by set-
ting bit 2 of ADCON 0 to logic 1. When the conversion is complete the
upper two bits of the 10-bit result is available in register ADRESH and
thisis copied to variable Resh. Similarly, low 8-bits are available in vari-
able ADRESL and is copied to variable Red . Variable Res stores the 10-bit
result of the conversion.

The A/D converter has aresolution of 10-bits. Thus, it isrequired to mul-
tiply the value read from the A/D converter with 5000/1024 so that we
obtain the reading in millivolts. The temperature sensor output is
10mV/°C and thus, it will be necessary to divide the result by 10 in
order to obtain the result in degrees Centigrade. Thus, the required oper-
ation is 5000/(1024 X 10) = 0.48. In the program, the A/D reading is
multiplied by 48 and then divided by 100 to have the final result as true
degrees centigrade of temperature.

In the final part of the program the temperature is converted into degrees
Fahrenheit if the mode has been selected as “F’. The temperature is then
sent to the RS232 port. The process repeats after a delay of TSample
milliseconds.

fhkhkhhkkhhhhhhhhhhhdhhhhhhhhhhhhdhhdhhhhhhhhdhhdhhddhhhhdhhdhhhdddrhdhrddrdrhdridxk

PROGRAMMABLE THERMOMETER WITH RS232 OUTPUT

* In this project an analog temperature sensor (LM 35DZ) is connected to one of
‘ the A/D channels of a PIC16F877 microcontroller. The microcontroller is
* operated from a4 MHz external rezonator.

Figure5.124 (Continued)

PicBasic and PicBasic Pro projects

321

* The thermometer is connected to either COM1 or the COM2 serial port

‘ of aPC. A terminal emulation program, such as the Hyperterminal is

* activated on the PC to communicate with the thermometer. During this

* communication the user is prompted to enter the sampling interval and the
‘ mode of the output required (degrees C or degrees F).

* A typical communication between the thermometer and the PC is as
* follows (in this example the sampling interval is selected as 2 seconds, and
* the output is requested in degrees C):

‘ Digital Thermometer With RS232 Output

‘ Enter sampling interval in seconds: 2
‘ Output is degrees C (C) or degreesF (F) : C
‘ Press ENTER to start data collection...

‘ Data collection started:

* PORTB pins RBO and RB1 are configured as RS232 TX and RX lines respectively.
* RBO is connected to pin 2 of the RS232 connector. Similarly, RB1 is connected

‘ to pin 3 of the RS232 connector. The communication parameters are selected as

‘ follows:

‘ 2400 baud
‘ 1 start bit
‘ 8 data bits
‘ No parity
‘ 1 stop bit

* The temperature sensor is connected to the microcontroller as follows:

‘ Sensor Microcontroller pin

‘ LM35DZ ANO (RAO)

* The PIC16F877 microcontroller has built in 10-bit 8 channel A/D converters.
‘ The A/D reference voltage is set to +5V.

Figure5.124 (Continued)

322 PIC BASC Projects

In this program PicBasic statement ADCIN is used to read analog data

‘ Author: Dogan Ibrahim

‘ Date: November, 2005

* Compiler: PicBasic

‘Fle: RS232-1.BAS

* Modifications

(R S E R SRR R
‘ DEFINITIONS

Symbol ADCONO = $1F
Symbol ADCONL1 = $9F
Symbol ADRESH = $1E
Symbol ADRESL = $9E
Symbol TRISA = $85
Symbol TRISB = $86
Symbol PORTA = $05
Symbol PORTB = $06

‘ VARIABLES

Symbol Mode = B1
Symbol D = B2
Symbol Dummy = B3
Symbol TSample = W2
Symbol Redl = W3
Symbol Resh = W4
Symbol Res=W5
Symbol Templ = W6

* SYMBOLS

Symbol RS232_out =0
Symbol RS232_in=1
Figure5.124 (Continued)

* Address of ADCONO
* Address of ADCOn1

* Address of ADRESH
* Address of ADRESL

* Address of TRISA

* Address of TRISB

* Address of PORTA

‘* Address of PORTB

‘Mode(CorF)

* Sampling time (seconds)

‘ Temperature

* RBO is RS232 output
‘ RB1isRS232 input

PicBasic and PicBasic Pro projects 323

* CONSTANTS

Symbol CR =13 * Carriage-return character

Symbol LF =10 * Line-feed character
POKETRISA, 1 “ RAO (ANO) isinput
POKETRISB, 2 RBO=output, RB1=input
POKE PORTB, 1
PAUSE 100

* Send Heading

Again:

SEROUT RS232_out, T2400, (LFCR, “Digital Thermometer With RS232 Output”)
SEROUT RS232_out, T2400, (LFCR, “ ")
SEROUT RS232_out, T2400, (LELECR, “Enter sampling interval in seconds: ")
SERIN RS232_in, T2400, #TSample

SEROUT RS232_out, T2400, (#Tsample)

SEROUT RS232_out, T2400, (LFCR, “Degrees C (C) or degreesF (F) : ")

SERIN RS232_in, T2400, Mode

SEROUT RS232_out, T2400, (Mode)

SEROUT RS232_out, T2400, (LFCR, “Press ENTER to start...”)

SERIN RS232_in, T2400, Dummy

SEROUT RS232_out, T2400, (LFECR)

TSample = TSample* 1000

‘ Initialize the A/D converter

POKE ADCON1, %10001110 * Make ANO analog input,
‘ make reference voltage = VDD
POKE ADCONO, %01000001 * A/D clock isinternal, select channel ANO

* Turn on A/D converter

More:
* Start A/D conversion and get 60 samples for an hour

Figure5.124 (Continued)

324 PIC BASC Projects

D - ucn

PEEK ADCONO, BO
Bit2=1
POKE ADCONO, BO ‘ Start A/D conversion

WT: Pause 1
PEEK ADCONO, BO
IFBit2=1THEN WT

PEEK ADRESH, Resh ‘ Get high byte

PEEK ADRESL, Resl ‘ Get low byte

Res = Resh* 256 + Resdl

Templ =48 * Res * Convert to degreesC
Templ = Templ/100

IFMode="C" THEN Cent “ If Fahrenheit

Templ = Templ* 18
Templ = Templ + 320
Templ =Templ/ 10

D = b FH
Cent:
SEROUT RS232_out, T2400, (LFCR, #Templ, D)
PAUSE TSample
GOTO More
END ‘ End of program

Figure5.124 PicBasic listing of Project 26

PicBasic Pro

The PicBasic Pro program listing of the project is shown in Figure 5.125.
At the beginning of the program the A/D parameters are defined. Symbol
RS232_out and RS232_in are defined as the RS232 output and input
ports, respectively.

The main program starts with label Again where the heading text is sent to
the RS232 port. Then the user is requested to enter the sampling interval in
seconds. The received value is stored in variable TSample. If the user does
not enter any characters in 5s (5000 ms), the SERIN input routine times

PicBasic and PicBasic Pro projects 325

out and program jumps to label ESample, where the input is requested
again. Similarly, the user is requested to enter the output mode as either
degrees C or as degrees F The required mode of temperature is stored in
variable Mode. If the user does not enter any charactersin 5s, the SERIN
input routine times out and jumps to label EMode.

The AD converter is then initialised by configuring registers ADCON1
and ADCONO. A/D conversion is started by the ADCIN instruction. The
A/D converter has aresolution of 10-bits. Thus, it is required to multiply
the value read from the A/D converter with 5000/1024 so that we obtain
the reading in millivolts. The sensor output is 10mV/°C and thus, it
will be necessary to divide the result by 10 in order to obtain the
result in degrees Centigrade. Thus, the required operation is 5000/
(1024 X 10) = 0.48. In the program the A/D reading is multiplied by 48
and then divided by 100 to have the final result as true degrees centigrade
of temperature.

In the final part of the program the temperature is converted into degrees
Fahrenheit if the mode has been selected as “F’. The temperature is then
sent to the RS232 port. The process repeats after a delay of TSample
milliseconds.

fhkkhhhkhhhdhhkhhhdhhhhhhhhdhhhhhhhhdhhhhhdhhdhhhhhdhhhhhdhhddhhhddhddrddhrdrhhrdhxix

PROGRAMMABLE THERMOMETER WITH RS232 OUTPUT

* In this project an analog temperature sensor (LM35DZ) is connected to one of
‘ the A/D channels of a PIC16F877 microcontroller. The microcontroller is
* operated from a4 MHz external rezonator.

* The thermometer is connected to either COM1 or the COM2 serial port

‘ of aPC. A terminal emulation program, such as the Hyperterminal is

* activated on the PC to communicate with the thermometer. During this

* communication the user is prompted to enter the sampling interval and the
‘ mode of the output required (degrees C or degrees F).

* A typical communication between the thermometer and the PC is as

* follows (in this example the sampling interval is selected as 2 seconds, and
* the output is requested in degrees C):

Figure5.125 (Continued)

326 PIC BASC Projects

‘ Digital Thermometer With RS232 Output

‘ Enter sampling interval in seconds: 2
‘ Output is degrees C (C) or degreesF (F) : C
‘ Press ENTER to start data collection...

‘ Data collection started:

* PORTB pins RBO and RB1 are configured as RS232 TX and RX lines respectively.
* RBO is connected to pin 2 of the RS232 connector. Similarly, RB1 is connected

‘ to pin 3 of the RS232 connector. The communication parameters are selected as

‘ follows:

‘ 2400 baud
‘ 1 start bit
‘ 8 data bits
‘ No parity
‘ 1 stop bit

* The temperature sensor is connected to the microcontroller as follows:

‘ Sensor Microcontroller pin

‘ LM35DZ ANO (RAO)

* The PIC16F877 microcontroller has built in 10-bit 8 channel A/D converters.
‘ The A/D reference voltage is set to +5V.

* In this program PicBasic statement ADCIN is used to read analog data

‘ Author: Dogan Ibrahim

‘ Date: November, 2005
* Compiler: PicBasic Pro
‘Fle: RS232-2.BAS

Figure5.125 (Continued)

PicBasic and PicBasic Pro projects 327

* Modifications

fhkkhhkhhhdhhhhhhhhhhhhhdhhhhdhhhhhhhhdhhdhhhhhhhhhhdhhdhhhhhdhhdhhddhddrhdhrddrd

INCLUDE “modedefs.bas’

‘ DEFINITIONS

‘ Define A/D converter parameters

DEFINEADC_BITS 10 * A/D number of bits

DEFINEADC_CLOCK 3 * Use A/D internal RC clock

DEFINEADC_SAMPLEUS 50 * Set sampling timein us

‘ VARIABLES

Tsample VAR Word * Sampling time (seconds)

Mode VAR Byte ‘Mode(CorF)

Dummy VAR Byte

D VAR Byte * Temperature mode display

* SYMBOLS

Symbol RS232_out =0 * RBO is RS232 output

Symbol RS232_in=1 * RB1isRS232 input

* CONSTANTS

CR CON 13 * Carriage-return character

LF CON 10 * Line-feed character

‘ Variables

Res Var Word * A/D converter result

Templ Var Word * Temperature in degrees C
TRISA=1 * RAO (ANO) isinput
TRISB =2 * RBO = output, RB1 = input
PAUSE 1000

Figure5.125 (Continued)

328 PIC BASIC Projects

* Send Heading to RS232 port

Again:
SEROUT RS232_out, T2400, [LFCR, “Digital Thermometer With RS232 Output”]
SEROUT RS232_out, T2400, [LFCR, “ "
Esample:
SEROUT RS232_out, T2400, [LELFCR, “Enter sampling interval in seconds: "]
SERIN RS232_in, T2400, 5000, ESample, #T Sample
SEROUT RS232_out, T2400, [#Tsample]
EMode;
SEROUT RS232_out, T2400, [LFCR, “Degrees C (C) or degreesF (F) :]
SERIN RS232_in, T2400, 5000, EMode, Mode
SEROUT RS232_out, T2400, [Mode]

Estart:
SEROUT RS232_out, T2400, [LFCR, “Press ENTER to start...”]
SERIN RS232_in, T2400, 5000, Estart, Dummy
SEROUT RS232_out, T2400, [LFCR]

TSample = TSample* 1000 * Converttoms

‘ Initialize the A/D converter

ADCON1 = %10001110 * Make ANO analog inpults,
* Reference voltage = VDD
ADCONO = %01000001 * A/D clock isinternal, Select channel ANO

* Turn on A/D converter

More:
* Start A/D conversion and get 60 samples for an hour

D = b CH
ADCIN 0, Res ‘ Read Channel 0 data
* Scale the reading to obtain degrees C. Thisinvolves multiplying by
* 5000/1024 and then diviing to 10 since the sensor output is 10mV/C. i.e.
* We have to multiply the A/D readings with 5000/(1024 X 10) which
‘ isequal to 0.48. We thus multiply by 48 and then divide by 100

Templ =48 * Res * Convert to degrees C
Templ = Templ/100
Figure5.125 (Continued)

PicBasic and PicBasic Pro projects 329

“ If the required output is degrees Fahrenheit, we have to perform the
* operation: 1.8C + 32. Here, we are multiplying by 10. ie. Multiply by 18 and
* add 320. Thefinal result isthen divided by 10.

IF Mode ="“F" THEN * If Fahrenheit selected
Templ = Templ* 18
Templ = Templ + 320
Templ =Templ/ 10
D="F
ENDIF

* Send temperature to RS232 port, wait for sampling time and repeat
SEROUT RS232_out, T2400, [LFCR, #Temp1, D]
PAUSE Tsample
GOTO More

END * End of program
Figure5.125 PicBasic Pro listing of Project 26

Figure 5.126 shows a sample output obtained when the SmartTermterminal
emulation programis used (we can use any type of termina emulation soft-
ware) to communicate with the thermometer. In this example, the sampling
interval is selected as 4 s and the output is requested as degrees C.

The project built on a breadboard is shown in Figure 5.127.

330 PIC BASC Projects

DAt soss_|

Corractedtc COM2 24000 8.1 WS ThiBmen R Cald

Figure5.126 Sample output taken from the PC screen

Figure5.127 Project built on a breadboard

PicBasic and PicBasic Pro projects 331

Project 27
Project title:

Project description:

Electronic organ

Thisisasimple electronic organ project. A small speaker is connected to
PORTA of a PIC microcontroller. Eight push-button switches are con-
nected to PORTB to act asthe keyboard for the el ectronic organ. Only one
octave (eight notes) is provided in this project.

Figure 5.128 shows the block diagram of the project.

CDEF PIC
GABC Microcontroller
8 Keyboard switches Speaker

Figure5.128 Block diagram of Project 27

Hardware:

Flow diagram:

The circuit diagram of the project is shown in Figure 5.129. Although any
model of PIC microcontroller with at least 9 1/O pins can be used, a
PIC16F627 microcontroller is used in this project. The microcontroller is
operated from an external 4 MHz resonator. A small speaker is connected
to bit 0 of PORTA (RAO) using a 10 w.F electrolytic capacitor.

Keyboard switches are connected to PORTB. Bit 0 is assigned to musical
note C, hit 1 is assigned to note D, bit 2 is assigned to note E, and so on.
The switches are normally held at logic HIGH using the internal PORTB
pull-up resistors. Pressing a switch sends alogic LOW to the correspon-
ding microcontroller input port pin.

In this project, the following octave of notesis used:

Switch 1 2 3 4 5 6 7 8
Note C D E F G A B Cc
Frequency 262 294 330 349 392 440 494 524

The program continuously checks the switches and if any switch is
pressed then the musical note corresponding to that switch position is sent
to the speaker.

The flow diagram of the project is shown in Figure 5.130. At the begin-
ning of the project PORTA and PORTB directions are configured and

332 PIC BASC Projects

1 3 BV

'J:-T TELOS
8V pasuR

14

+
Battery 2 —l' D01F
I —

| I—
L

O8Ct

WVild

[
16F627

RB(}&—'/—

RB1
RB2

RB3 1]

R4

RB5~§~§--M~/~M~
R bt G o
re7l13 o

Vss
55

RAGH]

ogce] 109

15 L_E;?_J 16
4 Mz resonator

Figure5.129 Circuit diagram of the project

BEGIN

Configure PORTA
and PORTB
directions

Set PORTB pull-ups

ey
pressed ?
Y

Send musical note
for this key to the
speaker

%

Figure5.130 Flow diagram of Project 27

Speaker

O PO mMmMmaO

PicBasic and PicBasic Pro projects 333

Software;

PORTB internal pull-up resistors are enabled. The program then enters an
endless|oop where the switches are checked. If aswitch is pressed, then the
musical note corresponding to that switch position is sent to the speaker.
The program waits for 5ms and then the above processis repeated.

PicBasic

PicBasic language does not have an instruction to generate a signal with
the required frequency. A signal with arequired frequency can be gener-
ated using the timer interrupt. But unfortunately, PicBasic language does
not support the use of interrupts from ahigh-level language. As aresult of
this, it is not very easy to generate musical notes from the PicBasic lan-
guage. Only the PicBasic Pro program of this project is given here.

PicBasic Pro

The PicBasic Pro program listing of the project isshown in Figure 5.131. At
the beginning of the program the frequencies of musical notes are stored in
an array called Notes. Then, PORTB is configured as input and PORTA
is configured as output. PORTB internal pull-up resistors are then enabled
so that the switches are normally held at logic HIGH. The statement IF
PORTB <> 255 istrue if any switch is pressed. The status of PORTB is
then inverted and the bit which is O is the bit position pressed by the user.
For example, if the user pressed switch 5, number 16 will be obtained.

Normal state of PORTB 11111111
State when key 4 is pressed 11101111
State when PORTB inverted 00010000

PicBasic Pro statement NCD is used to obtain the bit position of the
switch pressed. In the above example, if p is the state of PORTB when
inverted, then,

y=NCDp

will return 5 in variabley, i.e. bit position 5 is set in variable p. Thus, the
Statement

Key_pressed = NCD Key

returns the switch number (1 to 8) pressed. This number isthen used asan
index in array Notes and the PicBasic Pro statement FREQOUT is used to
send the frequency of the required note to the speaker. The note is sounded
for aduration of 5ms.

334 PIC BASC Projects

fhkhdhhkkhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhhhhhhdhhhhhdhhhhhdhhhdhdhdhddrhdhdddrdrddxd

‘ SIMPLE ELECTRONIC ORGAN

“ In this project asmall speaker is connected to bit 0 of PORTA of a PIC16F627
‘ microcontroller. Also, 8 push-button switches are connected to PORTB

* of the microcontroller. The switches are used to represent the musical notes

* Cto C (i.e. one octave). The switch assignments are as follows:

‘ Switch Musical note

‘ RBO
‘ RB1
‘ RB2
‘ RB3
‘ RB4
‘ RB5
‘ RB6
‘ RB7

OW>EOTNMUTO

* The frequencies of the notes used are as follows:

‘ Note Frequency (Hz)

262
294
330
349
392
440
494
524

OW>OTMOO

* When a switch is pressed, the frequency of the musical note corresponding
* to that switch is sent to the speaker.

* The project can be used to play ssmple tunes.
Figure5.131 (Continued)

PicBasic and PicBasic Pro projects 335

‘ Author: Dogan Ibrahim

‘ Date: December, 2005

* Compiler: PicBasic Pro

‘ File: SOUND1.BAS

‘ Modifications

RS S LSS S LS EE S ESEE S EEE LSS LT L LR LS L LTS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SR
‘ DEFINITIONS

Speaker VAR PORTA.O * Speaker is connected to RAO
Notes VAR Word[9] * Frequencies of musical notes
Key VAR Byte

Key pressed VAR Byte ‘ Key pressed

* Define the frequencies of musical notes

Notes[1] = 262 : Notes[2] = 294 : Notes[3] = 330 - Notes[4] = 349
Notes{5] = 392 : Notes[6] = 440 : Notes[7] = 494 - Notes[8] = 524

* Configure PORT directions

TRISB = %11111111 * PORTB isinput (keys)

TRISA =0 * PORTA (RAOQ) is output
OPTION_REG.7=0 ‘ Enable internal PORTB pull-ups
CMCON =7 * Make RAQ digital 1/0

‘ Check if any key is pressed, and if so, find the musical note corresponding
* to the pressed key and send the frequency of this note to the speaker.

L oop:

IF PORTB <> 255 THEN * Check if any key pressed
Key = ~PORTB ‘ Invert key pattern
Key_pressed = NCD Key * Get key pressed
FREQOUT Speaker,5,Notes[Key _pressed)] * Send note to speaker

ENDIF

GOTO Loop ‘ Repesat

END ‘ End of program

Figure5.131 PicBasic Pro listing of the project

336 PIC BASIC Projects

Improving the musical tones

The tones generated by the statement FREQOUT are square wave and
they are very noisy. One way to improve the quality of these tones is by
filtering the output of the microcontroller signal. Figure 5.132 shows a
simplefilter that can be used to obtain a cleaner waveform when the FRE-
QOUT statement is used.

In many applications, the amplitude of the output signal may not be ade-
guate and it may be necessary to amplify this signal. Figure 5.133 shows
an amplifier circuit which can be used to increase the output signal level
of our electronic organ.

10 uF 1K
Microcontrollero—E |]—|: _L — _L O Speaker
:I: 0.1 uF :I: 01 F
Figure5.132 A simplefilter
A5V
10 uF 1
Microcontrollero I']E 2[>DA S
3| 7052
68 Speaker

Figure5.133 Amplifying the output signal

It is aso recommended to use a higher oscillator frequency, e.g. 20MHz
for an improved output response. This will require the use of a 20MHz
crystal, and a PIC chip which can operate at 20MHz. The following line
of code should also be added to the program to show that we are using a
20MHz crystal, and not the default 4 MHz.

DEFINE OSC 20

PicBasic and PicBasic Pro projects 337

Project 28
Project title:

Project description:

Unipolar stepping motor control

Thisproject isabout the control of an unipolar stepping motor usingaPIC
microcontroller. The project shows how a stepping motor can be con-
trolled to rotate clockwise for the required number of revolutions.

In this project the stepping motor is controlled as follows:

Rotate 100 revolutions clockwise
Stop

Figure 5.134 shows the block diagram of the project. Four output ports of
the microcontroller are connected to MOSFET transistors which drive the
stepping motor.

—
PIC Driver
Microcontroller >
—

Figure5.134 Block diagram of Project 28

Hardware;

The circuit diagram of the project is shown in Figure 5.135. In this proj-
ect a PIC16F627-type microcontroller, operated with its internal 4 MHz
clock is used. The master clear circuit is enabled during programming of
the chip. The stepping motor used in the project is the model UAG2 (see
Figure 5.136), manufactured by SAIA Schrittmotoren. This stepping
motor operates with 12V, has 6 leads, and a stepping angle of 18°. Thus,
20 steps are required for a complete revolution. The motor consists of two
windings and the pin connections are as follows:

Pin Function

Start of first winding

Start of second winding

Common point of first winding
Common point of second winding
End of first winding

End of second winding

o 01k~ WON PP

338 PIC BASIC Projects

PORTB pins RBO-RB3 are connected to Gate inputs of four IRL1520N
type MOSFET power transistors which are used as switches. The Drain
outputs of these transistors are connected to motor windings as shown in
Figure 5.135. Common points of both windings are connected to +12V
supply using 68 () current-limiting resistors.

IRL1520N FIRLIS20N [IRLIS20M | TRLIS20N

w5y B 5 B 5

14

\dd \ e
s A

REB1

PG
167027 RB2

RE3

25

Figure5.135 Circuit diagram of Project 28

Figure5.136 UAG2 unipolar stepping motor

PicBasic and PicBasic Pro projects 339

Flow diagram:

The flow diagram of the project is shown in Figure 5.137. At the begin-
ning of the project PORTB pins are configures as output. Pulses are then
sent to PORTB to rotate the motor 100 steps clockwise. The motor isthen
stopped.

(BEGIN

A 4

Configure PORTB
as output

A 4

Send pulses for
100 revolutions
clockwise rotation

END

Figure5.137 Flow diagram of Project 28

Software;

PicBasic

PicBasic program listing of the project is given in Figure 5.138. At the
beginning of the program PORTB pins are configured as output. Variable
Revolutions stores the required number of revolutionswhich is 100 in this
example. Variable Pulses stores the number of pulses to be sent to the
motor. This variable is divided by 4 so that it stores the number of times
the patterns of 1,2,4,8 are to be sent to the motor. A FOR loop is used to
send the pulses to the motor. Pulses are sent asin the following order:

340 PIC BASC Projects

Notice that a 3ms delay is used between each step output to the motor.
The RPM (number of revolutions per minute) of the motor can be calcu-
lated as follows:

If Tisthetime between the steps, and B8 isthe step angle of the motor, then
the motor rotates B/T stepsin 1s. Since one revolution is 360°, the num-
ber of revolutionsin one second is 8/360T. The RPM isthen given by

RPM = 608/360T
or,
RPM = /6T
In thisexample, B = 18°,and T = 3ms (0.003s). Thus,
RPM = 18/6(0.003) = 1000

XX E S SRS LSS S EEEEEEE LSS EEEEEEEEEEEEEEEEEEEEEEEEE S

‘ UNIPOLAR STEPPING MOTOR CONTROL

In this project an UAG2 type unipolar stepping motor is connected to pins

* RBO-RB3 of PORTB of a PIC16F627 microcontroller. The microcontroller is
* operated from itsinternal 4AMHz clock.

* The motor is operated as follows:

Turn motor 100 revolutions clockwise
Stop

‘ Four IRL1520N type MOSFET power transistors are used as switchesto
* provide current to the motor.

* Author: Dogan Ibrahim

‘ Date; December, 2005
‘ Compiler: PicBasic

‘ File: MOTOR1.BAS
* Modifications

XX E S S S EE LS LSS EEEEEEEE SRS S EEEEEEEEEEEEEEEEEEEEE S

Figure5.138 (Continued)

PicBasic and PicBasic Pro projects 341

* Symbols

Symbol PORTB = $06 ‘ PORTB address

Symbol TRISB = $86 * TRISB address

Symbol Revolutions = W0 * Required number of revolutions

Symbol Pulses=W1 * Number of pulses to be sent

Symbol J=B4 * Used in FOR loop
POKETRISB, 0 * PORTB is output
Revolutions = 100 * Required number of revolutions
Pulses = 20* Revolutions * Required number of pulses
Pulses = Pulses/ 4 * Required number of steps

* Send Pulses to the motor for clockwise rotation. The number of revolutionsis equal
‘ to Revolutions (100 in this example)
FOR J=1TO Pulses
POKE PORTB, 1
Pause 3
POKE PORTB, 2
Pause 3
POKE PORTB, 4
Pause 3
POKE PORTB, 8
Pause 3
NEXT J

END * End of program
Figure5.138 PicBasic listing of Project 28

PicBasic Pro

PicBasic Pro program listing of the project isgiven in Figure 5.139. At the
beginning of the program TRISB is cleared to zero so that all PORTB pins
are configured as outputs. Variable Steps is defined as a byte array and
thisarray storesthe bit patternsto be sent to the motor for clockwise rota-
tion. For example, sending the bit pattern ...,1,2,4,8, ... rotates the motor
clockwise by 4 steps. Variable Revolutions stores the required
number of revolutions which is 100 in this example. Variable Pulses
stores the number of pulses to be sent to the motor. This variable is
divided by 4 so that it stores the number of times the patterns of 1,2,4,8
are to be sent to the motor so that the motor rotates clockwise required

342 PIC BASIC Projects

number of revolutions. Two FOR loops are used in the program. The outer
loop controls the number of steps to be sent, and the inner loop sends the
bit patterns of 1,2,4,8 to the motor, asin the PicBasic program, the motor
rotates with a speed of RPM = 1000.

Ekkkkhhhhhhhkhhhhhhhhhhhhhhhhhhhhddddhhhhhhhkhkhdddddhhhhdhdxdddddddddhdhhhxxxxxxx

‘ UNIPOLAR STEPPING MOTOR CONTROL

“ In this project an UAG2 type unipolar stepping motor is connected to pins

‘ RBO-RB3 of PORTB of a PIC16F627 microcontroller. The microcontroller is
* operated from itsinternal 4MHz clock.

* The motor is operated as follows:

Turn motor 100 revolutions clockwise
Stop

* Four IRL1520N type MOSFET power transistors are used as switchesto
* provide current to the motor.

* Author; Dogan Ibrahim
‘ Date: December, 2005
* Compiler: PicBasic Pro
‘File MOTOR2.BAS
* Modifications
thkkkkkkhkkkhkhkkhkhkhkkhkhkhhkhkhhkhkkhkhkhkhkhkhkkhkhkhkkhkhkkkhkhkkkhkhkkkhkhkkkhkhkkkhkhkkkhkkkkhkkkk,*x%
‘ Variables
Steps Var Byte[4] * Step bit patterns
Revolutions Var Word * Required number of revolutions
Pulses Var Word * Number of pulsesto be sent
I Var Byte * Used in FOR loop
J Var Word * Used in FOR loop
TRISB=0 ‘* PORTB is output

Figure5.139 (Continued)

PicBasic and PicBasic Pro projects 343

‘ Define data to be sent to the motor

Steps[0] =1
Steps[1] =2
Stepsg[2] =4
Steps[3] =8

Revolutions = 100
Pulses = 20* Revolutions
Pulses= Pulses/ 4

* Required number of revolutions
* Required number of pulses
* Required number of steps

* Send Pulses to the motor for clockwise rotation. The number of revolutionsis equal

‘ to Revolutions (100 in this example)

FOR J=1TO Pulses

FORI=0TO3
PORTB = Steps[l]
PAUSE 3
NEXT |
NEXT J
STOP
END

Figure5.139 PicBasic Pro listing of Project 28

* End of program

344 PIC BASC Projects

Project 29

Project title:

Project description:

Unipolar stepping motor control using UCN5804B

This project is similar to Project 28, but here the stepping motor is con-
trolled using a UCN5804B type motor controller IC. In this project the
motor is rotated continuously. Motor direction is controlled using a but-
ton. Normally the motor rotates in one direction, and when the button is
pressed the direction is reversed.

Figure 5.140 shows the block diagram of the project.

+V
,— Direction
PIC UCN
Microcontroller 1 5804B 4,@
Motor

Figure5.140 Block diagram of Project 29

Hardware:

Flow diagram:

Software:

The circuit diagram of the project is shown in Figure 5.141. In this pro-
ject a PIC16F627-type microcontroller, operated with itsinternal 4-MHz
clock is used. Same stepping motor asin Project 28 is used. RBO port of
the microcontroller is connected to STEP input of the UCN5804B.
Direction of the motor is controlled from a button connected to the DIR
input. OutA, OutB, OutC, and OutD outputs of the IC are connected to
the windings of the motor. KaC and KbD are the common outputs con-
nected to the common points of the motor windings. Motor is rotated by
one step each time a pulse is applied to the STEP input of the IC.

The flow diagram of the project is shown in Figure 5.142. The operation
of the project isvery simple. After PORTB is configured as output, pulses
are sent to UCN5804B continuously with 3ms delay between each out-
put. Asin the previous project, the speed of rotation is 1000 RPM.

PicBasic

PicBasic program listing of the project is given in Figure 5.143. At the
beginning of the program PORTB is configured as output. Pulses are then
sent to RBO with 3ms delay between each output.

PicBasic and PicBasic Pro projects 345

o +12V
_ o +5V
14 16 % @ Stepping motor
Vdd
14 VDD 1 a
Moir outB ‘
PIC L Kbd |2
16F627 UCN5804B OutD g
reolS M sTep OutC 1=
Kac 8
QOutA

Vss
i 5[4 5[12[13[9[10 Z‘S ZISZ‘S Z‘S

Figure5.141 Circuit diagram of Project 29

BEGIN

Configure PORTB
as output

——

Send pulses to
UCN5804B

l

3ms Delay

]

Figure5.142 Flow diagram of Project 29

PicBasic Pro

PicBasic Pro program listing of the project is given in Figure 5.144. The
project is very simple. At the beginning of the Project PORTB is config-
ured as output. Pulses are then sent to port pin RBO with 3ms delay
between each output.

346 PIC BASIC Projects

fhkhdhhkkhhhhhhhhhhhdhhhhhdhhhhhhhhdhhhhhhhhhhdhhhhhdhhhhhdhhhdhdhdhddrhdhdddrdrddxd

‘ UNIPOLAR STEPPING MOTOR CONTROL

* In this project an UAG2 type unipolar stepping motor is used.

* A UCN5804B type motor controller IC is used to control the motor. ThisIC

“ iscontrolled using two of itsinputs: STEP and DIR. DIR isalogical input and
* controls the direction of rotation. The motor rotates a step each time a pulse

‘ isapplied to the STEP input.

* The motor rotates continuosly.

‘ Thereisadelay of 3ms between each step.

* Author: Dogan Ibrahim
‘ Date: January, 2005
* Compiler: PicBasic
‘ File: MOTOR3.BAS
* Modifications
(R R E R SRR R
‘* Symbols
Symbol PORTB = $06 ‘ PORTB address
Symbol TRISB = $86 ‘ TRISB address
POKETRISB, 0 * PORTB is output
POKE PORTB, 0 * Clear STEP to start with
More:
POKE PORTB, 1 ‘ Set STEP=1
POKE PORTB, 0 * Set STEP=0
PAUSE 3 Wait 3ms
GOTO More ‘ Repest
END ‘ End of program

Figure5.143 PicBasic listing of Project 29

PicBasic and PicBasic Pro projects

347

fhkkhhhkhhhdhhkhhhdhhhhhhhhdhhhhhhhhhhhhdhhdhhhhhdhhhhhdhhddhhhhdhhdhrddhrdrrhrddxx

‘ UNIPOLAR STEPPING MOTOR CONTROL

* In this project an UAG2 type unipolar stepping motor is used.

* A UCN5804B type motor controller IC is used to control the motor. This1C

“ iscontrolled using two of itsinputs: STEP and DIR. DIR isalogical input and
* controls the direction of rotation. The motor rotates a step each time a pulse

‘ isapplied to the STEP input.

* The motor rotates continuosly.

‘ Thereisadelay of 3ms between each step.

* Author: Dogan Ibrahim
‘ Date: January, 2005

* Compiler: PicBasic Pro

‘ File: MOTOR4.BAS
‘ Modifications

fhkkhhhkkhhhdhhkhhhdhhhhhhhhdhhhhhhhhhhhhdhhdhhhhhhhhhhhhhddhhddhddrddhddhhdhrdhrix

‘ Variables
Step_input Var PORTB.O * Assign Step_input to RBO
TRISB =0 * PORTB is output
Step_input=0 ‘ Clear STEP to start with
More:
Step_input =1 ‘ Set STEP=1
Step_input =0 * Set STEP=0
Pause 3 * Wait 3ms
GOTO More ‘ Repest
END ‘ End of program

Figure5.144 PicBasic Pro listing of Project 29

348 PIC BASC Projects

Project 30
Project title:

Project description:

Servomotor-based mobile robot control

Mabile robots are used in many industrial, commercial, research, and
hobby applications. This project isabout the control of amobile robot using
servomotors. The robot used in this project is the base of a popular mobile
robot known as Boe Bot, developed by Parallax (www.parallax.com and
www.stampinclass.com). The basic robot is controlled from a Basic Samp
controller (Trademark of Parallax Inc.). The robot base and electronic cir-
cuit have been modified by the author so that the robot can be used with
PIC microcontrollers (see Figure 5.145).

The robot consists of two side drive wheels and a caster wheel at the back.
The drive wheels are connected to servomotors. A breadboard is placed on
the robot base for the electronic control circuit. Therobot is driven from a
9V battery, and a 78L05-type voltage regulator is used to obtain +5V to
supply power to the microcontroller circuit.

In this project programs are devel oped to move the robot forward, back-
ward, and to turn left and right.

Figure5.145 Robot used in the project

Hardware:

The circuit diagram of the project is shown in Figure 5.146. In this proj-
ect a PIC16F84 microcontroller is used and the microcontroller is oper-
ated witha4MHz crystal.

PicBasic and PicBasic Pro projects 349

Servomotors are used to drive the left wheel and the right wheel. A ser-
vomotor has three leads: power supply, ground, and the signal pin. Left
servomotor is connected to bit 0 of PORTB (RBO), and right servomotor
is connected to bit 1 of PORTB (RB1). Although some servomotors can
operate with +5V supply, most servomotors require 6-9V to operate.

B0V
Regiat
eguacr +5V
78L05
1 j |14
y > R [4TK VO
A ==ty AIMCLR 6 LEFT RIGHT
T REO SERVO SERVO
= PIC = =
16F84 9
RB1
VSSE]‘
osct osc2| =

16, 18

1 ui - 02
?.:Egi: 482 IQRpF

Figure5.146 Circuit diagram of Project 30

Operating the servomotor

As described in Section 4.7 the servomotors used in robotic applications are modified servos
where the motor can rotate in either direction continuously by applying pulses to the servomotor.

Inamodified servomotor typically apulse with awidth of 1.3 msrotates the motor clockwise at full
speed. A pulse with awidth of 1.7 ms rotates the motor anti-clockwise, and a pulse with awidth of
1.5ms stops the motor. Figure 5.147 shows typical pulses used to drive modified servomotors.

The pulse required to operate a servomotor can very easily be obtained using the PULSOUT
statement of the PicBasic and PicBasic Pro compilers. When a 4MHz crystal is used, the time
interval of PULSOUT isin units of 10 ws. For example, the following PicBasic statement gener-
ates a pulse with awidth of 1.3msfrom bit 0 of PortB (1.3ms = 1300 w.s and 1300/10 = 130):

PULSOUT 0, 130

350 PIC BASIC Projects

1.3ms

[—20 ms——
Clockwise

1.5ms

Stop

1.7ms

Anti-clockwise

Figure5.147 Pulses used to drive modified servomotors

Similarly, the following PicBasic statement generates a pulse with awidth of 1.7msfrom bit 1 of
PORTB:

PULSOUT 1, 170

A single pulse rotates the servomotor by a small amount. For a continuous rotation we have to
apply the pulses continuously. In most applications a loop is formed in software and pulses are
sent to the servomotor continuously. A delay is inserted between each pulse. The duration of this
delay determines the speed of the motor and about 20msis most commonly used value.

The following PicBasic (or PicBasic Pro) code shows how a servomotor connected to port RBO
can be rotated clockwise continuously:

Loop: PULSOUT 0, 130 ‘* Send apulse
PAUSE 20 " Wait 20ms
GOTO Loop ' Repesat

Similarly, the following PicBasic (or PicBasic Pro) code shows how a servomotor connected to
port RB1 can be rotated anti-clockwise continuously:

Loop: PULSOUT 1, 170 ‘* Send apulse
PAUSE 20 " Wait 20ms
GOTO Loop ' Repesat

PicBasic and PicBasic Pro projects 351

You can experiment by varying the pulse width and the delay to see how the speed of the motor
changes.

Forward movement
Assuming that two side wheels are connected to servomotors, the robot moves forward when

Left wheel rotates anti-clockwise
Right wheel rotates clockwise

In this project, the left servomotor is connected to port pin RBO and right servomotor is connected
to port pin RB1. The following PicBasic (or PicBasic Pro) code can then be used to move the
robot forward:

Forward: PULSOUT 0, 170 ‘ Left wheel anti-clockwise
PULSOUT 1, 130 * Right wheel clockwise
PAUSE 20 * Wait 20ms
GOTO Forward ‘ Repeat
Backward movement

Assuming that the two side wheel s are connected to servomotors, the robot moves backward when

Left wheel rotates clockwise
Right wheel rotates anti-clockwise

In this project, the left servomotor is connected to port pin RBO and right servomotor is connected
to port pin RB1. The following PicBasic (or PicBasic Pro) code can then be used to move the
robot backward:

Backward: PULSOUT 0, 130 * Left wheel clockwise
PULSOUT 1, 170 * Right wheel anti-clockwise
PAUSE 20 * Wait 20ms
GOTO Backward ‘ Repeat

Moving the robot for required amount of time

The code given above moves the robot forward or backward continuously. There are applications
where we may want to mode the robot only required amount of time. For example, we may want
to move the robot forward for 55, then stop for 3s, and then move backward for 2s.

352 PIC BASC Projects

We can adjust the movement time by using a FOR loop. The following code shows how we can
move the robot forward using a FOR loop:

FORJ=1TOM
PULSOUT 0, 170
PULSOUT 1, 130
PULSOUT 20

NEXT J

In this code variable M determines the number of times the loop is executed. Ignoring the small
time taken by the FOR and the NEXT statements, the time taken to execute only one iteration of
the FOR loop can be determined approximately as

FORJ=1TOM
PULSOUT 0, 170 17ms
PULSOUT 1, 130 1.3ms
PULSOUT 20 20.0ms
NEXTJ e

Thus, if therobot isrequired to movefor T seconds (1000 X T ms) forward or backward, the value
of M to be used in the FOR loop can be calculated as follows:

M = 1000 x T/23

An exampleis given below.

Example 1
A mobile robot is controlled with two servomotors as shown in Figure 5.146. Write a PicBasic
program which will perform the following operations:

Move the robot forward for 4s
Wait for 5s

Move the robot backward for 3s
Stop

Solution 1

Thefirst action is to move the robot forward for 4 s. Thus, the value of M is

M = 4000/23 = 174

PicBasic and PicBasic Pro projects 353

Then the robot is required to stop for 5s and then move backward for 3s. The value of M for this
movement is

M = 3000/23 = 130
The program is very simple and consists of only afew lines.

PicBasic program for this exampleis given in Figure 5.148.

R R R R R R R EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEREEREEE

‘ ROBOT CONTROL

In this project a mobile robot is controlled. The robot has two side wheels and
aback caster wheel. Side wheels are connected to servomotors as follows:

‘ Left wheel RBO
‘ Right wheel RB1

In this project the robot moves as follows:
Move the robot forward for 4 seconds
Wait for 5 seconds
Move the robot backward for 3 seconds
Stop

* A PIC16F84 type microcontroller is used with a4 MHz crystal

* Author: Dogan Ibrahim
‘ Date: January, 2005
* Compiler: PicBasic

‘ File: SERVO1.BAS
‘ Modifications

R R R EEEEE RS EEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEREE R

Figure5.148 (Continued)

354 PIC BASIC Projects

‘* Symbols
Symbol PORTB = $06 ‘ PORTB address
Symbol TRISB = $86 * TRISB address
Symbol J= B0

POKETRISB, 0 * PORTB is output

* Move the robot forward for 4 seconds
FORJ=1TO 174
PULSOUT 0, 170
PULSOUT 1, 130
PAUSE 20
NEXT

* Wait for 5 seconds

PAUSE 5000

* Move the robot backward for 3 seconds

FORJ=1TO 130
PULSOUT 0, 130
PULSOUT 1, 170
PAUSE 20

NEXT J

END ‘ End of program
Figure5.148 PicBasic program for Example 1

Measuring the speed of the robot

The speed of therobot can easily be measured by moving it for aknown amount of time and meas-
uring the distance moved during this time. The speed is then given by

Speed = distance/time

In this project the robot moved forward for 10s and the distance moved was 210cm. Thus, the
speed of the robot is 210/10 = 21cm/s.

PicBasic and PicBasic Pro projects 355

Once we know the speed, we can move the robot forward or backward by any required amount.
For example, to move the robot forward by 85cm, the required time is approximately given by

Time = distance/speed = 85/21 = 4

Thus, the servomotors should be operated for 4s. The value of loop-count M is then approxi-
mately given by

M = 4000/23 = 174

Therequired PicBasic code is

FORJ=1TO174
PULSOUT 0, 170
PULSOUT 1, 130
PULSOUT 20
NEXT J

Turning left and right

Several techniques can be used to turn the rabot left or right. One technique is to stop the servo-
motor on the side where we wish to turn. For example, we can turn right by stopping the right
servo and turning the left servo anti-clockwise.

Another technique of turning arobot smoothly involves rotating both servosin the same direction
and thisis the technique we shall be using here. For example,

To turn RIGHT:
Rotate |eft wheel anti-clockwise
Rotate right wheel anti-clockwise

Toturn LEFT:
Rotate |eft wheel clockwise
Rotate right wheel clockwise

The problem here is how many pulses to send to the servomotors so that the robot turns a com-
plete 90° angle. Thisis something which can be found by trial and error.

The following PicBasic code rotates the robot right where the angle of rotation depends on
variable R:

Turn_right:
FORJ=1TOR
PULSOUT 0, 170 ‘ Left wheel anti-clockwise

356 PIC BASC Projects

PULSOUT 1, 170 * Right wheel anti-clockwise
PAUSE 20 * Wait 20ms
NEXT J

Similarly, the following code rotates the robot |eft where the angle of rotation depends on variable R

Turn_left:
FORJ=1TOR
PULSOUT 0, 130 * Left wheel clockwise
PULSOUT 1, 130 * Right wheel clockwise
PAUSE 20 * Wait 20ms
NEXT J

It was found by experimentation that when R [r5] is equal to 13 the robot turns by about 90°. An
exampleis given below.

Example 2

A mobilerobot is controlled with two servomotors as shown in Figure 5.146, and apen is attached
to the front of the robot with thetip of the pen touching the floor. Write a PicBasic program which
will move the robot as follows:

Move the robot forward for 5s
Wait for 2s

Turn right

Move the robot forward for 3s
Stop

Solution 2

Thefirst action is to move the robot forward for 5s. Thus, the value of M is
M = 5000/23 = 217

Then the robot isrequired to stop for 2 s and then turn right and move backward for 3s. The value
of M for this movement is

M = 3000/23 = 130

PicBasic program for this exampleis given in Figure 5.149.

PicBasic and PicBasic Pro projects 357

fhkkhhkhhhdhhhhhdhhhhhhhhdhhhhhhhhhhhhdhhdhhhhhdhhhhhdhhhddhhhdddhddrddhddrhdrdhrdxd

‘ ROBOT CONTROL

“ In this project amobile rabot is controlled. The robot has two side wheels and
* aback caster wheel. Side wheels are connected to servomotors as follows:

‘ Left wheel RBO
‘ Rightwheel RB1

* In this project the robot moves as follows:

‘ Move the robot forward for 4 seconds
‘ Wait for 2 seconds

‘ Turn right

‘ Move the robot forward for 3 seconds
‘ Stop

* A PIC16F84 type microcontroller is used with a4 MHz crystal

* Author: Dogan Ibrahim
‘ Date: January, 2005
* Compiler: PicBasic

‘ File: SERVO2.BAS

* Modifications

fhkkhhhhhdhhkhhhdhhhhhhhhdhhhhhhhhhhhhhhhdhhhhhdhhhhhdhhddhhhdddhhdhdddhrdrrhriddxx

* Symbols

Symbol PORTB = $06 ‘ PORTB address
Symbol TRISB = $86 ‘ TRISB address
Symbol J= B0

POKETRISB, 0 * PORTB is output
Figure5.149 (Continued)

358 PIC BASIC Projects

* Move the robot forward for 4 seconds
FORJ=1TO 217
PULSOUT 0, 170
PULSOUT 1, 130
PAUSE 20
NEXTJ

* Wait for 2 seconds

PAUSE 2000

* Turn right
FORJ=1TO 13
PULSOUT 0, 170
PULSOUT 1, 170
PAUSE 20
NEXT J

* Move the robot forward for 3 seconds
FORJ=1TO 130
PULSOUT 0, 170
PULSOUT 1, 130
PAUSE 20
NEXTJ

END ‘ End of program
Figure5.149 PicBasic program for Example 2

About the CDROM

The CDROM accompanying this book contains: the Demo version of the PicBasic Pro compiler,
source files (.BAS) and object files ((HEX) of all the projectsin the book, al the figures and the
tables used in the book.

Thefiles on the CDROM are organised in the following folders:

DEMO PicBasic Pro Demo application
PROJECT _SOURCES Project sourcefiles (.BAS)
PROJECT _OBJECTS Project object files (HEX)
FIGURES All the figures used in the book
TABLES All the tables used in the book

This page intentionally left blank

Index

Note: Page numbersin italics refer to figures and tables.

4-digit external interrupt-driven event DIG, 107
counter, 23640 NCD, 107
4-digit LED display with seria driver: shift, 105-6
counter project, 210-26 SIN, 107
counter project with leading zeroes SQOR, 107
blanked, 227-35 Asynchronous interrupts, 41
4-digit timer interrupt-driven chronograph,
2417 Binary counting LEDs, 148-51
7-segment LED DICE, 182-8 Bit definition:

7-segment LED display counter, 17281
8-bit microcontroller, 22
12-bit instruction word:

ADCONO register, 33
ADCONL1 register, 35
INTCON register, 32

PIC12C508, 15-16 OPTION_REG register, 24
PIC16C5X, 16 T1CON register, 30

14-bit instruction word: T2CON register, 31
PIC16C554, 17 Boe Bot, 348
PIC16F73, 20 BRANCH command, 87
PIC16F84, 17, 18 BRANCHL command, 108
PIC16F627, 18, 19 Brown-out detector, 8
PIC16F676, 18, 20 Bundled development systems:

PIC16F877, 17-18, 19
16-bit instruction word, 21

A/D converter registers, 304
ADCIN command, 108
ADCONO register, 314

bit definition, 33
ADCONLI register, 31, 34

bit definition, 35
Altair, 1
Analogue comparator, 10

Analogue-to-digital (A/D) converter, 8-9, 30
Arithmetic operators, in PicBasic Pro:

ABS, 106
COsS, 106
DCD, 107

advantages, 69
developer’s bundle, 69
LAB-X1 bundle, with serid
programmer, 70
PicBasic compiler bundle, 6970
Busicom, 1
BUTTON command, 87-8
Button input, 46
active low-button input, 46
active high-button input, 46
transistor input, 47

CALL command, 88

Car park control system, 248-59
CLEAR command, 108
CLEARWDT command, 108

362 Index

Clock, 7
CodeDesigner Lite, 624
Complex flashing LED, 13841

Complex Ingtruction Set Computer (CISC), 11

CON keyword, 103
Configuration word, 42

COUNT command, 108

Crystal oscillator, 367

Current sink/source capability, 10

DATA command, 108
Data memory, 4, 22
DEFINE command, 104
Developer’s bundle, 69
Development tools, microcontroller project
development cycle:
ICE, 77-8
simulator, 77
DISABLE command, 124
DOS edit, 61
DTMFOUT command, 109
Dual 7-segment LED display, 189-97
Dual 7-segment LED display counter,
198-203
Dual 7-segment LED event counter, 2049

EasyPIC 2 development system, 72—3
EEPROM, 6
flash, 6
data memory, 9
EEPROM command, 90-1
EEPROM data memory, 9
Electronic organ, 3316
musical tones, improvement, 336
Embedded controller see Microcontroller
ENABLE command, 124
END command, 91
EPIC Plus programmer, 50-1, 51
EPROM, 6
Experimenter board:
EasyPIC 2 development system, 72—-3
LAB-X1 experimenter board, 71
PIC microcontroller training and
development kit, 72

FED programmer, 50, 51

Flash EEPROM, 6

Flashing LED warning lights, 142—-3
FOR...NEXT command, 88-9
FREQOUT command, 109

Gang programmer, 51-2, 52
General Purpose Register (GPR), 22
GOSUB...RETURN command, 89
GOTO command, 89

Hardware tools, required:
minimum support components, in PIC
microcontroller, 537
PC, 49-50
PIC microcontroller, 53—7
PIC microcontroller programmer device,
50-2
power supply, in PIC microcontroller
circuit, 58-60
sol derless breadboard, 52-3
Harvard architecture, 11
HD44780 LCD module, 115-16
pin configuration, 115
HIGH command, 91
High current load interface, 44
HPWM command, 109
HSERIN command, 110
HSERIN2 command, 110
HSEROUT command, 110
HSEROUT?2 command, 110

I/O interface, 42
button input, 467
high current load interface, 44
LED interface, 43
relay interface, 44-5
1/O registers, 236
port data register, 23, 25
port direction control register, 23, 24, 25
2CIN command, 91-2
[2COUT command, 93
IF..THEN command, 89-90

Index

363

IF..THEN...ELSE command, 110-11
conditional jump, 110
conditional statement, 110
multiple statements, 110
In Circuit Debugger (ICD), 64, 78
In Circuit Emulator (ICE), 77-8
In-circuit serial programming (ISP), 21
INPUT command, 93
Instruction cycle, 7
INTCON register, 29-30, 41
bit definition, 32
Internal oscillator, 38-9
Interrupt Service Routine (ISR), 8, 124, 125
Interrupt vector address, 8
Interrupts, 8, 41-2, 124-5
asynchronous, 41
Globa Interrupt Enable (GIE), 32, 41
synchronous, 41

LAB-X1 bundle, with serial programmer, 70
LAB-X1 experimenter board, 71
LCD commands, 118
LCD connection, to microcontroller, 116-19
LCD drivers, 9
LCD interface, 113
character table, 119
parallel LCDs, 114-20
serial LCDs, 1204
L CD-based chronometer, 2807
L CD-based clock:
with hours—-minutes—seconds display,
271-9
L CD-based thermometer using A/D
converter, 300-5
L CD-based voltmeter using A/D converter,
288-99
LCDOUT command, 117-18
LED DICE, 165-71
LED interface, 43
Left scrolling LEDs, 152-5
LOOKDOWN command, 93
LOOKUP command, 934
LOW command, 94
Low power operation, 10

Mathematical and logical operations, in
PicBasic, 85-6
Memory, 4
MicroCode Studio, 64-5
ICD, 64
Microcomputer, 1, 2
Microcomputer system, 1
see also microcontroller
Microcontroller, 1, 2, 4
architecture, 4, 5, 11
features, 6-10
PIC microcontroller project, steps, 2
systems, 1, 2-6
Microcontroller architecture, 4, 5, 11
CISC, 11
RISC, 11
Microcontroller features, 6
A/D converter, 8-9
anal ogue comparator, 10
brown-out detector, 8
clock, 7
current sink/source capability, 10
EEPROM data memory, 9
interrupts, 8
LCD drivers, 9
low power operation, 10
power-on reset, 10
real-time clock, 10
reset input, 8
serial 1/0, 9
sleep mode, 10
supply voltage, 7
timers, 7
watchdog, 7-8
Microcontroller pin configuration, 16, 18,
19, 20
Microcontroller systems, 1, 2—6
EEPROM, 6
EPROM, 6
flash EEPROM, 6
RAM, 5
ROM, 6
Microprocessor, 1, 2
comparison with microcontroller, 2

364 Index

Minimum support components, in PIC
microcontroller:
capacitor, 54
reset circuitry, 53, 557
resonator, 55, 56
timing components, 534, 54-5

NAP command, 94

ON INTERRUPT GOTO command, 124
One time programmable (OTP), 6
OPTION register, 23

OPTION_REG register, 23
OPTION_REG register, 23

bit definition, 24
ORG, 22
OSCCAL register, 38-9
Oscillator circuit, 34

crystal oscillator, 36—7

internal oscillator, 389

RC oscillator, 37-8

resonator oscillator, 37
OUTPUT command, 94

Parallel LCDs, 114
HD44780 LCD module, 115-16
LCD connection, to microcontroller,

116-19

PAUSE command, 95

PAUSES statement, 111

PC, 49-50

PEEK command, 256, 95

PIC microcontroller, 53
configuration word, 42
data memory, 22

factors, for microcontroller selection, 14-15

features, 14

I/O interface, 42—7
interrupts, 41-2
oscillator circuit, 34-9
program memory, 21-2
programmer device, 50-2
reset circuit, 40, 53, 557
RFM, 22

specifications, 13
timing components, 534, 54-5
training and development kit, 72
PIC microcontroller family, 13
12-bit instruction word, 15-16
14-bit instruction word, 17-20
16-bit instruction word, 21
microcontroller, features, 21
PIC microcontroller programmer device:
EPIC Plus programmer, 50-1, 51
FED programmer, 50, 51
gang programmer, 51-2, 52
PIC microcontroller project development:
bundled devel opment system, 69-70
development tools, 77-8
example, 73—7
experimenter boards, 71-3
hardware tools, required, 49-60
software tools, required, 609
PIC microcontroller training and
development kit, 72
PIC microcontroller-based project
development:
OTR 6
steps, 2
PIC microcontroller-based projects see
PicBasic projects; PicBasic Projects
PIC12C508, 15-16
pin configuration, 16
PIC16C554, 17
PIC16C5X, 16
PIC16C56 microcontroller, pin
configuration, 16
PIC16F73, 20
pin configuration, 20
PIC16F84, 17
pin configuration, 18
pin description, 18
PIC16F627, 18
pin configuration, 19
PIC16F676, 18, 20
pin configuration, 20
PIC16F877, 17-18
pin configuration, 19

Index 365

PicBasic compiler, 65—7
bundle, 69-70
PicBasic compiler bundle, 6970
PicBasic language, 80
ASCII values, 84
comments, program, 84
line labels, 84
mathematical and logical operations, 856
multi-statement lines, 84-5
numerical values, specification, 84
program flow control commands, 86-90
string constants, 84
symbol, 83
variables, 80-3
PicBasic Pro compiler, 65-7
usage, in project development, 757
PicBasic Pro language, 101
arithmetic operators, 1057
commands, 107-13
comments, 103
constants, 103
INCLUDE, 104
line extension, 104
multi-statement lines, 103
ports and registers, assessment, 104-5
variables, 102-3
PicBasic Pro project see PicBasic Pro
programs
PicBasic Pro programming, 80
language, 101-13
comparison with PicBasic, 81
structure, recommended, 125-6
using servomotors, in microcontroller-
based projects, 128-9
using stepping motors, in microcontroller-
based projects, 126-8
PicBasic programming, 80
language, 80
comparison with PicBasic Pro, 81
structure, recommended, 101
using servomotors, in microcontroller-
based projects, 128-9
using stepping motors, in microcontroller-
based projects, 126-8

PicBasic Pro programs:

4-digit external interrupt-driven event
counter, 237, 23740

4-digit LED display with seria driver —
counter project, 215, 223-6

4-digit LED display with seria driver —
counter project with leading zeroes
blanked, 227, 232-5

4-digit timer interrupt-driven chronograph,
242, 243-7

7-segment LED DICE, 186-8

7-segment LED display counter, 179-81

binary counting LEDs, 150-1

car park control system, 249, 256-9

complex flashing LED, 138, 141

complex LED warning lights, 142

dual 7-segment LED display, 193, 1957

dual 7-segment LED display counter, 199,
200-3

dual 7-segment LED event counter, 205,
206-9

electronic organ, 332, 333-5

L CD-based chronometer, 2817

LCD-based clock with
hours—minutes—seconds display, 272-9

L CD-based thermometer using A/D
converter, 302, 303-5

L CD-based voltmeter using A/D converter,
290, 291-9

LED DICE, 169-71

left scrolling LEDs, 154-5

programmabl e thermometer with RS232
seria output, 319, 324-9

right scrolling LEDs, 158-9

right-eft scrolling LEDs, 1634

seconds counter with LCD display, 262—4

serial LCD-based thermometer with
external EEPROM memory, 309-14

simple flashing LED, 135

turning on odd numbered LEDSs, 1467

unipolar stepping motor control, 339,
341-3

unipolar stepping motor control using
UCNS804C, 345, 347

366 Index

PicBasic programs:
4-digit LED display with serial driver —
counter project, 215-23
4-digit LED display with serial driver —
counter project with leading zeroes
blanked, 227, 228-32
7-segment LED DICE, 184-6
7-segment LED display counter, 177-9
binary counting LEDs, 149-50
car park control system, 249, 250-5
complex flashing LED, 138, 13940
dua 7-segment LED display, 191-5
flashing LED warning lights, 142
LED DICE, 166-9
left scrolling LEDs, 1534
programmable thermometer with RS232
seria output, 319-24
right scrolling LEDs, 157-8
right-eft scrolling LEDs, 161-3
seconds counter with LCD display, 262,
26470
simple flashing LED, 1334
turning on odd numbered LEDs, 1456
unipolar stepping motor control, 33941
unipolar stepping motor control using
UCNBS804C, 344, 346
PicBasic projects see PicBasic programs
PicBasic variables, 80
bit, 80-1
byte, 80
Dirs, 82-3, 83
Pins, 82, 83
Port, 83
word, 80
POKE command, 25-6, 95
Port data register, 23, 25
Port direction control register, 23, 24, 25
Ports and registers, assessment:
in PicBasic Pro, 104-5
POT command, 95-6
Power supply, in PIC microcontroller circuit,
58-60
Power-on reset, 10
Program memory, 4, 21-2

Programmabl e thermometer with RS232
serial output, 315-30

Programmer device software, 67-9

Project development, example:
circuit construction, 74-5
circuit design, 73
components, requirement, 73-4
PicBasic Pro compiler, 75-7
writing program, 75

PULSIN command, 96

PULSOUT command, 96

PWM command, 96-7

RAM, 5
see Data memory
RANDOM command, 97
RC oscillator, 37-8
READ command, 97
Real-time clock, 10
Reduced Instruction Set Computer (RISC),
11
Register File Map (RFM), 22
GPR, 22
SFR, 22, 23
Relay interface, 44-5
REM keyword, 84, 103
REPEAT...UNTIL command, 111
Reset circuit, 40
Reset input, 8
Resonator oscillator, 37
RESUME command, 124
REVERSE command, 97-8
Right scrolling LEDs, 1569
Right-eft scrolling LEDs, 1604
ROM, 6

Seconds counter with LCD display, 26070
SELECT...CASE command, 111-12
Serid 1/0, 9
Serial LCD-based thermometer:
with externa EEPROM memory, 306-14
Seriad LCDs, 114, 120
ILM-216 LCD control codes, 121-3
ILM-216 LCD pin configuration, 121

Index 367

SERIN command, 98-9
SEROUT command, 99-100
Servomotor, usage:
in microcontroller-based projects,
1289
Servomotor-based mobile robot control,
348-58
backward movement, 351
forward movement, 351
left/right turning, 3556
robot speed, measurement, 354-5
servomotor, operation, 349-51
time, for robot movement, 351-2
SHIFTIN command, 112
SHIFTOUT command, 113
Simple flashing LED, 132—7
microcontroller, usage, 1367
Simulator:
disadvantage, 77
SLEEP command, 100
Sleep mode, 10
Software tools, required:
PicBasic compiler, 65—7
PicBasic Pro compiler, 65-7
programmer device software, 67-9
text editor, 60-5
Solderless breadboard, 52-3
SOUND command, 100
Specia Function Register (SFR), 22
A/D converter register, 304
1/O register, 23-6
INTCON register, 29-30, 41
OPTION register, 23
timer register, 26-9
Stepping motor, usage:
in microcontroller-based projects, 126-8
Supply voltage, 7
SWAP command, 113

Symboal, 83
Synchronous interrupts, 41

T1CON register, 29
bit definition, 30
T2CON register, 29
bit definition, 31
Text editor, 60
CodeDesigner Lite, 624
DOS edit, 61
MicroCode Studio, 64-5
WINDOWS notepad, 61-2
Timer registers, 26
TMRO, 26, 26-8
TMR1, 29
TMR2, 29
watchdog, 26, 26-8
Timers, 7
TMRO register, 26, 26-8
overflow time, 27-8, 28
TMR1 register, 29
TMR2 register, 29
TOGGLE command, 100-1
TRISregister, 24-5
Turning on odd numbered LEDs, 1447

Unipolar stepping motor control, 33743
using UCN5804B, 3447

Von Neumann architecture, 11

Watchdog, 7-8, 26, 26-8

Web sites, links, 78-9
WHILE...WEND command, 113
WINDOWS notepad, 61-2
WRITE command, 101

ZIF socket, 50, 51

	Cover
	Contents
	1 Microcontroller
systems
	2 The PIC microcontroller family
	3 PIC microcontroller project development
	4 PicBasic and PicBasic Pro programming
	5 PicBasic and PicBasic Pro projects
	Index

