%,

CD-ROM
INCLUDED
CONTAINING

C code
examples

FREE
Cc32
Compiler

EMBEDDED TECHNOLOGY™ SERIES

Programming 32-bit
Microcontrollers in C

Exploring the PIC32

7

Lucio Di Jasio Nt

Programming 32-bit
Microcontrollers in C

Exploring the PIC32

This page intentionally left blank

Programming 32-bit
Microcontrollers in C

Exploring the PIC32

Lucio Di Jasio

AMSTERDAM « BOSTON+ HEIDELBERG « LONDON
,‘ NEW YORK ¢« OXFORD ¢« PARIS * SAN DIEGO
E5 S SAN FRANCISCO- SINGAPORE+ SYDNEY « TOKYO
LSEVIER Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2008, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone+@4) 1865 843830, fax:{44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.§dmy selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.

Recognizing the importance of preserving what has been written, Elsevier prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-7506-8709-6

For information on all Newnes publications
visit our Web site at www.books.elsevier.com

0809 10111210987654321

Typeset by Charon Tec Ltd (A Macmillan Company), Chennai, India
www.charontec.com

Printed in the United States of America

Working together to grow
libraries in developing countries

www.elseviercom | wwwbookaid.org | wwwasabrearg

ELSEVIER POOKAID Sapre Foundation

Dedicated to my son, Luca.

This page intentionally left blank

Acknowledgments

Once more this project would have never been possible if | did not have 110% support
from my wife Sara, who understands my passion(s) and constantly encourages me to
pursue them. Special thanks go to Steve Bowling and to Garry Champ. Their passion
and experience in embedded control application caused them to volunteer for reviewing
the technical content of this book. While Garry did not know what he was signing up

to, Steve should have known better having been my primary technical resource for the
previous book. | owe big thanks also to Patrick Johnson, who enthusiastically supportec
this book idea from the very beginning and pulled all the stops to make sure that | woulc
be able to work in direct contact with his most advanced design and application teams
working on the PIC32 project. Thanks to Joe Triéttes architect”, for being always
available to me and always curious about my experiences and impressions. Thanks to
Joe Drzewiecky for assembling such a complex tool suite, always working hard to make
MPLAB® IDE a better tool. Special thanks also go to the entire PIC32 application team
headed by Nilesh Rajbharti and a special mention to Adrian Aur, Dennis Lehman, Larry
Gass and Chris Smith for addressing quickly all my questions and offering so much hel
and insight into the inner workings of the microcontroller, the peripherals and its librarie:
But | would like to extend my gratitude to all my friends, the colleagues at Microchip
Technology and the many embedded control engineers | have been honored to work wi
over the years. You have so profoundly influenced my work and shaped my experience
the fantastic world of embedded control.

Finally, since the publication of my previous book on Programming 16-bit
microcontrollers in C, | have received so much feedback and so many readers have
written to me to congratulate but also to point out errors and issues. This has been a ve
humbling but also rewarding experience and | want to thank you all. | tried to incorporat:
as many of your suggestions as possible in this new work but | am still looking for your
continued support and advice.

This page intentionally left blank

Contents

INEFOAUCLION ...eneannnennneenniiennereniireniirneeieecrenscsacscsnssssessssssssasssssssssnssssnsssannsns XIX

Part 1: EXPIOFINGeeeueeeeeeeennnnneeniieeeeeeecttneeeeeeeescnnnneseeeesesssssssssesssessssssnnnnnnes 1

Day 1: The Adventure Begins................uuuueeeeeeeeeeeeeieeeiiiiiiiiisiisissssssssnssssssnnnnnnns 3
TRE PLAN ..ot e e e e s 3.
PrePArationooiiiiiiiiiii e S
The AdVENTUIE BEOINSttt e e e e e e e
Compiling @Nd LINKINGcuiiiiiiieeee et e e e
THE LINKET SCIIPL. ..ottt e e e e e e e e e e e e eeeas 1
BUilding the FirSt PrOJECL........uueiiiiiiiiiiie e 11
USING the SIMUIALQT. ... e e e e 1
FINAING @ DIFECTHION.....eeiiiiiiiiiee et e e e r e e e e e e 1
TRE JTAG POIL ...ttt e e e e e e e e e e e e e nneee s 1
TESHNG PORTB ...ceeeiiieiiitt ettt e et e e e e e r e e e e e e e aanrreees
MISSION DEDBMETING ...
Notes for the ASSEMDIY EXPEILS........ccuuiiiiiiiii i 20
Notes for the PIC MCU EXPEITS........ccuuiiiiiiiieiiiiiiee et 22
NOES TOr the C EXPEITS......iiiiiiiiiieieiie e 22
TIPS & THICKS ..ttt e e e e e e e e e eanes 22.....
EXEBICISES ...t 23......
BOOKS ..t e e 24.....
LINKS et e et e e e e e et e e s s 24....

Day 2: Walking in Circlesuuuuuuuueeeeeeeeeeeeeeeeiieiiieeicccccnnnnnnnnnneennneenne 25
TRE PIAN ... 25......
Preparation..........ooooii i ——————————— 25........
I =T (0] 0] = LT o PSPPSR 2

WHIIE LOOPS ettt B

X Contents

AN Animated SIMUIALION. ... 31
USING the LOGIC ANGIYZEL.......uuuiiiuiiiiiiiiiiiiiitiisiietrersteseresssessresressssessessssessaeraeeraeee——. 3t
(=T o1 = 11 0o PP 31.......
Notes for the ASSemMbIY EXPEIS.........couviiiiiiiiiee e, 38
Notes for the 8-Bit PIC Microcontroller EXPErtS........ccccccvvvvviiiiiiiiiiiiiiiiiieeeeeeeee, 38
Notes for the 16-Bit PIC Microcontroller EXPErtS........ccoceeeeeeicviiunenineniiniinnnennnnnnns 38
NOtES fOr the C EXPEIS...ccccviiieiiieiieeeeeeeeeee e, 3¢
NOteS fOr the MIPS EXPEIIS....ccviiiiiiiiiieieeeeeee ettt 39
QLT 2SR 1 <N 39......
Notes on Using the Peripheral Libraries.........ccccccccvivii 40
EXEICISES ...t e
BIOOKS ..ttt 42.....
LINKS ettt e e e e e e b et et s s 42...

Day 3: Message in a Bottle....................uuuueeeeeeeeeeeeeiiiiiiicccccnnnnnnnnnnnnnnnnenneens 43
B 1S3 = o (TR 43......
Preparation...........ooooiiii i nrrnnrensnns e B
I LT (] (o] = LT o PRSPPI 4
D Lo N 0T 1P 44......
Variable DECIAratiONScooiiiiiiiiiiiiee et e e e e e e e s s ee e e e e e
L0 N 10T o 1
More Loop EXamPIES..........ooooiiiiiii 4
N 1= NV 49.....
SENAING A MESSAGE. it e a bbbt eaeee e beetessessssssssssssesssssssesssesssnesenes 5
Testing wWith the LOGIC ANAIYZEL............uuiiiiiiiiiiiiiiiiiiiiiiiiiiiierrerererrerseressreereeeree——————— 53
Testing with the Explorer 16 Demonstration Baard...............ccooeeeiieiiieiiiciiecccnnns 54
Testing with the PIC32 Starter Kil..........ccccciiiiiiiiiiiiiiiiiriiiiiiiieiiinrarserereersrreere.——.. 55
[D1=T 04 1= 11 0o [P 51.......
Notes for the ASSembly EXPEIS.........cooviiiiiiii . 57
Notes for the PIC Microcontroller EXPertS..........cccooveiveiiiiiiii, 58
NOtes for the C EXPEIS......coviiiiiiiiiiiiee e 5¢
TIPS & THICKS et iee e e an e naea b bebneenberanerrrrearne Ba.....
T (o] TSP 60.......
2700 PP RESRR 60Q.....
T OSSR SSUPPS 60.

Day 4: NUMB3RSuueeeeeeiiieeeeeeeeiiicieeseeeeeeeesnnsnnseeeesisssesseeesssssssssnns 61
TRE PIAN ..o 61l......
PrEPAIALIONceeiiiie it e e 61.......
THE EXPIOTALION.ottt e e e e e e e e e e e e e 6
On Optimizations (or Lack Thereof).........c.uuveveiioiiii e 64

JLLZE 1 o [P P PP PPPPPR 64.....

Contents xi

(€To]TaTe] (o] aTo N o] o TR PP 6!
INtEQEr DIVISIONS ... —— |
Floating PoOiNtcooiiiiiii e 69.........
Measuring PerfOrMEaNCEccoiii e eneeeneenrennrnnes
=T 01 =1 0o P 73......
Notes for the ASSembIly EXPEIS........ccouviiiiiiiiiee e, 73
Notes for the 8-Bit PI€ Microcontroller EXPErtS............ccooveveveeeeveeceeeeeaeseereenes 75
Notes for the 16-Bit PIC and dsFi®icrocontroller EXperts...........ccoovevevveeveeeenes. 76

QLT 2SR 1o &N 7.
EXEICISES ...t e s Deee
BOOKS ..ttt 79.....
LINKS ettt e e et r e e e e e e a b et et e e s s 79...

The Interrupt Management LIDrary............voioi e 90
Single Vector Interrupt Management...........cuuiiiri e ee e e e e e eeeeens 90
Managing MUltiple INtEITUPLS.........uuiii i e e e e e e e eeneens 95
Multivectored Interrupt ManagemenL...........ccovvvvuiiiiiiie e e e 98
W ANRST [0 g] o1 ST AN o o[o= 1 1 o) o T 108
The Secondary OSCIlatQr...........ccoviiiiiiii e 108
The Real-Time Clock Calendar (RTCC)couuiiiiiiiii i ee e eeeeeenaens 10
[T o] =3 11 o [111......
Notes for the PIC Microcontroller EXPertS.........cccevvivieiiieeiiiiiie e 111
TIPS & THICKS ettt e e s e e e e e e e e et e e e e e e e eenene 112......
EXEICISES ..ot A13..

Day 6: MEMIOFY «......eeeenneeeeeenniieeeereennieeeeeneenieeeeeneeeseeeeennasssssessssansssseseenes 115

TRE PLaN ..ot 115......
PrEPAIALIONeiiiieiiiit e 115........
THE EXPIOTALION........eiiiiiiee ettt e e e e e e e e e ane 11
Memory SPace AlIOCATION.coiiiiiiiiiii e e e 118
LOOKING @t thE MAR. ... 12:
POINTETS ... e e e e e e e 127.....

Xii Contents
TRE HEAP e 28........ i
THE PIC32MX BUS. ..ottt e e e a e e e e s 12!
PIC32MX MEMOIY MaPPING ... vvvvvueurrerrrrernnsrensrssssesssesssssrsssssssreseseerreeeseee——. 130
The Embedded-Control Memory Map.........coooooeiiiiiiii e 134
(=T o= 1 0o PP 135.......
NOtes for the C EXPEIS......ccoviiiiiiiiiieeeeeeeeee e, 13t
Notes for the ASSEMDBIY EXPEILS......cccovvviiiiiiiiiiii 136
Notes for the PIC Microcontroller EXPErtS..........ccccvvvvvviiiiiieiiieeeeeeeeeeeeeeeee 136
TIPS & THICKS .. e e s s ee e s ee s seseeeeaeeeneeeeees 137.....
EXBICISES .o 37
BOOKS ..ttt a e e s 138.....
T PP PSPPI 138

Part 2: EXPEriMENtiNgcecueeeeeeeerrereeesrurereeisseeeeesssseeessssssesessssssssessssssssssssssssssnns 139

DAy 7: RUNNINGnnnnnnneeeeeeeeeeeennnenneeeeeeeeeesnnnntsseeessessssssassssesssssssssssssssssessssssnnnns 141
TRE PLAN ..t 141......
Preparation.... ..ot ————————— 141........
B L= (0] 0] = LT o PP 14
Performance vs. Power CONSUMPLON.uueiviiiiieiieeieeeeieeeeee e eeer e e eeeeeeeeeaaaees 144
The Primary Oscillator Clock Chain.............cooooiiiii i 146
The Peripheral Bus CIOCK..............oooiiiiiiii e 147
Initial Device CoNfIQUIAtIONuuiiiiiiiiiiiiiii e aesr e reeeeees 14
Setting Configuration Bits in Code...........coovvviiiiiii . 150
Heavy StUf......coo 52....... 1
Ready, Set, GOL.....ccooiiiiie e —— 15
Fine-Tuning the PIC32: Configuring Flash Wait States...........ccccccvvvvvvvveeveeeenen. 160
Fine-Tuning the PIC32: Enabling the Instruction and Data Cache.......................... 1
Fine-Tuning the PIC32: Enabling the Instruction Pre-Fetch............................. 164
Fine-Tuning the PIC32: Final NOteS..........cooovvviiiiii 165
(=T o =1 1 0o PP 167.......
Notes for the ASSEMDIY EXPEILS......ccccvviiiiiiiiiiie e, 167
Notes for the PI€ Microcontroller EXPErtS..........c.cccvivieieieeeeeeeeeeeeeeeesreseeseeanes 167
TIPS & THICKS ..t a s e esseessseeeeenaeeeeeeeeees 168......
EXBICISES .ttt 171.......
BOOKS ..t a e e s 171.....
T U PPP SO 171

Day 8: COMMURICALIONeeeeennnnnneneeeeeeeeereeeeeeeeeiiieeeeeeeessesssssssssssssnssnssssaees 173
LI = = U T, 173......
PreParatioNcoiiiiiiiiie e 173.......

THE EXPIOTALION........eieiiiiie it e e s e e e e e e 17

Contents Xiii

SyNnchronous Serial INtErfaCES.........uuuviiiiiiiiiiiiiiiiiiiiir e re e 174
Asynchronous Serial INtErfaCes..........uuuuiruiiiiiiiiiiiiiiiiiiiieiirrvierrreer e 176
Parallel INTEIACES. ... e 17
Synchronous Communication Using the SPI Modules..............cccccci. 178
Testing the Read Status Register Commandcoooeoe
Writing Data to the EEPROM............coooviiiiiiiiee . 186
Reading the Memory CONENLS........ccoioiiiii e 187
A 32-bit Serial EEPROM Library.......cccccvvvviiiiiii 187
Testing the New SEE Library ... 1
(=T o= 1 0o PP 193......
NOteS fOr the C EXPEIS......covviiieiiieieee e, 19¢
Notes for the EXplOrer 16 EXPEILS......cuvviiiiiiiiieiiiiieeeeeeeeeeeee e, 193
Notes for the PIC24 EXPEILS.......cccoiiiiiee e, 194
TIPS & THICKS ..t e e s ee e s eesss e s e e e eaeeeeeeeeees 194......
EXBICISES . 95,
BOOKS ..ttt a e e s 196.....
LINKS ettt e e e e e e n e 196..

Day 9: Asynchronous COMMURNICALIONcceeeeeeeeeieiceiinnnnnnnnnnnnnnennneeenees 197
B I LS = U o USSR 197.......
Preparation..........cooooiiiiii i ——— 197........
B I LT (0] (o] = LT o 19
UART Configurationoooiiiiiiiiii 2(
Sending and RECEIVING DALAuvuiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeereeeereeeeeereeeeeeeereeereereeeeeeeeeess y
Testing the Serial Communication Routings.............ccccoeoeeii . 204
Building a Simple Console Library........cccoooioiiiiiiiiiciice e 206
Testing a VTL00 Terminal ... 2
The Serial Port as a Debugging TOOI........ccooooiiiiiiiiccce e 2
The MatriX PrOJECL......oviiiieeeeeeeeeeeeeee 21
D=1 0] 1= 11 0o NSRRI 2!
Notes for the C EXPEIS.......cooiiiiiiiiiieeeeeeeeeee e, 21/
Notes for the PI€ Microcontroller EXPErtS............cocvivvieieeeeeeeeeeeeieeeeeseeseeseeanns 215
TIPS & THICKS ... b b e e e s b e e e s s e s s sesseessaesseesaeeeeeesenes 215......
EXBICISES .t a e 216.......
BOOKS ..ttt a e e e e e e e e e e e anne 216.....
T PRSP, 217

Day 10: Glass = Bliss..........uuuueeeeeeeonuneeeeeieiiineenneeeeeecnnnnneeeeeessnnneeeeseesnns 219
TRE PIaN oo 219......
PrepParatioNo e 219........
B =3 (0] o] = 11T o PR 21

HD44780 Controller Compatibility...........cooeiieie e 221

Xxiv Contents

The Parallel Master POrt..........oouiiiiiieee e Y.
Configuring the PMP for LCD Module Control..........cccccovvviiiiiii, 224
A Small Library of Functions to Access an LCD Display..............ccccccoeeeeeeeei. 225
Building an LCD Library and Using the PMP Library...........ccccccvvvvvivviivivneinnnnee. 231
Creating thenclude andlib DireCtories.............ooeeeei i 237
AAVANCEA LCD CONLIOL... .ttt e e e e 24(
Progress Bar PrOJECL....... ...ttt eeabeesseasssssssesssessesseseeseeseeeeeees 24
(=T o= 1 0o PP 245.......
Notes for the PIC24 EXPEILS.......ccooiiviiie e, 245
LT 2SR T 1 o 246......
EXBICISES ..t 246.......
BOOKS ..ttt e e s 247.....
T P PPP PP, 241....

Day 11: It’s an Analog Worldcccuennneeeeeienniineeeeeeccinnneeeeeennns 249
B T3 = T 249.......
(=T 0T = (o] o 249........
B = =4 0] 0] = (o) 24
The First CONVEISION........cooiiiiieiee e, 25
Automating Sampling TiMINGoii i e e e e e e 2°
DeVveloping @ DEMO........cuuiiiii e e 25!
Creating Our Own Mini ADC Library......ccccooooe i 257
FUN AN GaAMES....c o 25
SENSING TEMPEIALUIE ...uuuuiii e e e e e e s e e e e e e e e e e r s e e e e e e e eeetrna e e eeeaeeennnenns :
=T o] =3 11 o [266.......
NoOteS fOr the PIC24 EXPEILS.....ccoouuiiiiii i eeeties s e et e e e e ee e s e e e e eeeenes 266
BT ST o & 267......
EXEICISES ..ottt 261.......
2 00 1€ 3PP 268.....
LINKS e 268

Part 3: EXPANSION.............eeeeneeeneerrereeneecteentesseesesseesessesssesseessesssssssessessssssesssens 269

Day 12: Capturing User INPULsceeeeeeeeeeeeeieeeeeeieieeisersnnnnennnnnnessssseeens 271
TRE PIAN .o 271......
PrEPAIALIONceiiiiii it 271........
Buttons and Mechanical SWItChES..........ccvvvviiiiiiiii e 272
BULtON INPUE PACKING ..o e e 2
Button INPULS DEDOUNCING.ciiiiiiiiiiiiiiie et 277
ROTAIY ENCOAEISoeiiiiiiiiieeeie ettt e e e 2
Interrupt-Driven Rotary Encoder INPUL...........oouviiiiiiieiiiiiieccee e 283
KEYDOAITS ...ttt 88....... z

PS/2 Physical INterfaCecccooei i y

Contents xv

The PS/2 Communication ProtOCQL.............couiiiiiiiiiiiiiiiiee i 289
Interfacing the PIC32 10 the PS/2..........u e 290
1] 1WA =T o 11 | (= 2RSSR O...... Z
Testing UsiNg @ StIMUIUS SCHPLS......uuvivuiiiiiiiiiiiiiiiiireiirrieerreerseeseeeeeeerereeeereeererereee 296
The SIMUIAtOr Profil@r........oi e 30
Change NOtIfICatioN...........covviiiiiii 30:
EVAIUALING COSE ...ttt et e bt erbrrerrnnerennnes 3
7L @ 2 =o' o [PPSR 309......
Testing the 1/0 Polling MethQd.............ccoovviiiiiii 314
Cost and Efficiency Considerations.............oooooiiiiii e 317
Keyboard BUfferingccooooiiii oo 3.
[V ©a o [T 7= T oo To |1 o R 32
(=T o= 11 0o PP 328.......
Notes for the PIC24 EXPEILS........cooiiiiiee e, 329
TIPS & THICKS ..t essee s ee s s s e e aeeaneeeeeeeeees 329......
EXBICISES .t .330.......
BOOKS ..ttt e e s e 330.....
T PP PPPR PP 331

Day 13: UTUDEeeeeenennnnnnnnnenneeeneeieeeeeeeeeeeeeeeeeessessssssssnssssssssssssssssees 333
TRE PIAN . 333......
PrEPAIALIONeiiiiie i 333.......
THE EXPIOTALION.......eeieiiiiee ettt e e e e e e e e e e e ane 33
Generating the Composite Video Signal.............eeeviiiiiiiiiiiiieiiceeiieeeeee e 337
The Output Compare MOUUIES.........cooiiiiiiiiii e 342
IMAGE BUITEIS ...t e e e e e e e e e e 3
Serialization, DMA, and Synchronization.............coooeeeiieiiiciiiiennneees 346
Completing @ VIdeo LiDrarny...........coioiiiiiii e 353
Testing the ComMPOSItE VIABO.cooiiiiiiiiiiiee e 357
Measuring PerfOrMaNCEc.uuiiiiieiei et e e e e K
Seeing the Dark SCrEEIM........ccuiiiiie e 36(
TESE PAIEIN L. 362........
0] (1o T TP PRSPPI 364.....
A STAITY NIGNT et e e e e e e st r e e e e e e e e annes 36
LINE DIAWING ..ottt ettt e e e e ettt e et e e e e e e bbb e et e e e e e e s b b be e e e e e e e e e aan 3
Bresenham AlGOrtNIMooeii e 3
Plotting Math FUNCHONS.cciiiiiiiiiiiiiiee et 372
Two-Dimensional Function ViSualization...................eeeveeeeeeerieeieieeeeeeeeeeeeeeeeseeeeeens 376
=T = PP 381.....
LIS PSP 389...
Printing TEXt ON VIOEO......cviiiiiiiiiiiii ittt 39:

B 1 394......

xvi Contents
The Matrix Reloaded...........cooviiiiiiiiii e 39!
(=T o= 11 0o PP 398.......
Notes for the PIC24 EXPEILS........ccovieiiieiieeeeeeeeeeeeeeeeeeee e, 399
TIPS & THICKS .. e e s ee e eessseseeeeaeeaeeeeeees 399......
EXEICISES ...ttt A0
BOOKS ... 402.....
LLINIKS ettt 402

Day 14: Mass StOFAGe............ueeeeeeeeeeennnnniiieiiieeieeiiiiieteeeenennnessssnesseesnsaens 403
TRE PLAN .. 403......
Preparation.........cccoiiiiiiieee et 4030
THE EXPIOTALION.......eeeiiiiiee ettt e e e e e e e e e e e e aae 40
The PhySICal INTEITACEeeiiiiiiiiiee e 4
Interfacing to the EXpIorer 16 BOAI.........ccouiiiiiiiiiieiiee e 406
Starting @ NEW PrOJECT.........uiiiiiiiieiiiiiee et e e e e e 4
Selecting the SPI Mode Of OPeratiQn...........c.couuiiiiiiiiiiieeeieiiiiieeee e 408
Sending Commands iN SPIMOGE..........ooiiiiiiiiiiiie e 408
Completing the SD Card Initialization................eeeieeiiiiiiiiee e 411
Reading Data from an SD/MMC Card...........coouiiuuiiiiiiieiiiiiiiiieee e 413
Writing Data to an SD/MMC Card..........coooiuiiiiiieeeeeieiiiieeee e 416
Testing the SD/MMC INTEIMACEoiiiiiieiiie e 419
[DI=T o] 1] 10 PP PUPPPPPRPPRRY” 17 ST
TIPS & THICKS .. eeeieeeieit ettt e e e et e e e e e e e 425......
EXEICISES ..o oA 2B0
BOOKS ..ttt e e e s 426.....
LINIKS e 426.

Day 15: File I/O........uuuueeeeenrreeecnereeeecireieesnteeeeessseesessssnesesssssesessssessssssssesssnns 427
TRE PLaN .. 4217.......
Preparation.........ccoiiiiiiiiiee et nnnnneeee e A2
THE EXPIOTALION........eeiiiiiee ittt e e e e e e e e e e e e ane 42
SECLOrS @Nd CIUSTEIS. ... e e e e e e e e ane 42
The File AlloCation TabIe.........cooi i 42¢
THE ROOT DIFECIOIY ...ttt e e e e e e e 43
THE TreasUIe HUNL........oooiiiieiecc e e e e e e e e annes 43
OPENING @ FHlB....eeiiiiei e e 44
Reading Data from @ File..........ooooiiiiiii e 454
ClOSING @ FlB...eeeeee e e 4E
THe Fileio MOUUIE......ooiiiii et e e e e e 46
TestingfopenM() andfreadM() oeveeiiiiiiii 463
WIiting Data t0 @ Fil@.......ueiiiiiiiiiie e 46"

CloSiNg @ File, TAKE TWO ...uuuveuiiriiiiiiiiiiieeieeseeeeeeeeeeseeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereereerreeereeees 4

Contents xvil

ACCESSOIY FUNCHIONS ... uuuuuetiiiiiitiieiiittieetaaeeeaeeeae e aeesbesaeeesesssssssassssssssssssessssssnsseneeees 4
Testing the Complete Fileio Module..............cooooiiiiiii i 476
COUR SIZB .ttt a e e 480........
=T o = 1 0o OO POPPPPPPPPPPRY. = 4 ISP
TIPS & THICKS ..t e e e ee s eesssesaeeeaeeeeeeeeees 481......
EXEICISES ..ot A8 20
BOOKS ..ttt a e e s 482.....
T P EPUPR SO 483

Day 16: Musica, MAeSLro!................eeeeeeenennniiiiiieereninennnnnnnneneeeeisissseenneenns 485
TRE PIAN .o 485......
Preparation ... 8D
B L= (0] (o] = LT o P 48
OC PWM MOOE.ceeiiiieee ittt e e s sttt e e e e e e s st e e e e e e e s ansbbreeeeeeeeeannes 48
Testing the PWM as a D/A CONVEIELc.uuuiiiiiii e e e et e e e e e eeenennnns 4
Producing Analog WaVEefOIrMMIS..........uuuiiiiiiiiiiiiiiiiiiiiiiieeeieees 4
Reproducing VOICE MESSAGESuuiieeiiiiiiiiirieiee e e et e e e et e e e s ee s 497
A MEAIA PIAYEL. ...t e e e e e e e 49
The WAVE File FOIMALouiiiiiiiiiiiiii ettt 5(
ThePlay() FUNCHONccoiiiiiicccccc bbb e b e es s s e s eeesseesseeeeees 50
THe AUTIO ROULINES. ...ttt s e e e e e e s eeeeees 511
A Simple WAVE File PIAYETeeeieeeeeeeeeeeeeeeeee ettt 51
DEDMETING .. S515.......
TIPS & THICKS ..ttt e e et e e e e e e 516......
EXEBICISES .t B516.......
BOOKS ..ttt e e et e e e e e e e anne 516.....
LINKS e 517
3£ od =] o = USRS 17....... 5
Final Note for the EXPErtS.........couoi i 517

This page intentionally left blank

Introduction

The first step in almost every rehabilitation program is A- Acknowledge . . . your
limitations. So this is how | need to start this book, | will admit it: | am an
8-bitter!

| have been programming 8-bit microcontrollers since | was in high school and for most
of my professional career. And there is worse, while | am relatively fluent in several high
level programming languages, | truly love assembly programming!

There, | said it! I love that kick that | get when | know | used every single machine cycle
in every microsecond my embedded applications run. | am also obsessed with control:
I like to know of every configuration bit in every peripheral | use. As a consequence,

in general, | don’t trust compilers or other people’s libraries unless | really cannot live
without them or | have them completely disassembled.

So why would | write a book about 32-bit programming in C?

In fact | started what | should call my “rehabilitation program” a couple of years ago

by approaching the programming of 16-bit microcontrollers first. The introduction of

the P1C24 family of microcontrollers gave me the motivation to try and migrate to C
programming with a new and exciting architecture. As a result of my experience, | wrote
the first book: “Programming 16-bit microcontrollers in C. Learning to fly the P1C24

But by the time the book was published, rumors circulated in Microchip that a new 32-bi
chip had just come out of the “ovens” and | had to have one!

I'll spare you the details of how | got my hands around one of the very first test chips,
but what you need to know is that in a matter of days | had most of the code, originally
developed for the PIC24 book, ported and running on the PIC32 plugged in my old
Explorerl6 board.

XX Introduction

Microchip marketing folks will tell you that the PIC32 architecture was specifically
designed so to make the “migration” from 8-bit and 16-bit PIC architectures smooth anc
seamless, but | had to see it with my eyes to believe it.

So who better than an assembly-loving, control-obsessed, 8-bitter can tell you about the
exploration of the PIC32?

Who Should Read this Book?

The PIC32 turns out to be a remarkably easy to use device, but nonetheless, it is a truly
powerful machine based on a well established 32-bit core (MIPS) and supported by a
large number of tools, libraries and documentation. This book can only offer you a smal
glimpse into such a vast world and in fact | call it a first “exploration”. It is my strong
belief that learning should be fun, and | hope you will have a good time with some

of the “playful” exercises and projects | present throughout each chapter in the book.
However you will need quite some preparation and hard work in order to be able to dige
the material | am presenting at a pace that will accelerate rapidly through the first few
chapters.

This book is meant for programmers of a basic to intermediate level of experience, but
not for “absolute” beginners; so don’t expect me to start with the basics of the binary
numbers, the hexadecimal notation or the fundamentals of programming. Although,
we will briefly review the basics of C programming as it relates to the applications for
the latest generation of general-purpose 32-bit microcontrollers, before moving on to
more challenging projects. My assumption is that you, the reader, belong to one of the
following four categories:

+ Embedded Control programmer: experienced in assembly-language micro-
controllers programming, but with only a basic understanding of the C language.

« PIC’ microcontroller expert: with a basic understanding of the C language.

« Student or professional: with some knowledge of C (et-Lprogramming
for PCs.

+ Other SLF (superior life forms): | know programmers don'’t like to be classified
that easily so | created this special category just for you!

Depending on your level and type of experience, you should be able to find something
of interest in every chapter. | worked hard to make sure that every one of them containec

Introduction xxi

both C programming techniques and new hardware peripherals details. Should you alrez
be familiar with both, feel free to skip to the experts section at the end of the chapter, or
consider the additional exercises, book references and links for further research/reading.

A special note is reserved for those of you who have already read my previous book on
programming 16-bit microcontrollers in C. First of all let me thank you, then let me explair
why you will get a certain sensation of deja vu. No, | did not try to cheat my way through
the old 16-bit material to produce a new book, but | have re-produced most of the project
to demonstrate practically the main claims of the PIC32 architecture and toolset: its
seamless migration from 8 and 16-bit PIC applications, the vastly increased performance
and nonetheless the great ease of use. For you, at the end of every chapter, | have incluc
a special section where | detail the differences encountered, the enhancements and othe
information that will help you port your applications faster and with greater confidence.

These are some of the things you will learn:

+ The structure of an embedded-control C program: loops, loops and more loops
« Basic timing and 1/O operations
+ Basic embedded control multitasking in C, using the PIC32 interrupts
+ New PIC32 peripherals, in no specific order:
Input Capture
Output Compare

Change Notification

1

2

3

4. Parallel Master Port
5. Asynchronous Serial Communication
6. Synchronous Serial Communication
7. Analog-to-Digital conversion

+ How to control LCD displays

« How to generate video signals

« How to generate audio signals

+ How to access mass-storage media

+ How to share files on a mass-storage device with a PC

xxil Introduction

Structure of the Book

Each chapter of the book is offered as a day of exploration in the 32-bit embedded
programming world. There are three parts. The first part contains six small chapters

of increasing levels of complexity. In each chapter, we will review one basic hardware
peripheral of the PIC32MX family of microcontrollers and one aspect of the C language,
using the MPLAB C32 compiler (Student Version included in the CD-ROM). In each
chapter, we will develop at least one demonstration project. Initially, such projects will
require exclusive use of the MPLAB SIM software simulator (a part of the MPLAB
toolsuite included in the CD-ROM), and no actual hardware will be necessary; although
an Explorer 16 demonstration board or a PIC32 Starter kit might be used.

In the second part of the book, titled “Experimenting” and containing five more chapters
an Explorer 16 demonstration board (or third-party equivalent) will become more critical
as some of the peripherals used will require real hardware to be properly tested.

In the third part of the book, titled “Expansion”, there are five larger chapters. Each one
of them builds on the lessons learned in multiple previous chapters while adding new
peripherals to develop projects of greater complexity. The projects in the third part of the
book require the use of the Explorer 16 demonstration board and basic prototyping skill
too (yes, you might need to use a soldering iron). If you don’t want to or you don’t have
access to basic PCB prototyping tools, an ad hoc expansion board (AV32) containing al
the circuitry and components necessary to complete all the demonstration projects will |
made available on the companion web sitg://www.exploringpic32.com

All the source code developed in each chapter is also available for immediate use on th
companion CD-ROM.

What this Book is Not

This book is not a replacement for the PIC32 datasheet, reference manual and
programmer’s manual published by Microchip Technology. It is also not a replacement
for the MPLAB C32 compiler user’s guide, and all the libraries and related software tool
offered by Microchip. Copies are available on the companion CD-ROM, but | expect yoL
to download the most recent versions of all those documents and tools from Microchip’s
Web site fttp://mwww.microchip.com Familiarize yourself with them and keep them
handy. | will often refer to them throughout the book, and I might present small block
diagrams and other excerpts here and there as necessary. But, my narration cannot ref

Introduction XXIii

the information presented in the official manuals. Should you notice a conflict between
my narration and the official documentation, ALWAYS refer to the latter. However
please send me an email if a conflict arises, | will appreciate your help and | will publish
any correction and useful hint | will receive on the companion webhsipe//www.
exploringpic32.com

This book is also not a primer on the C language. Although a review of the language is
performed throughout the first few chapters, the reader will find in the references severs
suggestions on more complete introductory courses and books on the subject.

Checklists

Although this book is not directly making references to aviation and flight training
as my previous book was, | decided to maintain some important elements introduced
there.

The use of checklists to perform every single procedure before and during each project
is one of them. Pilots don’t use checklists because the procedures are too long to be
memorized or because they suffer from short memory problems. They use checklists
because it is proven that the human memory can fail, and tends to do so more often
when stress is involved. Pilots can perhaps afford less mistakes than other categories,
and they value safety above their pride. There is nothing really dangerous that you, as ¢
programmer can do or forget to do, while developing code for the PIC32. Nonetheless,

| have prepared a humber of simple checklists to help you perform the most common
programming and debugging tasks. Hopefully, they will help you in the early stages,
when learning to use the new PIC32 toolset or later if you are, like most of us, alternatir
between several projects and development environments from different vendors.

The Pilot Checklist — MPLAB® IDE Quick Start Guide

New Project Setup PIC32MX Family Characteristics
Project>Project Wizard Start Vdd range 2.0Vto 3.6V
Step 1: Device PIC32MX360F512L D'glltiﬂ input pins 5V tolerant
Step 2: ToolSuite MPLAB C32 C Compiler Analog input pins 0Vro 3.6V max
Step 3: NewProject dialog box Select BROWSE
Folclier Select or create new MPLAB ICD2 In Circuit Debugger Setup
Project name Type new name here
Step 4: Copy files Only if necessary Target Board Power Up
Step 5: Complete wizard Click on Finish ICD2 to Target Connect .)
ICD2 to PC Connect (wait for triple ding-dong)
Manual Device Configuration (if not using pragmas) Debugger>SeIeFtToo| Select MPLAB ICD2
. i ° Debugger>Settings Select
Configure>Configuration Bits Open window 1. Status Tab Select
Configuration bits set in ocde Unchecked) 1.1 Automatically Connect Verify NOT Checked
ICE/ICD Comm channel select ICE EMUC2/EMUD?2 share with PGCD2 2. Power Tab Select
Boot Flash Write Protect Boot Flash is writable 2.1 Power target from ICD2 Verify NOT Checked
Code Protect Protection Disabled 3. Program Tab Select
Oscillator Selection bits Primary OSC with PLL (XT, HS, EC) 3.1 Allow ICD2 to select ranges Verify Checked
Secondary Oscillator Enable Enabled ’ . .)
. . 3.2 Program after successful build Select if desired (not recommended)
Internal External Switchover Disabled . .
: . . 3.3 Run after successful program Select if desired (not recommended)
Primary Oscillator Configuration XT osc mode OK button Click
CLKO output signal active on OSCO Disabled Debugger>Connect Select
Peripheral Clock Divisor PB clock is Sys clock/2
Clock Switching and Monitor Disabled and clock monitor disabled
Watchdog Timer Postscaler Any Emergency: USB Drivers Re-start (Debugger fails to connect)
Watchdog Timer Enable Disabled
- . Debugger>SelecTool Select None
PLL Input Divider 2X Divider Proi -
. . roject>Close Save Project and close
PLL Multiplier 18X Multiplier . . .
S PLL lock divid PLL Divide by 1 File>Exit Terminate MPLAB
ystem output clock divider ivide by USB cable Disconnect
.) Target Cycle Power
Create New File and Add to Project MPLAB Launch
Project>AddNewProjectFile Assign name (.c or .h) USB cable Connect (wait for enumeration)
File>Open Select “\c32\include\Template.c” Debugger>SelecTool Select Debugger model
if main source file & using pragmas Select “\c32\include\Template wPragmas.c” Debugger>Connect Select (not required for REAL ICE)
Header/comments Copy
Add code As needed
File>Save Select Emergency: Breakpoint Cannot Be Set (debugging)
Project>SaveProject Select 1. Verify the C source code line is not commented
2. Verify you have not used more than six breakpoints (see breakpoints list F2)
MPLAB SIM Debugger Setup 3. Verify the C source line does not contain only a variable declaration
Debugger>Select Tool Select MPLAB SIM 4. Verify the C source file is part of the Project Files list
Debugger>Settings Select 5. Verify the project has been Built before placing a breakpoint
1. Osc/Trace Tab Select
1.1 Processor Frequency 72 MHz .
1.2 Trace Options Trace All Explorer16 Demonstration Board
2. Animation/Real Time Updates Select Tab Power Supply 9V to 15V (reversed polarity protected)
2.1 Animate Step Slow 500 ms/Fast 10 ms Main oscillator 8 MHz crystal (use 4X PLL to obtain 32MHz)

3. Apply/OK Select Secondary oscillator 32,768 Hz (connected to TMR1 oscillator)

The Pilot Checklists — MPLAB® IDE Quick Start Guide (Debugginh and Emergencies)

Project Build

1. Project>Build Configuration

2. Project>BuildOptions>P
roject

2.1 Directories Tab

2.2 Show Directories for:

2.3 “New” Button

2.4 “...” Button

3. MPLAB PIC32 C Compiler
Tab

3.1 Categories

3.2 Generate debugging
information

3.3 Categories

3.4 Optimization Level

3.5 All other optimization options

4. MPLAB PIC32 Linker Tab
4.1 Categories
4.2 Heap Size

OK button

S.
Add all (.c) (.h) and (.0) required

Project>BuildAll
or Project>Make

Adding Files to a Project
View>Project
Project>AddFilesToProject
1. Select directory

2. Select files of type

3. Select File name
Project>SaveProject

Adding Files to a Project
File>Open

Select “Debug”
Open Dialog box

Select

Select “Include Search path”

Press

Press and select “\C32\include” directory
Select

Select “General”
Checked

Select Optimization

Select 0 during debugging
Unchecked during debugging
Select

Select “General
Assign generously if malloc() used
Click

”

Use “Add Files to a Project” checklists (A, B or C)

Select (CTRL+F10)

Select (F10) if only a few modules modified

Method A

Checked
Select
If required

(.c), (-h) or (.0)

Select

Method B (text files only)
Open existing file

PIC32MX360F512L Characteristics

Maximum operating speed 72 MHz
General Purpose RAM available 32,768 bytes
FLASH Program memory 512k bytes

MPLAB REAL ICE In Circuit Debugger Setup

Target Board Power Up
ICD2 to Target Connect
ICD2 to PC Connect (wait for enumeration)

Debugger>SelectTool Select MPLAB REAL ICE

PIC32 Starter Kit In Circuit Debugger Setup
PIC32 Starter Kit to Target Connect

Target Board Power Up
PIC32 Starter Kit to PC Connect (Wait for enumeration)
Debugger>SelectTool Select PIC32MX Starter Kit

Emergency: Lost Cursor while Single Stepping/Animate

Program Counter value Check in MPLAB status bar (bottom)
1. Place cursor on first line of main() Execute Run To Cursor
2. Continue single stepping until the cursor reappears in the main program
3. Search for the PC in the Memory
Window
Else Most likely you Stepped IN a library
function
1. Place the cursor on the next Cstatement execute Run To Cursor
2. If you have one or more breakpoints already set, execute Run
IF all else seems to fail
Send RESET command and start
again

With cursor inside Editor Right Click

Editor pop up menu Select AddToProject

Project>SaveProject Select Emergency: After Pressing Halt, MPLAB Freeze (ICD2 debugging)
Adding Files to a Project Method C (from Project window) Wait!

1. MPLAB could be uploading the content of a large variable/array in the Watch window
2. MPLAB could be refreshing the Special Function Registers window (if open)

3. MPLAB could be updating the Disassembly window (if open)

4. MPLAB could be updating the Local Variables window (if open and contains a large

View>Project Checked
With cursor on File folder Right Click
Project pop up menu Select Add Files. . .

Project>SaveProject Select .
object)
Simulator Logic Analyzer Setup After regaining control, close any data window or remove any large object before
View>SimulatorLogicAnalyzer Select continuing
Debugger>Settings>QOsc/Trace Select
TraceOptions>TraceAll Verify Checked
Channels button Click

Available Signals Select all required
Signals Order Move Up/Down
OK button Click

This page intentionally left blank

Exploring

This page intentionally left blank

The Adventure Begins

The Plan

This will be our first experience with the PIC32 32-bit microcontroller and, for some of
you, the first project with the MPLAB® IDE Integrated Development Environment and
the MPLAB C32 language suite. Even if you have never heard of the C language, you
might have heard of the famous “Hello World!” programming example. If not, let me
tell you about it.

Since the very first book on the C language, written by Kernighan and Ritchie several
decades ago, every decent C language book has featured an example program contain
a single statement to display the words “Hello World” on the computer screen. Hundred
if not thousands, of books have respected this tradition, and | don’t want my books to be
the exception. However, our example will be just a little different. Let’s be realistic—we
are talking about programming microcontrollers because we want to éesigrdded

control applications. Though the availability of a monitor screen is a perfectly safe
assumption for any personal computer or workstation, this is definitely not the case in tr
embedded-control world. For our first embedded application we'd better stick to a more
basic type of output: a digital I/O pin. In a later and more advanced chapter, we will be
able to interface to an LCD display and/or a terminal connected to a serial port. But by
then we will have better things to do than writfihtello World!”

Preparation

Whether you are planning a small outdoor trip or a major expedition to the Arctid, you
better make sure you have the right equipment with you. Our exploration of the PIC32
architecture is definitely not going to be a matter of life or death, but you will appreciate

4 Day 1

the convenience of following the few simple steps outlined here before getting your foot
out the door . . . ahem, | mean before starting to type the first few lines of code.

So, let’s start by verifying that we have all the necessary pieces of equipment ready and
installed (from the attached CD-ROM and/or the latest version available for download fron
Microchip’s PIC32 Web site aww.microchip.com/PIC32You will need the following:

- MPLAB IDE, free Integrated Development Environment (v8.xx or later)
* MPLAB SIM, free software simulator (included in MPLAB)
« MPLAB C32, C compiler (free Student Edition)

Now let’s use the New Project Setup checklist to create a new project with the MPLAB
IDE. From theProject menu, select thieroject Wizard. This will bring up a short but
useful sequence of little dialog boxes that will guide us through the few steps required tc
create a new project in an orderly and clean way:

1. The first dialog box will ask you to choose a specific device model. Select the
PIC32M X360F512L device and clickext. Although we will use only the
simulator, and for the purpose of this project we could use pretty much any PIC3
model, we will stick to this particular part number throughout our exploration.

2. Inthe second dialog box, selecth€32 C-Compiler Tool Suite and click
Next. Many other tool suites are available for all the othePRiChitectures, and
at least one other tool suite is already available for development on the PIC32 in
assembly; don’t mix them up!

3. Inthe third dialog box, you are asked to assign a name to the new project file.
Instead click thé&rowse button and create a new folder. Name the new folder
Hello, and inside it create the project fitillo World, then clickNext.

4. In the fourth dialog box, simply clitdext to proceed to the following dialog
box since there is no need to copy any source files from any previous projects ot
directories.

5. ClickFinish to complete the project setup.
Since this is our first time, let’s continue with the following additional steps:

6. Open a new editor window by selectiile | New, typing theCtrl + N keyboard

shortcut or by clicking the correspondig (New File) button in the MPLAB
standard toolbar.

The Adventure Begins 5

7. Type the following three comment lines:
/*
**Hello Embedded World!
*
8. SelecFile| Save As to save the file as Hello.c.

. Now right-click with your mouse on the editor window to bring up the editor’s
context menu and select tAeld To Project item. This will tell MPLAB that
the newly created file is an integral part of the project.

10. SeledProject | Save Project to save the project.

Note

You will notice that, after saving the file, the color of the three lines of text in the editor window
changes to green. This is because the MPLAB Editor has been able to recognize your file as
C language source file (the .c extension tipped it off) and is now applying the default context-
sensitive color rules. According to theses rules, green is the color assigned to comments, blue
the color assigned to language keywords, and black is used for all the remaining code.

Once you are finished, your project window should look like the one in Figurtf §al
cannot see the project window, seléaw | Project. A small check mark should appear
next to the item in the View menu. Also make sure that the Files tab is selected. We will
review the use of the other tab (Symbols) in a later chapter.

Hello World.mcw |

= 1 Hello World.mcp

= (1 source Files
- B Hello.c

.. Header Files
_J Object Files
[Library Files
s (2 Linker Script
[other Files

< |]

] Files | %% Symbols l

Figure 1.1: The “Hello World” Project window.

6 Day 1

Depending on your personal preferences, you might now wadots” this window to
assign it a specific place on your workspace rather than keeping it floating. You can do
so by right-clicking with your mouse on the title bar of the small window to access the
context menu and selecting theckable option. You can then drag it to the desired edge
of the screen, where it will stick and split the available space with the editor.

The Adventure Begins

It is time to start writing some code. | can sense your trepidation, especially if you have
never written any C code for an embedded-control application before. Our first line of
code is:

#include <p32xxxx.h >

This is not yet a proper C statement but an instruction for the preprocessor (which feed:
the compiler) with the request to include the content of a device-specific file before
proceeding any further. The pic32xxxx.h file, in its turn, contains wiaotude

instructions designed so that the file relative to the device currently selected in the proje
is included. That file in our case is p32mx360f512 |.h. We could have used its name
directly, but we chose not to in order to make the code more independent and hopefully
easier to port, in the future, to new projects using different models.

If you decide to further inspect the contents of the p&8af512 I.h file (it is a simple

text file that you can open with the MPLAB editor), you will see that it contains an
incredibly long list of definitions for all the names of the internal special-function
registers (often referred to in the documentation aSHRS of the chosen PIC32 model.

If the include file is accurate, those names reflect exactly those being used in the device
datasheet and the PIC32 reference manual.

Here is a segment of the p32mx360f512 |.h file in which the special-function register the
controls the watchdog modul&/DTCONand each of its individual bits are assigned their
conventional names:

extern volatile unsigned int WDTCON__ attribute
((section("sfrs ")));
typedef union {
struct {
unsigned WDTCLR:1;

The Adventure Begins 7

unsigned WDTWEN:1;
unsigned SWDTPSO0:1;
unsigned SWDTPS1:1;
unsigned SWDTPS2:1;
unsigned SWDTPS3:1;
unsigned SWDTPS4:1;
unsigned :7;

unsigned FRZ:1;
unsigned ON:1;

Back to our Hello.c source file; let's add a couple more lines that will introduce you to
themain() function:

main()

{
}

What we have now is already a complete, although still empty and pretty useless, C
language program. In between those two curly brackets is where we will soon put the fir
few instructions of our embedded-control application.

Independently of this function position in the file, whether in the first lines on top or

the last few lines in a million-lines file, tmeain() function is the place where the
microcontroller will go first at power-up or after each subsequent reset. This is actually &
oversimplification. After a reset or at power-up, but before enteringpaivg) function,

the microcontroller will execute a short initialization code segment automatically
inserted by the MPLAB C32 linker. This is known as $tartupcode orcrtO code (or
simply c0 in the traditional C language literature). The Startup code will perform basic
housekeeping chores, including the all important initialization of the stack, among many
other things.

Our mission is to activate for the first time one or more of the output pins of the PIC32.
For historical reasons, and to maintain the greatest compatibility possible with the many
previous generations of PIC microcontrollers, the input/output (I/O) pins of the PIC32 ar
grouped in modules or ports, each comprising up to 16 pins, hamed in alphabetical orde
from A to H. We will start logically from the first group known as PortA. Each port has

8 Day 1

several special-function registers assigned to control its operations; the main one, and t
easiest to use, carries traditionally the same name as the nRARIEA

Notice how, to distinguish the control register name from the module name in the
following, we will use a different notation for the tweORTA(all uppercase) will be used
to indicate one of the control registers; PortA will refer to the entire peripheral module.

According to the PIC32 datasheet, assigning a value of 1 to a bithORIBAregister
turns the corresponding output pin to a logic high level (3.3 V). Vice versa, assigning a
value of 0 to the same bit will produce a logic level low on the output pin (0 V).

Assignments are easy in C language—we can insert agsgfnment statemeint our
project as in the following example:

#include <p32xxxx.h >
main()
{
PORTA = 0xff;
}

First, notice how statements in C must be terminated with a semicolon. Then notice hov
they resemble mathematical equations—they are not!

An assignment statement has a right side, which is computed first. A resulting value is
obtained (in this case it was simply a constant expressed in hexadecimal notation) and
is then transferred to the left side, which acts as a receiving container. In this case it wa
the special-functioPORTAregister of the microcontroller.

Note

In C language, by prefixing the literal value witlx (zero x), we indicate the use of the
hexadecimal radix. For historical reasons a sifg{eero) prefix is used for the octal notation
(does anybody use octal anymore?). Otherwise the compiler assumes the default decimal radi

Compiling and Linking

Now that we have completed timain() and only function of our first C program, how
do we transform the source into a binary executable?

The Adventure Begins 9

Using the MPLAB Integrated Development Environment (IDE), it's very edsy! It

a matter of a single click of your mouse in an operation calRmjact Build The
sequence of events is actually pretty long and complex, but it is mainly composed of
two steps:

1. Compiling The MPLAB C32 compiler is invoked and an object code file (.0)
is generated. This file is not yet a complete executable. Though most of the
code generation is complete, all the addresses of functions and variables are
still undefined. In fact this is also callededocatable code objectf there
are multiple source files, this step is repeated for each one of them.

2. Linking. The linker is invoked and a proper position in the memory space is
found for each function and each variable. Also, any number of precompiler
object code files and standard library functions may be added at this time, as
required. Among the several output files produced by the linker is the actual
binary executable file (.hex).

All this is performed in a very rapid sequence as soon as you ask MPUABdo

your project. Each group of files, as presented in the project window (refer back to
Figure 1.1), will be used during the project build to assist in the compiling or linking
phase:

» Every source code (.c) file in tBeurce Filedist will be compiled to produce
relocatable object files.

« Each additional object file in tla@bject Fileslist will then be linked together with
the previous object files.

» Thelibrary Files list will also be used during the linking process to search for
and extract library modules that contain functions, if any have been used in the
project.

» Finally, theLinker Scriptsection might contain an additional file that can be used
to provide additional instructions to the linker to change the order and priority of
each data and code section as they are assembled in the final binary executable
file. The MPLAB C32 tool suite offersdefault linker scriptmechanism that
is sufficient for most general applications and certainly for all the applications
we will review in this book. As a consequence, for the rest of this book we will
safely leave this section of the project window empty, accepting the default settin
provided.

10

Day 1

The last two sections of the project window are treated differently:

TheHeader Filessection is designed to contain the names of the include files (.h)
used. However, they don’t get processed directly by the compiler. They are listed
here only to document the project dependencies and for your convenience; if yol
double-click them they will open immediately in the editor window.

TheOther Filessection is designed to contain the names of any additional file, no
included in any of the previous categories but used in the project. Once more this
section serves a documentation purpose more than anything else.

The Linker Script

Just like the p32xxxx.h include file tells the compiler about the names (and sizes) of
device-specific SFRs, the (default) linker script informs the linker about the SFRs
predefined position in memory (according to the selected device datasheet). It also
provides other essential services such as:

Listing the total amount of FLASH memory available

Listing the total amount of RAM memory available

Listing their respective address ranges

Listing the position of critical entry points such as the reset and exception vector
Listing the position of the interrupt vectors and the vectors table

Listing the position of the device configuration words

Including additional processor-specific object files

Determining the position and size of the software stack and the heap (via
parameters passed from MPLAB project files, as we will see in the next chapters

Now, if you are curious like me, you might want to take a look inside. The linker script
file, it turns out, is a simple text file, although with the .Id extension. It can be opened
and inspected using the MPLAB editor. Assuming you accepted the default values whet
you installed MPLAB on your hard drive, you will find the default linker script for

the PIC32MX360F512L microcontroller by opening the procdefs.ld file found in the
following directory:

C:\Program Files\Microchip\PIC32-Tools\pic32-libs\proc\
32MX360F512L

The Adventure Begins 11

Wow, | know, my head is spinning, too! It took me half an hour to find my way through
the labyrinth of subdirectories created during the MPLAB installation. But the reality is
that the linker will find it and use it automatically, and you will hardly ever have to see or
worry about it again. Here is a segment of the script where the address of the reset vec
the general exception vector, and a few other critical entry points are defined:

/**

* Memory Address Equates
kkkkkkkkkkhkkkkkhkkkkhkkkhkhkkhkkhkkhhkkhkhkkhkkkhhkkhkkkhkkhkkhkkhkkhkkkhkkkkkkk
_RESET_ADDR = 0xBFC00000;
_BEV_EXCPT_ADDR = 0xBFC00380;
_DBG_EXCPT_ADDR = 0xBFC00480;
_DBG_CODE_ADDR = 0xBFC02000;
_GEN_EXCPT_ADDR- _ebase_address + 0 x180;

Note

Don't try to open the procdefs.ld from Windows Explorer or using the default Windows
Notepad application; it won’t look pretty. This file was generated in a Unix environment and
does not contain the standard end-of-line sequence used by Windows programs. Instead use
MPLAB Editor as | suggested.

Building the First Project
£ (Build

Select the optioBuild All from theProject menu or click the correspondi E=
All) button in the project toolbar. MPLAB will open a new window; the content of yours
should be very similar to what | obtained, shown in Figure 1.2.

output £

Build |\c"eminn Control | Findin Files |
&

Clean: Done.
Executing: "CAProgram Files\Microchip\PIC32-Tools\bin\pic32-gcc.exe" -mprocessor=32MX360F512L -c x ¢ "Hello.c

Executing: "C\Program Files\Microchip\PIC32-Tools\bin\pic32-gco.exe" -mprocessor=32MX360F512L "Hello.o" -o"H
Executing: "CAProgram Files\Microchip\PIC32-Tools\bin\pic32-hinZhex exe" "Clwork\C32\1 Hello\Hello World.elf"
Loaded ClworkiC3241 Hello\Hello ‘Warld. elf.

BUILD SUCCEEDED

=

4] | _’|~

Figure 1.2: The content of the Output Window Build tab after a successful build.

12 Day1

Should you prefer a command-line interface, you will be pleased to learn that there are
alternative methods to invoke the compiler and the linker and achieve the same results
without using the MPAB IDE, although you will have to refer to the MPLAB C32
compiler user guide for instructions. In this book, we will stick with the MPLAB IDE
interface and will use the appropriate checklists to make it even easier.

Using the Simulator

SelectDebugger | Select Tool | MPLAB SIM to choose and activate the software simulator
as the main debugging tool for this project. | recommend that you get in the habit of using
theMPLAB SIM debugger setup checklist to configure a number of parameters that will
improve your simulation experiences, although we won’t need it during this first simulation.
Let’s perform instead another and all-important general configuration step of MPLAB itself.

Select theConfigure | Settings item from the MPLAB menu and, inside the large and
complex dialog box that will pop up, select thebugger tab.

As illustrated in Figure 1.3, | recommend that you check three of the options available t
instruct MPLAB to automatically perform a few useful tasks:

» Save all the files you changed in the Editor window before running the code.

Settings 21|

Workspace Debugger | Program Loading | Hot Keys | Other | Projects |

v Butomatically save files before unning

I Browse for source if file is not found
[Show disassembly if source is unavailable
[V Remove breakpoints upon importing a file

[V Reset device to the beginning of main function
CAUTION: If using the MPLAB ICD 2, make sure that the option to
automatically program the device after a successful build is enabled and the
option to automatically run is disabled in the Program tab of the MPLAB
ICD 2 Settings dialog.

| (5] 4 I Cancel | Apply | Help |

Figure 1.3: MPLAB Settings dialog box Debugger tab.

The Adventure Begins 13

+ Remove existing breakpoints before importing a new executable.

+ After any device reset, position the debugger cursor at the beginning of the main
function.

The last task, in particular, might seem redundant, but it is not. If you remember, as was
briefly mentioned at the beginning of this chapter, there is a small segment o€itdde (

or Startup code) that the linker places automatically for us between the actual reset vec
and our code. If we do not instruct MPLAB otherwise, the simulator will attempt to step
through it, and since there is no C source code to show for it, it would have to happen ir
thedisassemblyindow. Not that there would be anything wrong with that; actually, |
invite you to try that sometime to inspect this mysterious (but so useful) segment of cod
The fact is that we are just not ready for it yet and, after all, our focus in this exploration
is 100 percent on the C language programming of the PIC32 rather than the underlying
MIPS assembly.

If all is well, before trying to execute the code let’s also open a Watch window and add
the PORTAspecial-function register to it:

1. SelecView | Watch from the main menu to access the Watch window (see
Figure 1.4).

2. Type or sele®ORTA in the SFR selection list (top left).
3. Click theAdd SFR button.

4. Press the simulator reset bu1@J (Reset) in the Debug toolbar or select
Debugger | Reset.

watch £
AddSFﬁ” v[Adde.lmboil f

Sywbol Newe | Value | Decimal |

| watch1 watch2| Watch3| watchd|

Figure 1.4: MPLAB IDE Watch window.

14 Day1

5. Observe the contents of B@RTAregister; it should be cleared (all zeroes) at reset.

Also notice that a large green arrow has appeared right next to the first opening
curly bracket of the main function. It points at the part of our code that is going
to be executed next.

. il
7. Now, since we need to learn to walk before we “run,” let’s usih(eStep

o .
Over) or theﬂy (Step In) buttons in the Debugger toolbox, orRebugger |
Step In andDebugger | Step Over commands from the main menu, to execute
the one and only statement in our first program.

8. Observe how the contentRIDRTAchanges in the watch window. Or, | should
say, notice how nothing happens. Surprise!

Finding a Direction

It is time to hit the books, specifically the PIC32MX datasheet (Chapter 13 focuses on
the I/O ports detail). PortA is a pretty complex, 12-pin-wide port. Each one of the pins is
controlled by a small block of logic, represented in Figure 1.5.

Dedicated port module

Sleep
PBclock

| RD ODCFG — 1, !
|
| < !
|
| DATA Bus D Q :
: PBclock CK 3 ODCFG |
EN |
\WR ODCFG I |
| RDTRIS 1 I _VOoCel _,
! ~ M\ 0 - |
| 1 |
| 5 o —_J : :
! CK _| TRIS | I
! EN Q | [
| WRTRIS I | |
|
! D Q — Ny
! CK _| LAT - 1/0 pini
I ENQ [|
| WR LAT i) |
| i
| WR PORT A |
| RDLAT ™~ |
|
' |
|
|
|
|
|
|
|
|

Figure 1.5: Block diagram of a typical PIC32 /O port structure.

The Adventure Begins 15

Although completely understanding the diagram in Figure 1.5 is beyond the scope of ot
explorations today, we can start by making a few simple observations. There are only
three signals that eventually reach the 1/O cell. They are the data output, the data input,
and the tristate control signals. The latter is essential to decide whether the pin is to be
used as an input or an output, which is often referred to asréogéion of the pin.

From the datasheet, again, we can determine the default direction for each pin—that is,
fact, configured as an input after each reset or power up event. This is a safety feature :
a standard for all PIC microcontrollers. The PIC32 makes no exception.

The TRISAspecial-function register allows us to change the direction of each individual
pin on PortA. The rule is simple to remember:

» Clear a bit t@® for anOutput pin.
» Set a bit td for anlnput pin.

So, we need to add at least one more assignment to our program if we want to change
direction of all the pins of PortA to output and see their status change. Here is how our
simple project looks after the addition:

#include <p32xxxx.h >

main()

{

/I configure all PORTA pins as output
TRISA =0;
PORTA = 0xff;

We can now retest the code by repeating the following few steps:

1. Rebuild the project (seldatoject | Build All, useCtrl + F10, or click theBuild
All button in the project toolbox).
2. Execute a couple of single-steps and . . . you have it (see Figure 1.6)!

If all went well, you should see the contenP@RTAchange t@xFF, highlighted in the
Watch window in red. Hello Embedded World!

16 Day1

watch E|

Add SFR| [0 ~] Add Symbol| [_extun_mx ¥]
iddress | Symbol Neme | Value

BFB0_B010 PORTA

| Watch 1 Watch2| Wetch 3| Waich4]

Figure 1.6: The Watch window after PortA content has changed!

The JTAG Port

Ouir first choice of PortA was dictated partially by the alphabetical order and partially by
the fact that on the Explorerl6 demonstration boards, PortAphtthroughRA7, are
conveniently connected to 8 LEDs. So, if you try and execute this example code on the
actual demo board using an in-circuit debugger, you will have the satisfaction of seeing
all the LEDs turn on, nice and bright . . . or perhaps not?

There is one more important detail affecting the operation of a few PortA pins that you
need to be aware of. Where previous generations of PIC microcontrollers used a two-wi
protocol to connect to an in-circuit programmer and/or debugger, known I&&SRe

ICD interface the PIC32 offers an additional interface, widely adopted among 32-bit
architectures, known as td&AG interface

Note

The PIC24 experts will not fail to point out that several 16-bit large pin-count devices were
already offering JTAG to suppoltoundary scarfeatures. With the PIC32 architecture, the
JTAG functionality is extended to include all programming and debugging features.

In fact, for all debugging and programming purposes, the JTAG and the ICSP/ICD
interface are now equivalent and the choice between the two will be dictated more by
personal preference, the availability and cost of (Microchip own and third-party) tools,
and/or the number of pins required. In this last respect, the ICSP/ICD interface has a
small advantage over the JTAG interface since it requires only half the microcontroller
I/0s. On the other side, if the boundary scan functionality is required, the JTAG interface
is the one and only option.

As a consequence of the decision to offer both interfaces, the designers of the PIC32
had to make sure that both debugging options were available by default upon reset or

The Adventure Begins 17

power-up of the device. The JTAG port pins are multiplexed with PortARAOsRA1L,
RA4, andRA5, over which they take priority.

The PIC32 Starter Kit is an example of a programming and debugging tool that uses the
JTAG port. The MPLAB REAL ICE and the MPLAB ICD2 instead use the traditional
ICSP/ICD port.

If you intend to test the code developed so far on the Explorer 16 board using the
MPLAB REAL ICE or the MPLAB ICD2 in circuit debuggers, you will have to
remember to disable the JTAG port to gain access to all the pins of PortA and therefore
all the LEDs. Here is all it takes:

/I disable the JTAG port
DDPCONDbits.JTAGEN = 0;

After all, only one more assignment statement needs to be added at the top of the main
function. Instead of assigning a new value to the ebtiieCONegister (in charge of

the configuration of the Debug Data Ports), we used the special C language notation to
access individual bits (or groups of bits) within a word. We will expand on these subject:
in the next few chapters.

If you intend to test the code on the Explorer 16 board using the PIC32 Starter Kit and
a 100-pin PIM adapter, you musit disable the JTAG port. You will still have control

on the remaining pins of Port®RA2, RA3, RA6, andRA7. Don’t be envious; you have

three more LEDs that you can control on the Starter Kit board itself, connected to PortD
instead'RDO, RD1, andRD2 In fact, even if you don’t have an Explorer 16 board but just

a PIC32 Starter Kit, you could change the code in the previous examples, replacing all
references to PortA registers with the PortD equival@®seD andPORTD Perhaps it

will be less spectacular but equally instructive!

Testing PORTB

To complete our day of exploration, we will now investigate the use of one more 1/O
port, PortB. It is simple to edit the program and replace the two PortA control registers
assignments witliRISB andPORTB

Rebuild the project and follow the same steps we did in the previous exercise and
you’'ll get a new surprise: The same code that worked for PortArndo@sork for
PortB!

18 Day1

Don’t panic—I did it on purpose. | wanted you to experience a little PIC32 migration
pain. It will help you learn and grow stronger.

It is time to go back to the datasheet and study in more detail the PIC32 pin-out
diagrams. There are two fundamental differences between the 8-bit PIC microcontroller
architectures and the new 16- and 32-bit architectures:

+ Most PortB pins are multiplexed with the analog inputs of the Analog-to-Digital
Converter (ADC) peripheral. The 8-bit architecture reserved PortA pins primarily
for this purpose; the roles of the two ports have been swapped!

« If a peripheral module input/output signal is multiplexed on an I/O pin, as soon
as the module is enabled, it takes complete control of the 1/O pin—independently
of the direction TRISx) control register content. In the 8-bit architectures it was
up to the user to assign the correct direction to each pin, even when a peripheral
module required its use.

By default, pins multiplexed with “analog” inputs are disconnected from“thigital”

input ports. This explains what was happening during our last attempt. All PortB pins
of the PIC32 are, by default at power-up, assigned an analog input function; therefore,
reading the?ORTBregister returns all 0 s. Notice, though, that the output latch of PortB
has been correctly set, although we cannot see it througfOREBregister. To verify it,
check the contents of th&TB register instead.

To reconnect the PortB input pins to the digital inputs, we have to act on the ADC modu
configuration. From the datasheet, we learn that the AHRRCFCcontrols the analog/
digital assignment of each pin (see Figure 1.7).

Assigning al to each bit in thaD1PCGFSFR will accomplish the task and convert the
pin into a digital input. Our new and complete program example is now:

#include <p32xxxx.h >

main()

{
/I configure all PORTB pins as output
TRISB=0, /l all PORTB as output
AD1PCFG=0xffff; // all PORTB as digital
PORTB=0xff;

The Adventure Begins 19

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
bit 31 bit 24
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
bit 23 bit 16
RIW-0 RIW-0 RIW-0 RW-0 _ RIW-0 RIW-0 RW-0 _ R/W-0
PCFG15 | PCFG14 | PCFG13 | PCFG12 | PCFG11 | PCFG10 | PCFG9 | PCFG8
bit 15 bit 8
RIW-0 RIW-0 RIW-0 RW-0 RIW-0 RIW-0 RMW-0 _ R/W-0
PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFGO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

bit 31-16 Reserved: Reserved for future use, maintain as ‘0’
bit 15-0 PCFG<15:0>: Anlog Input Pin Configuration Control bits

1 = Anlog input pin in Digital mode, port read input enabled, ADC input multiplexer input for this
analog input connected to AVss

0 = Anlog input pin in Analog mode, digital port read will return as a ‘1’ without regard to the voltage
on the pin, ADC samples pin voltage

Note: The AD1PCFG register functionality will vary depending on the number of ADC inputs available on the
seleced device. Please refer to the specific device data sheet for additional details on this register.

Figure 1.7: AD1PCFG: ADC port configuration register.

This time, compiling and single-stepping through it will give us the desired results (see
Figure 1.8).

Mission Debriefing

After each expedition, there should be a brief review. Sitting on a comfortable chair in
front of a cool glass of . . . water, it's time to reflect on what we have learned from this
first experience.

Writing a C program for a PIC32 microcontroller can be very simple, or at least no more
complicated than an assembly or 8-bit equivalent project. Two or three instructions,

depending on which port we plan to use, can give us direct control over the most basic t
available to the microcontroller for communication with the rest of the world: the I/O pins.

20 Dayt

. Helio World - MPLAB IDE - [MPLAE 1D€ Editor] = =B
I B Bt Vew Frojct Debugor Programmer Took Corfigure Window Help =18] x|
D ima | an®?| oo SocEB80 | S8a | v uen i E|
[Hello World.mew_ E | ey
= L1 tello Worldmep | 2 3]
B _’ M9Fh‘i E Hello Embedded World
E) tedozc
1 Meader Fies _
57 Objoct Fles | #include <pl3Zxxxx.h
43 Uy Flos. Emain)
1= Linkar Seript 1
) other Fies J/ configure all PORT
| TRISE 3
ADIPCFG = Dxffff:
| PORTE Oxfi:
=il
|
) s % 5wt | lel L,—J
[Watch = [output £2]
add ser| [ab =] A Symbol| [Cedurme =] Buld | Vession Control | Find in Fles | WPLAB SM |
hddress Svymbol Name Yalue || [Make: The larget "CiworkiCI21 Hello\Hello3.o" is out of dete -
EFB0 8050 PORTE Dx000D00FF | |Eeecuting: "C \.P‘rD_gmm FITESW}EfDﬂND\Hm?'TUOH\,b.In-\pIC]Z'gCC exe” -mprocessorJZMLIB0F512L -c =« o "Hel
BFED_8040 TRISE oxooonoooo | [Meke: The target "CiworkiCI241 Hello\Hello World el is out of date.
BFE0_BOGD LATE Dx000000FF | [E : "CAProgram Files\Microchip\FIC32-Tools\bin\pic32-goc exe” -mprocessor=32M3E0F5T 2L "Hello3 o”
- Executing: "CAProgram Files\Microchip\PIC32-Tools\binlpic32-binZhe exe” *CiwarkiCI2\1 HelloiHello World elt
Loaded ClworkdCI HelloHello YWordd alf
BUILD SUCCEEDED. =
[[Warch 1 Watch 2] Walch 3] Waich 4] =] s
praEEH | PICRMDEORSIZL fpcilixPdooo0zc | [| &tz | i calt s e

Figure 1.8: Hello Embedded World using PortB.

Also, there is nothing the MPLAB C32 compiler can do to read our minds. Just as in
assembly, we are responsible for setting the correct direction of the I/O pins. We are stil
required to study the datasheet and learn about the small differences between the 8-bit
and 16-bit PIC microcontrollers we might be familiar with and the new 32-bit breed.

As high level as the C programming language is thought to be, writing code for
embedded-control devices still requires us to be intimately familiar with the finest details
of the hardware we use.

Notes for the Assembly Experts

If you have difficulties blindly accepting the validity of the code generated by the
MPLAB C32 compiler, you might find comfort in knowing that, at any given point in
time, you can decide to switch to thesassembly Listingiew (see Figure 1)9You can
quickly inspect the code generated by the compiler, since each C source line is shown i
comment that precedes the segment of code it generated.

The Adventure Begins 21

_______________ 3 =101
2 C:AWOZKA\CIZN L HELLOVHRLLOB, © = mmm o mmm o o m mm m o e
1 =
2: ** Hello Embedded World
3: *

5 ginclude <p3Zxxxx.h>

&

T: main()

§: {

SDO00000 27BDFFFE addiu sp,sp.-8

SD000004 AFEBEOOOOD sw s8,0isp)

0000008 O3ADFOZ1 addu s8,5p,zero

9: ff configure all FORTB pins as output

10: TRISE = o: // all PORTE as cutput

SD00000C 3COZBFEL lui vD, Oxbi81

SD0000L0 AC408040 sw zero,-32704 (v0)

11: ADLPCFG = Oxzffff: /f all PORTE as digital

9p000014 3COZBFEL lui vl, Oxbi81

Sp000018 340ZFFFF ori vD,zero, OxfE£L

SDO000LE ACE29080 su vl, -28576 (vl)

12: PORTE = Oxtt:

90000020 3CO3BFELl lui vl,0xbEB1

90000024 Z40Z00FF addiu vD,zero 255

9D0000Z8 ACEZBOSO sw vD,-32688 (vl)

13: } T
<] | 1%

Figure 1.9: Disassembly Listing window.

You can even single-step through the code and do all the debugging from this view,
although | strongly encourage yaatto do so or limit the exercise to a few exploratory
sessions as we progress through the first chapters of this book. Satisfy your curiosity, b
gradually learn to trust the compiler. Eventually, use of the C language will give a boost
to your productivity and increase the readability and maintainability of your code.

As a final exercise, | would encourage you to operMbmory Usage Gaugeindow by
selectingView | Memory Usage Gauge (seeFigure 1.10).

|
493 1544
Program Memory Data Memory
Total: 134140 Total: 32768

Figure 1.10: MPLAB IDE Memory Usage Gauge window.

22 Dayt

Don’t be alarmed, even though we wrote only three lines of code in our first example an
the amount of program memory used appears to be already up to 490 or more words. T
is not an indication of any inherent inefficiency of the C language. There is a minimum
block of code that is always generated (for our convenience) by the MPLAB C32
compiler. This is the Startup codatQ) that we mentioned briefly before. We will return

to it, in more detail, in the following chapters as we will discuss variable initialization,
memory allocation, and interrupts.

Notes for the PIC MCU Experts

Those of you who are familiar with the PIC16, PIC18, and even the PIC24 architecture
will find it interesting thatll PIC32 SFRs are now 32-bit wide. But in particular, if you

are familiar with the PIC24 and dsPIC architecture, it might come to you as a surprise tha
the ports dichot scale up! Even PORTAaNdTRISA are now 32-bit wide registers, the

PortA module still groups fewer than 16 pins, just like in the PIC24. You will realize in the
following chapters how this has several positive implications for easy code migration up
from the 16-bit architectures while granting optimal performance to the 32-bit core.

Whether you are coming from the 8-bit or the 16-bit PIC/dsPIC world, with the PIC32
peripheral set you will feel at home in no time!

Notes for the C Experts

Certainly we could have used ftvintf() function from the standard C libraries.

In fact they are readily available with the MPLAB C32 compiler. But we are targeting
embedded-control applications and we are not writing code for multigigabyte
workstations. Get used to manipulating low-level hardware peripherals inside the PIC32
microcontrollers. A single call to a library function, ligentf() , could have added
several kilobytes of code to your executable. Don’t assume a serial port and a terminal
or a text display will always be available to you. Instead develop a sensibility for the
“weight” of each function and library you use in light of the limited resources available ir
the embedded design world.

Tips & Tricks

The PIC32MX family of microcontrollers is based on ¥ MOS process with a 2.0 V
to 3.6 V operating range. As a consequence, a 3.3 V power supply (Vdd) is used on mc

The Adventure Begins 23

applications and demonstration boards; this limits the output voltage of each I/O pin
when producing a logic high output. Interfacing t¥ fegacy devices and applications,
though, is really simple:

- Todrive a5 V output, use thBCxcontrol registersgDCAfor PortA,ODCBfor
PortB, and so on) to set individual output pins in open-drain mode and connect
external pull-up resistors to a\bpower supply.

» Digital input pins instead are already capable of tolerating up to 5 V. They can be
connected directly to ¥ input signals.

Woatch out

Be careful with 1/0O pins that are multiplexed with analog inputs (most PortB pins, for example);
they cannot tolerate voltages above 3.6 V!

Exercises
If you have the Explorer 16 board and an in-circuit debugger:

+ Use the MPLAB REAL ICE Debugging or the MPLAB ICD2 Debugging
checklists to help you prepare the project for debugging.

+ Insert the instructions required to disable the JTAG port.

« Test the PortA example, connecting the Explorer 16 board and checking the vist
output on LEDO-7.

If you have the PIC32 Starter Kit:

» Use the PIC32 Starter Kit Debugging checklist to help you prepare the project fo
debugging.

+ Modify the code to operate on PortD, bunadbdisable the JTAG port.

« Test the code by checking the visual output on LEDO-2 on the PIC32 Starter Kit
itself.

In both cases you can:

» Test the PortB example by connecting a voltmeter (or DMM) t&pinif you
can identify it on your board, and watching the needle move between 0 awd 3.3
as you single-step through the code.

24 Dayt

Books

Kernighan, B., and Ritchie, DThe C Programming LanguagPrentice-Hall,
Englewood Cliffs, NJ). When you read or hear programmers talk about the “K&R,"
also known as “the white book,” they mdéais book. The C language has evolved
quite a bit since the first edition was published in 1978. The second edition (1988)
includes the more recent ANSI C standard definitions of the language, which are
closer to the standard the MPLAB C32 compiler adheres to (ISO/IEC 9899:1990 als
known as C90).

Links

http://en.wikibooks.org/wiki/C_Programminghis is a Wiki-book on C programming
and as such it is a bit of a work in progress. It's convenient if you don’t mind doing
all your reading online. Hint: Look for the chapter called “A Taste of C” to find
the omnipresent “Hello World!” example.

Walking in Circles

The Plan

It is funny how many stories of expeditions gone wrong culminate with a revealing
moment where the explorers realize they got desperately lost and have been walking in
circles for a while. In embedded-control programming it's the opposite: Our programs
need a framework, a structure so that the flow of code can be managed, and this usuall
built around onenain loop

Today we will review the basics of the loops syntax in C, and we’ll also take the
opportunity to introduce a first peripheral module: the 16-bit Timerl. Two new MPLAB
SIM features will be used for the first time: #hrimatemode and theogic Analyzewview.

Preparation

For this second lesson, we will need the same basic software components we installed
(from the attached CD-ROM and/or the latest versions available for download from
Microchip’s Web site) and used before, including:

« MPLAB IDE (Integrated Development Environment)
« MPLAB SIM (software simulator)
« MPLAB C32 compiler (free Student Edition)

We will also reuse the New Project Setup checklist to create a new project with the
MPLAB IDE.

26

Day 2

Select thdProject Wizard from theProject menu and proceed through the few steps that

follow:

1.

7.

8.
9.

10.

The first dialog box will ask you to choose a specific device model. Select the
PIC32M X360F512L device and clickext.

In the second dialog box, selectPh€32 C-Compiler Tool Suite and click
Next. Make sure to select the C compiler suite, not the assembly suite!

In the third dialog box, you are asked to assign a name to the new project file.
Instead, click th&rowse button and create a new folder. Name the new folder
Loops, and inside it create the project fileops, then clickNext.

In the fourth dialog box, simply clitdext to proceed to the following dialog
box, since there is no need to copy any source files from any previous projects
or directories.

ClickFinish to complete the project wizard.
Open a new editor window by selecttiig | New, typing theCtrl + N keyboard

shortcut, or clicking the correspondi |-3 (New File) button in MPLAB
standard toolbar.

Type the following three comment lines:
/*
** | oops
*
SelecFile | Save As to save the file as Loops.c.

Now right-click with your mouse on the editor window to bring up the editor’s
context menu and select tAeld To Project item. This will tell MPLAB that
the newly created file is an integral part of the project.

SeledProject | Save Project to save the project.

Soon, after you repeat these same steps a few more times, they will become automatic

to you,

but you will always have the option to refer toGneate New File andAdd to

Project checklists conveniently included in this book.

Walking in Circles 27

The Exploration

One of the key questions that might have come to mind after you worked through the
previous lesson is, “What happens when all the code imdmg€) function has been
executed?” Well, nothing really happens, literally!

When themain() function terminates and returns back to the startup code), a

new function exit() is called and the PIC32 remains stuck there in a tight loop from
which it can escape only if a processor reset is performed. Notice that this is something
that depends on the MPLAB C32 tool suite and that is not a C language proper feature.
C compilers normally are designed to return control to an operating system when the
main() function returns, but as you understand, there is no operating system to return t
in our case.

Note

The _exit() function, just like the startup code, is not visible in the editor window (not our
code) and is not visible even from the disassembly window (not a library). The only way you
can find out about it is if you open tiMeemory window and you select th@ode View pane.

The good news is that we can easily define a replacement foexh@ function

if we have a better idea of what to do with it. We could, for example, mimic what the
MPLAB C30 tool suite used to do for PIC24 and dsPIC applications—that is, inser
a reset instruction in there and have the entire application repeat over and over age
But what we truly want in embedded control is an application that runs continuously
from the moment the power switch has been flipped on until the moment it is turned of
So, letting the program run through entirely, reset, and execute again might seem like
convenient way to arrange the application so that it keeps repeating as long as there
“juice.”

The reset option might work in a few limited cases, but what you will soon discover is
that running in this “loop,” you develop a “limp.” Upon reaching the end of the program,
executing the reset instruction takes the microcontroller back to the reset vector to
again execute the startup code. As short as the startup can be, it will make the loop ver
unbalanced. Going through all the SFR and global variable initializations each time is
probably not necessary and it will certainly slow down the application. A better option,
instead, is to code a proper applicatioain loopourselves. To begin, let's review the

most basic control flow mechanisms available in C language.

28 Day2

While Loops
In C there are at least three ways to code a loop. Here is the finstiilthe loop:

while (x)

{

/[your code here

}

Anything you put in between those two curly braclgetsvill be repeated for as long as the
logic expressiolin parenthesi&) returns a true value. But what is a logic expression in C?

First of all, in C there is no distinction between logic expressionsidthehetic
expressionsin C, the Boolean logitue andfalsevalues are represented just as integer
numbers with a simple rule:

» falseis represented by the integer
+ trueis represented nyinteger excep
So1l is “true,” but so arg&3 and-278 !
To evaluate logic expressions, a number of logic operators are defined, such as:

Il the “logic OR” operator
&& the “logic AND” operator
! the “logic NOT” operator

These operators consider their operands as logical (Boolean) values using the rule
mentioned previously, and they return a logical value. Here are some trivial examples
(assume thaa =17 andb=1 , orin other words they are both true):

(al| b) is true
(a & b) is true
('a) is false

There are, then, a number of operators that compare numbers (integers of any kind, an
floating-point values too) and return logic values. They are:

== the “equal-to” operator, notice it is composed of two equal signs to distinguish it
from the “assignment” operator we used before.
1= the “NOT-equal to” operator

Walking in Circles 29

> the “greater-than” operator
>= the “greater-or-equal to” operator
< the “less-than” operator

< the “less-or-equal to” operator

Here are some examples (assunainglo):

(a>1) is true
(-a>=0) is false
(a==17) is false
(al=3) is true

Back to thewvhile loop: We said that as long as the expression in parentheses produces
a true logic value (that is, any integer value@ythe program execution will continue
around the loop. When the expression produces a false logic value, the loop will termina
and the execution will continue from the first instruction after the closing curly bracket.

Notice that the evaluation of the expression is done first, before the curly bracket conter
is executed (if it ever is), and is then reevaluated each time.

Here are a few curious loop examples to consider:

while (0)
{

/[your code here

}

A constant false condition means that the loop will never be executed. This is not very
useful. In fact | believe we have a good candidate foftvioeld’s most useless code”
contest!

Here is another example:

while (1)
{

/[your code here

}

A constant true condition means that the loop will execute forever. This is useful and
is in fact what we will use for our main program loops from now on. For the sake of

30 Day 2

readability, a few purists among you will consider using a more elegant approach,
defining a couple of constants:

#define FALSE 0
#define TRUE IFALSE

And using them consistently in their code, as in:

While (TRUE)
{

/[your code here

}

Itis time to add a few new lines of code to the loops.c source file and putiildae loop
to good use:

#include < p32xxxx.h>
main()
{
[initialization
DDPCONDbits.JTAGEN = 0; /I disable the JTAG port

TRISA = 0xff00; // PORTA pin 0..7 as output
/I application main loop
while(1)
{
PORTA = Oxff; /[turn pin 0-7 on
PORTA =0; /[turn all pin off
}

The structure of this example program is essentially the structure of every embedded
control program written in C. There will always be two main parts:

« Theinitialization, which includes both the device peripherals initialization and
variables initialization, executed only once at the beginning

+ Themain loop which contains all the control functions that define the application
behavior and is executed continuously

Walking in Circles 31

An Animated Simulation

Use the Project Build checklist to compile and link the loops.c program. Also use the
MPLAB SIM Simulator Setup checklist to prepare the software simulator.

To test the code in this example with the simulator, | recommend you uAeithate

mode Debugger | Animate). In this mode, the simulator executes one C program line at
a time, pausing shortly after each one to give us time to observe the immediate results.
you add the°ORTAspecial-function register to the Watch window, you should be able to

see its value alternating rhythmically betw@efi and0x00 .

The speed of execution in Animate mode can be controlled wiheeg | Settings

dialog box, selecting th&nimation/Real Time Updates tab, and modifying the
Animation Step Time parameter, which by default is set to 508. As you can imagine,
the Animate mode can be a valuable and entertaining debugging tool, but it gives you
quite a distorted idea of what the actual program execution timing will be. In practice,
if our example code was to be executed on a real hardware target, say an Explorerl6
demonstration board (where the PIC32 is running at, saviH®), the LEDs, connected
to the PortA output pins, would blink too fast for our eyes to notice. In fact, each LED
would be turned on and off several million times each second.

To slow things down to a point where the LEDs would blink nicely just a couple of times
per second, | propose we use a timer so that in the process we learn to use one of the
key peripherals integrated in all Fl@nicrocontrollers. For this example we will choose
Timerl, the first of five modules available inside the PIC32MX360FJ512L models (see
Figure 2.1). This is one of the most flexible and simple peripheral modules. All we need
is to take a quick look at the PIC32 datasheet, check the block diagram and the details
the Timerl control registers, and find the ideal initialization values.

We quickly learn that there are three SFRs that control most Timer1 functions. They are

« TMR1 which contains the 16-bit counter value
+ T1CON which controls the activation and the operating mode of the timer

* PR1, which can be used to produce a periodic reset of the timer (not required her

We can clear thEMR1register to start counting from zero:

TMR1 = 0;

32 Day 2

PR1
Equal ‘ [|
16-bit Comparator TSYNC (TICON<2>) :
& o
TMR1 :
Reset .
of——o
T11F 0 A_l e
Event Flag 1 Di-® < TGATE (TLCON<6>)

P~ TCS (TICON<1>)

TGATE (TLCON<6>)
ON (TICON<15>)

| SOSCO /T1CK : . o
SOSCEN [Gate Prescaler | |
: sync 10 1,8, 64, 256
soscl ;
: PBCLK 0g ,

TCKPS<1:0>
(T1ICON<5:4>)

Figure 2.1: 16-bit Timer1 module block diagram.

Then we can initializ& 1CONso that the timer will operate in a simple configuration,
where:

e Timerl is activated’ON = 1
« The main MCU clock serves as the source (Fpb$:= 0
» The prescaler is set to the maximum value (1:28PS =11

« The input gating and synchronization functions are not required, since we use th
MCU internal clock directly as the timer clockGATE =0 , TSYNC =0

* We do not worry about the behavior in IDLE masi®L =0 (default)

Virtual Bit Bit Bit Bit Bit Bit Bit Bit

Address Name 31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 28/18/10/2 | 25/17/9/1 | 24/16/8/0
BF80_0600| TICON | 3124 = = = = = = = =
23:16 = = = = = = = =
15:8 ON FRZ SIDL__ | TMWDIS | TMwIP — — —
70 | TGATE — TCKPS<1:0> — TSYNC TCS —

Figure 2.2: TLCON: Timer1 control register.

Walking in Circles 33

Once we assemble all the bits in a single 32-bit value, to assige@\N we get:
T1CON = 1000 0000 0011 0000
or, in a more compact hexadecimal notation:

T1CON = 0x8030;

Once we are done initializing the timer, we enter a loop where we just waMRirto
reach the desired value set by the con€d&hiAY.

while(TMR1 < DELAY)
{

/I wait

}

Assuming a 36 MHz peripheral bus clock frequency will be used, we need to assign
quite a large value tbELAYto obtain a delay of about a quarter of a second. In fact, the
following formula dictates the total delay time produced by the loop:

Tdelay = (Fpb) *256 * DELAY

With Tdelay = 256 ms and resolving fDELAY, we obtain the valugs000 :
#define DELAY 36000

By putting two such delay loops in front of ed®DRTAassignment inside the main loop,
we get our latest and best code example:

/*
** Loops
*
#include <p32xxxx.h>

#define DELAY 36000 /1 256 ms

main()
{
/I 0. initialization
DDPCONDbits.JTAGEN = 0; /I disable JTAGport, free up PORTA
TRISA = 0xff00; /I all PORTA as output
T1CON = 0x8030; /I TMRL1 on, prescale 1:256 PB=36 MHz
PR1 = OxFFFF; /I set period register to max

34 Day 2

/I 1. main loop

while(1)

{
//1.1 turn all LED ON
PORTA = Oxff;
TMR1 =0;
while (TMR1 < DELAY)
{

/I just wait here

}

// 1.2 turn all LED OFF
PORTA =0;

TMR1 = 0;

while (TMR1 < DELAY)
{

/' just wait here

}

} /I main loop
} /I main

Note

Programming in C, the number of opening and closing curly brackets tends to increase rapidl
as your code grows. After a very short while, even if you stick religiously to the best indentation
rules, it can become difficult to remember which closing curly brackets belong to which

opening curly brackets. By putting little reminders (comments) on the closing brackets, | try to
make the code easier to follow and more readable. Also, by using the Ktdhortcut in the

editor window, you can quickly jump and alternate between matching brackets in your code.

It is time now to build the project and verify that it is working. If you have an Explorer 16
demonstration board available, you could try to run the code right away. The LEDs shou
flash at a comfortably slow pace, with a frequency of about two flashes per second.

Trying to run the same code with the MPLAB SIM simulator, though, you will discover
that things are now way too slow. | dbknow how fast your PC is, but on mine, MPLAB
SIM cannot get anywhere close to the execution speed of a true PIC32 microcontroller.

Walking in Circles 35

If you use the Animate mode, things get even worse. As we saw before, the animation
adds a further delay of about half a second between the execution of each individual lin
of code. So, for pure debugging purposes, on the simulator feel free to chabgeAhe
constant to a much smaller value—36, for example!

Using the Logic Analyzer

To complete this lesson and make things more entertaining, after building the project |
suggest we play with a new simulation tool: the MPLAB SIM Logic Analyzer.

The Logic Analyzer gives you a graphical and extremely effective view of the recorded
values for any number of the device output pins, but it requires a little care in the initial
setup.

Before anything else, you should make sure thattheng function of the simulator is
turned on:

1. Select thBebug | Settings dialog box and then choose ec/Trace tab.

2. Inthe Tracing options section, checkThace All box.

3. Now you can open tienalyzer window from theView | Simulator Logic
Analyzer menu.

=10/]
 Tiigget Postion | - Trigge PC = | Time Base| Mode

| Stat Centest” End("‘“_ Now | Clear ‘W‘W Chamels |

[+ < alal (b »ElsR) |

B S e e PO RN B S T WL TRIN R . RGN [N, P BT R Sl T R A STTER NG AR FR e P WU R

29100000 25200000 23300000 23400000 25500000 23600000

Figure 2.3: MPLAB SIM Logic Analyzer window.

36 Day 2

4. Now click theChannels button, to bring up the channel selection dialog box.

_><J
Available Signals Selected Signal(s)
Al ~| Configure Bus(s) l Ra0 Mave Up ’
gg,lcz :]A Move Down I
RA10
Ra&14 Add =
RA1S

Ra2 ~
RAZy [Removec= |
Rad

RAS

R&B

R&T

RaS

REO

RE1 |
oK | Cancel | Help |

Figure 2.4: Logic Analyzer Channels Configuration dialog box.

5. From here, you can select the device output pins you would like to visualize. In
our case, sele®AO0 and clickAdd =>.

6. ClickOK to close the channel selection dialog box.

For future reference, all the preceding steps are listed in the Logic Analyzer Setup
checklist.

7. Run the simulation by pressing L’ (Run) button on the Debugger toolbar,
selecting thédebugger |Run menu, or pressing thed shortcut key.

8. After a short while, press t@.} (Halt) button on the Debugger toolbar, select
theDebugger |Halt menu, or press theb shortcut key.

The Logic Analyzer window should display a neat square wave plot, as shown in
Figure 2.5.

Walking in Circles 37

' Loops - MPLAB IDE v8.00 - [Logic Analyzer] 18]
"Bl Edt Vew Prowct Debugger Programmer ook Configwre Window Help =181
|DeE|yma (sswe ioehuu FosRBO Sua| cnehH o @l
[Loops.mew_ 1ZX| - Tigger Postion: |+ Trigge: PC = [Tims Base: Mods
T R St CenteC End(| Now | Cleax [j - | |

= () Source Fles
[} toops.c +ia @@ Dy e
(1 Header Files
1 Object Fias
] Library Files
0 Linker Soript
(23 Other Files
RAD

() Files B150000.0 61600000 61700000 £180000.0 1300000 £200000.0 62100000
Watch [[Output =)
AddSFR] [s0 =] AddSymbol| [e ¥] Bub | Vession Contiol| Findin Fies | MPLAB SIM |
Symbol Neme | Value | Make: The target "C\C32\2 LoopsiLoops o is out of date

TicoN OxD0008030 {Executing: "C\Program FilesiMicrochipiMPLAB C32\bin\pic32-gec exe” -mprocessor=32M-360F51 2L -x c ¢ "Loops

THR1 5 Make: The target "CAC32\2 LoopsiLoops.elf” is out of date

PORTA E: ing: "C’\Program Files\Microchip\MPLAB C32\bin\pic32-gec exe” -mprocessor=32MX360F512L "Loops.o”-0"l

TRISA 0x0D00CE00 Executing: "C\Program Files\Microchip\MPLAB C32\bin\pic32-hinZhex exe" "CAC32\2 Loops\Loops &lf*

Loaded CACIA2 Loops\Loops.elf

BUILD SUCCEEDED
[Watch1 Waich2] Waich3 | Waich4| < | i
PLABSIM [PICZMA360FSIZL. pei0x9dD00078 | | T | I T

Figure 2.5: The Logic Analyzer window after running the Loops project.

Debriefing

In this brief excursion, we learned about the way the MPLAB C32 compiler deals with
program termination. For the first time, we gave our little project a bit of structure—
separating thenain() function in an initialization section and an infinite main loop. To
do so, we learned about tiveile loop statements, and we took the opportunity to touch
briefly on the subject of logical expressions evaluation. We closed the day with a final
example, where we used a timer module for the first time and we played with the Logic
Analyzer window to plot th&®AO0 pin output.

We will return to all these elements, so don’t worry if you have more doubts now than
when we started; this is all part of the learning experience.

38 Day 2

Notes for the Assembly Experts

Logic expressions in C can be tricky for the assembly programmer who is used to dealir
with binary operatorsof identical names (AND, OR, NOT . . .). In C there is a set of
binary operators, too, but | purposely avoided showing them in this lesson to avoid mixin
things up. Binary logic operators take pairs of bits from each operand and compute the
result according to the defined table of truth. Logic operators, on the other hand, look at
each operand (independently of the number of bits used) as a single Boolean value.

See the following examples on byte sized operands:

11110101 11110101 (TRUE)
binary OR 00001000 logical OR 00001000 (TRUE)
gives 11111101 gives 00000001 (TRUE)

Notes for the 8-Bit PIC Microcontroller Experts

| am sure you noticed: Timer0 has disappeared! The good news is, you are not going
to miss it. In fact, the remaining five timers of a PIC32 are so loaded with features that
there is no functionality in TimerQ that you are going to feel nostalgic about. All the
SFRs that control the timers have similar names to the ones used on PIC16 and PIC18
microcontrollers and are pretty much identical in structure. Still, keep an eye on the
datasheet; the designers managed to cram in several new features, including:

e All timers are now 16 bits wide.
« Each timer has a 16-bit period registers.

* A new 32-bit mode timer-pairing mechanism is available for Timer2/3 and
Timer4/5.

« A new external clock gating feature has been added on Timerl.

Notes for the 16-Bit PIC Microcontroller Experts

For the PIC24 and dsPIC experts among you there will be no surprises with the PIC32.
The timer modules are designed to be highly compatible with the previous 16-bit
generation architecture. In fact, the same is true for all the peripheral modules of the

Walking in Circles 39

PIC32MX family, with the PIC24 H series being the closest. Still, occasionally here
and there the step up to a 32-bit bus has offered opportunities for improvements that the
designers of the PIC32 could not resist.

The most dramatic difference, though, is represented by the decoupling between the
core bus clock and the peripherals bus clock. This is a radical departure, for the first
time in the PIC architectures history, from all previous generations’ bus designs. It

was a necessary step that allows the MIPS core of the PIC32 to be free from the speed
limitations of the Flash memory array and of the peripheral modules, to achieve much
higher performance levels without sacrificing compatibility while operating within a very
low power budget. In the next chapters we will learn more about the two internal buses,
the oscillator module, and their proper configuration.

Notes for the C Experts

If you are used to programming in C on a personal computer or workstation, you expect
that, upon termination of theain() function, control will be returned to the operating
system. Though sevenalal-time operating systenfRTOSs) are available for the PIC32,

a large number of applications won't need and won’t use one. This is certainly true for
all the simple examples in this book. By default, the MPLAB C32 compiler assumes tha
there is no operating system to return control to.

Notes for the MIPS Experts

The MIPS experts among you might have been looking for a mention cfrénd2-bit

timer (yes, there are truly six timers inside the PIC32) and the hardware control register
typically offered for access through tbeprocessor CP0) instructions. It was tempting

to mention them, but | intentionally avoided it and decided not to use any of them for

as long as possible. My purpose is to force you, the reader, to familiarize yourself with
the PIC environment in which the MIPS core has been implanted. My intention is to
demonstrate the use of the PIC32 and its peripherals as a true PIC microcontroller, the
fastest ever designed so far, but still a true PIC machine.

Tips & Tricks

Some embedded applications are designed to run their main loops for months or years
in a row without ever being turned off or receiving a reset command. But the control

40 Day2

registers of a microcontroller are simple RAM memory cells. The probability that a
power supply fluctuation (un-detected by the brown-out reset circuit), an electromagneti
pulse emitted by some noisy equipment in the proximity, or even a cosmic ray could alte
their contents is a small but finite number. Given enough time (years) and depending
on the application, you might see it happen. When you design applications that have

to operate reliably on huge time scales, you should start seriously considering the need
to provide a periodic “refresh” of the most important control registers of the essential
peripherals used by the application.

Group the sequence of initialization instructions in one or more functions. Call the
functions once at power-up, before entering the main loop, but also make sure that insic
the main loop the initialization functions are called when idling and no other critical task
is pending, so that every control register is reinitialized periodically.

Notes on Using the Peripheral Libraries

The MPLAB C32 tool suite comes with a complete set of standard C libraries and an
additional set operipherals librariesdesigned to simplify and standardize the use of all the
internal resources of the PIC32. The peripheral libraries are specifically designed to provi
an even higher level of compatibility with previous Microchip 16-bit architectures and in
particular with the PIC24 series of microcontrollers. The following example uses the timer:
library timer.h to exemplify the advantages and disadvantages of relying on libraries.

Should we need to initialize the Timerl module using the peripheral libraries, as in the
“loops” projects we developed today, in place of the direct access to the Timerl module
registers:

TMR1 = 0;
T1CON = 0x8030; // or TMR1bits.ON = 1; TMR1bits. TCKPS=3;
PR1 = OXFFFF;

we could use the following code:

WriteTimer1(0);
OpenTimerl(T1_ON | T1 _PS_1 256, OXFFFF);

The clear advantage is that you don’t need to add many comments to the two lines of co
they read pretty well already. This code is self-documenting. Additionally, if you misspell
one of the parameter names, the compiler will promptly complain and point it out.

Walking in Circles 41

But it is not all roses, either. Although the function parameters are checked for spelling
errors, in most cases there is no way for the compiler to tell whether you used the right
parameter for the right function. For example, when configuring Timer2, the following
error would go undetected:

OpenTimer2(T2_ON | T1_PS_1_256, OXFFFF);

It seems a pretty innocent mistake, but it would probably cause you to spend a few
hours scratching your head to understand why the Timer2 prescaler is configured wrong
whereas it is all fine by the compiler.

The best advantage of using the libraries, the abstraction they offer, is also another
source of potential frustration. Since they hide the implementation details from us, we
are not given to know if, for example, theIR1register is already being cleared by the
OpenTimerl() function or if we need to do it ourselves before invoking it. It turns out it
is not, but you can verify that only if you visually get access to the library source files or
you inspect them in the disassembly listing.

Further, although the PIC32MX device datasheet defines the official names for all the
control registersTLCON and for each bit inside themGKP9, the parameters defined

in the peripheral libraries have different names and speltihg?S_1 256), although

they try to mimic them closely. The new names can be found only in a separate set of
documentation. You need to either study the Peripheral Library User Guide or inspect tf
timer.h include file and verify where each parameter is defined.

So, my personal recommendation regarding the use of the peripheral libraries is one of
cautious and deliberate choice on a case-by-case basis. For some simple peripherals s
as the I/O ports and the timers, | cannot see much of an advantage in using the library.

After all, to select the correct parameters, you will still need to learn about each and eve
bit in each control register and be familiar with their meaning and correlation. Besides, i
WriteTimer1(0); really that much more readable thanR1=0;?

When the complexity of the peripheral module is greater and the work the library
functions are performing for us bring more value, such as is the case, for example, of th
DMA library we will use later in the book, | recommend we take advantage of it.

In any case, throughout the rest of the book you will have several examples of both type
of approaches and, as is often the case, it will be your personal programming style that
will dictate when and where you will feel comfortable using the peripheral libraries,
direct register access, or a mix of the two.

42 Day2

Exercises

1. Output a counter on the PortA pins instead of the alternating on and off patterns
Use PortD if you have a PIC32 Starter Kit.

2. Use a rotating pattern instead of alternating on and off.

3. Rewrite the loops project using exclusively peripheral library functions to control
PortA pins; set, configure, and read the timer; and disable the JTAG port if necessa

Books

Uliman, L., and Liyanage, M. Programming(Peachpit Press, Berkeley, CA, 2005) .
This is a fast-reading and modern book, with a simple step-by-step introduction to tt
C programming language.

Links

http://en.wikipedia.org/wiki/Control_flow#Loop# wide perspective on programming
languages and the problems related to coding and taming loops.

http://en.wikipedia.org/wiki/Spaghetti_cadéour code gets out of control when your
loops start knotting . .

Message in a Bottle

The Plan

Yesterday we learned that there is a loop at the core of every embedded-control applicati
and we learned to code it in C using Widle statement. Today we will continue

exploring a variety of other techniques available to the C programmer to perform loops.
Along the way, we will take the opportunity to briefly review integer variable declarations
and increment and decrement operators, quickly touching on array declarations and usag
By the end of the day you will be ready for a hopefully entertaining project that will make
use of all the knowledge you acquired during the day by creating a survival tool you'll finc
essential should you ever be stranded on a deserted island.

Preparation

In this lesson we will continue to use the MPLABIM software simulator, but once

more an Explorer 16 demonstration board could add to the entertainment. In preparatiol
for the new demonstration project, you can use the New Project Setup checklist to crea
a new project called Message and a new source file called Message.c.

The Exploration

In awhile loop, a block of code enclosed by two curly brackets is executed if, and for a:
long as, a logic expression returns a Boolean true value (not zero). The logic expressior
evaluated before the loop, which means that if the expression returns false right from th
beginning, the code inside the loop might never be executed.

44 Day3

Do Loops

If you need a type of loop that gets executed at least once but only subsequent repetitic
are dependent on a logic expression, you have to look at a different type of loop.

Let me introduce you tdo loop syntax:

do {
/[your code here
} while (x);

Don’t be confused by the fact that theloop syntax is using thehile keyword again
to close the loop; the behavior of the two is very different.

In ado loop, the code found between the curly brackets is always executed first;

only then is the logic expression evaluated. Of course, if all we want to get is an infinite
loop for ourmain() function, it makes no difference if we choosedheor the

while:

main()

{

// initialization code

/l main application loop
do {

} V\/.H.ile (1)
} /I main

Looking for curious cases, we might analyze the behavior of the following loop:

do{
/I your code segment here
} while (0);

You will realize that the code segment inside the loop is going to be executed once and,
no matter what, only once. In other words, the loop syntax around the code is, in this
case, a total waste of your typing efforts and another good candidate ‘forosteuseless
piece of code in the worldontest.

Message in a Bottle 45

Let's now look at a more useful example, where we wggél@ loop to repeatedly
execute a piece of code for a predefined and exact number of times. First, we need a
variable to perform the count. In other words, we need to allocate one or more RAM
memory locations to store a counter value.

Note

In the previous two lessons we have been able to skip, almost entirely, the subject of variabl
declarations because we relied exclusively on the use of what are in fact predefined variable:
the special-function registers of the PIC32.

Variable Declarations
We can declare an integer variable with the following syntax:
inti;

Since we used the keywoird to declaré as a 32-bit (signed) integer, the MPLAB

C32 compiler will make arrangements for 4 bytes of memory to be used. Later, the
linker will determine where those 4 bytes will be allocated in the physical RAM

memory of the selected PIC32 model. As defined, the variabii# allow us to count

from a negative minimum value2,147,483,648 to a maximum positive value of
+2,147,483,647. This is quite a large range of values—so large that most 8- and 16-bit
compilers would have been so generous only for the next type up in the hierarchy of
integer types, known deng , as in:

long |;

But this is one of the advantages of using a 32-bit microcontroller. The arithmetic and
logic unit (ALU) of the PIC32 is actually performing all arithmetic operations with equal
ease (same number of clock cycles) for 32-bit integers just as it would for a 16-bit or an
8-bit integer. The MPLAB C32 compiler therefore defaults immediately to 32-bit for the
basic integer typert) and maketong just a synonym for it.

This is all nice and dandy from a performance point of view, but it comes with a price in
terms of memory space. The RAM memory space allocated to hold each integer variabl
in your program is now double what it used to be on an 8 or 16-itI@ocontroller.
Though it is true that we have more of it on the PIC32 models, RAM often remains one
of the most precious resources in an embedded-control application.

46 Day3

So if you don’t have a use for the huge range of values that the'®iE32andlong
types can offer and you are looking for a smaller counter, and you can accept a range o
values from, say;-128 to+127, you can use thlebar integer type instead:

char c;
The MPLAB C32 compiler will use only 8 bits (a single byte) to hold

If a range of values from 32768 and+32767 is more what you were looking for, the
short integer type is the right type for you:

short s;

The MPLAB C32 compiler will use only 16 bits (two bytes) to holdhll four types can
further be modified by thensigned attribute, as in:

unsigned char c; /I ranges from 0..255

unsigned short s; /I ranges from 0..65,535
unsigned int i; /I ranges from 0..4,294,967,295
unsigned long |; /I ranges from 0..4,294,967,295

Now, if you really need a large range of values, nothing beatsrihéong type and
its unsigned variant:

long long ; // ranges from -2 63to+2 ©3-1
unsigned long long I; Il ranges from 0 to +2 64
Note

The MPLAB C32 compiler will allocate 64 bits (8 bytes or RAM) for edmhg long
variable, which can seem like a lot, but the workload you can expect from the PIC32 to crunct
these numbers is not going to be much different than what it used to be for a PIC16 to work ol
a simple 16-bit integer.

There are then variable types defined for use in floating-point arithmetic:

float f; /Il defines a 32 bit floating point
long double d; /I defines a 64 bit floating point

But for our looping purposes, let’s stick with integers for now.

Message in a Bottle 47

for Loops

Returning to our counter example, all we need is a simple integer variable to be used a:
index/counter, capable of covering the range from 0 to 5. Therefeiiar ainteger type
will do:

char i; I declare i as an 8-bit integer with sign
i=0; /[init the index/counter

while (i<5)

{

/l insert your code here
/it will be executed fori=0, 1, 2, 3 4

i=i+1; /I increment

Whether counting up or down, this is something you are going to do a lot in your
everyday programming life. In C language, there is a third type of loop that has been
designed specifically to make coding this common case easy. It is calfed thaop,

and this is how you would have used it in the previous example:

for (i=0; i<5; i=i+1)
{

/I insert your code here
/I it will be executed for i=0, 1, 2, 3, 4

You will agree that théor loop syntax is compact, and it is certainly easier to write. It
is also easier to read and debug later. The three expressions separated by semicolons ¢
enclosed in the brackets following tlee keyword are exactly the same three expressions
we used in the prior example:

» Initialize the index

» Check for termination using a logic expression

+ Advance the index/counter, in this case incrementing it

48 Day3

You can think of théor loop as an abbreviated syntax of Wiéle loop. In fact, the
logic expression is evaluated first and, if it's false from the beginning, the code inside th
loop’s curly brackets may never be executed.

Perhaps this is also a good time to review another convenient shortcut available in C. The
is a special notation reserved for the increment and decrement operations that uses the
operators:

++ increment as in: i++; is equivalent to: i=i+1;
-- decrementas in: [is equivalent to: i=i-1;

There will be much more to say on the subject in later chapters, but this will suffice for now

More Loop Examples

Let’'s see some more examples of the use dbthdoop and the increment/decrement
operators. First, a count from O to 4:

for (i=0; i<5; i++)
{

/I insert your code here
/it will be executed fori=0, 1, 2, 3 4

Then a count down from 4 to O:

for (i=4: i>=0; i)
{

/l insert your code here
/it will be executed for i= 4, 3, 2, 1 O

Can we use the for loop to code an (infinite) main program loop? Sure we can! Here is
example:

main()

{

/I 0. initialization code
/l insert your initialization code here

Message in a Bottle 49

/I 1. the main application loop
for(;1;)
{

/l insert your main loop here

}

} /I main

If you like it, feel free to use this form. As for me, from now on | will stick tovthise
syntax (it is just an old habit).

Arrays

Before starting to code our next project, we need to review one last C language feature:
array variable typesAn array is just a contiguous block of memory containing a given
number of identical elements of the same type. Once the array is defined, each elemen
can be accessed via the array name and an index. Declaring an array is as simple as
declaring a single variable—just add the desired number of elements in square bracket:
after the variable name:

char c[10]; /l declares c as an array of 10 x 8-bit integers
short s[10]; /l declares s as an array of 10 x 16-bit integers
int i[10]; /I declares i as an array of 10 x 32-bit integers

The same squared-brackets notation is used to refer to the content or assign a value to
each element of an array, as in:

a = c[0]; /I copy the value of the 1st element of ¢
into a

c[1] = 123; /I assign the value 123 to the second element
of c

i[2] = 12345; /I assign the value 12,345 to the third element
of i

i[3] = 123*i[4]; /I compute 123 x the value of the fifth element

of i

50 Day3

Note

In C language, the first element of an array has index 0, whereas the last element Héd jndex
whereN is the declared array size.

It is when we manipulate arrays that ftve type of loop comes in very handy. Iset
see an example where we declare an array of 10 integers and we initialize each elemer
of the array to a constant value of 1:

int a[10]; I/ declare array of 10 integers: a[0], a[1],
a[?] ... a[9]
inti; // to be used as the loop index
for (i=0; i<10; i++)
{
a[il=1,
}
Sending a Message

It's time to take all the new elements of the C language we have reviewed so far and
put them to use in our next project. We will try once more to communicate with the
outside world, this time using an entire row of LEDs connected to PortA, as they
happen to be connected on the Explorer 16 demo board, flashing in a rapid sequence
so that when we move the board left and right rhythmically they will display a short
text message.

How about “Hello World!” or perhaps more modeSthELLO"? Here is the code:
#include <p32xxxx.h>

/I 1. define timing constants
#define SHORT_DELAY 400
#define LONG_DELAY 3200

/I 2. declare and initialize an array with the message bitmap

char bitmap[30] ={
Oxff, /IIH
0x08,
0x08,
Oxff,
0,
0,
Oxff, Il E
0x89,
0x89,
0x81,
0,
0,
Oxff, /L
0x80,
0x80,
0x80,

Oxff, /'L

Ox7e, /IO

/I 3. the main program

main()

{
/I disable JTAG port
DDPCONDbits.JTAGEN = 0;

/I 3.1 variable declarations
inti;

/I i will serve as the index

Message in a Bottle

52 Day 3

/1 3.2 initialization

TRISA = 0xff00; /I PORTA pins connected to LEDs are outputs
T1CON = 0x8030; /l TMR1 on, prescale 1:256 Tpb=36 MHz
PR1 = OxFFFF; // max period (not used)

/I 3.3 the main loop

while(1)

{

/I 3.3.1 display loop, hand moving to the right
for(i=0; i<30; i++)
{ /I update the LEDs

PORTA = bitmaplil;

/I short pause

TMR1 =0;

while (TMR1 < SHORT_DELAY)

{

}
Y/ fori

/I 3.3.2 long pause, hand moving back to the left
PORTA =0; // turn LEDs off

/I long pause

TMR1 = 0;

while (TMR1 < LONG_DELAY)

{

}

} /I main loop
} /I main

In section 1, we define a couple of timing constants so that we can control the flashing
sequence speed for execution and debugging.

In section 2, we declare and initialize an 8-bit integer array of 30 elements, each
containing an LED configuration in the sequence.

Hint

Convert the hex values in the array initialization to binary on a piece of paper and, using &
highlighter or a red pen, mark each 1 on the page to see the message emerge.

Message in a Bottle 53

Section 3 contains the main program, with the variable declarations (3.1) at the tc
followed by the microcontroller initialization (3.2) and eventually the main loop (3.3).

The mainhile) loop, in turn, is further divided in two sections: Section 3.3.1 contains
the actual LED Flash sequence, composed of 30 steps, to be played when the board is
swept from left to right. Aor loop is used for accessing each element of the array, in
order. Awhile loop is used to wait on Timerl for the proper sequence timing. Section
3.3.2 contains a pause for the sweep back, implemented ushilg aloop with a longer
delay on Timerl.

Testing with the Logic Analyzer

To test the program, we will initially use the MPLAB SIM software simulator and the
Logic Analyzer window:

1. Build the project using ti&oject Build check list.
2. Open theogic Analyzer window.

3. Click theChannel button to add, in order, all the I/O pins fr&¥A0 to RA7
connected to the row of LEDs.

The MPLAB SIM Setup and Logic Analyzer Setup checklists will help you make sure
that you don’t forget any detail.

4. Then | suggest you go back to the editor window and set the cursor on the first
instruction of the 3.3.2 section.

5. Right-click to select trmntext menu and choose tiun to Cursor command.
This will let the program execute the entire portion containing the message outpt
(3.3.1) and will stop just before the long delay.

6. As soon as the simulation halts on the cursor line, you can switch_tagthe
Analyzer window and verify the output waveforms. They should look like
Figure 3.1.

To help you visualize the output, | added a few red dots to represent the LEDs being
turned on during the first few steps of the sequence. If you squeeze your eyes a bit and
imagine you see an LED on wherever the corresponding pin is at the logic high level, yc
will be able to read the message.

54 Day3

S0t [| oo [o oo |

[+ % SRS =)

w [|] [1]
- [| 1 [L]
w | |] [L]
= | | Il jusl
e [] [L]
. | Ay
m [1 [L]
“ | F *ll‘_J L] L[]

T T rrr- Ty o r T

0 5000.0 100000 15000.0 20000.0 250000 300000 350000 40000.0

=1

Figure 3.1: Snapshot of the Logic Analyzer window after the first sweep.

Testing with the Explorer 16 Demonstration Board

If you have an actual Explorer 16 demonstration board and an MPLAB REAL ICE
programmer and debugger available, the fun can be doubled:

1. Use th&etup checklist for your in circuit debugger of choice.

2. Use th®evice Configuration checklist to verify that the device configuration
bits are properly set for use with the Explorer 16 demonstration board.

3. Use th@rogramming checklist to program the PIC32 in circuit.

After dimming the light a bit in the room, you should be able to see the message flashin
as you “shake” the board. The experience is going to be far from perfect, though. With
the Simulator and the Logic Analyzer window, we can choose which part of the sequenc
we want to visualize with precision and “freeze” it on the screen. On the demonstration
board, you might find it quite challenging to synchronize the board’s movement with the
LED sequence.

Message in a Bottle 55

Consider adjusting the timing constants to your optimal speed. After some experimentatic
| found that the values 400 and 3200, respectively, for the short and long delays were ide:
but your preferences might differ.

Testing with the PIC32 Starter Kit

If you have a PIC32 Starter Kit, it will be harder but not impossible to adapt our example
to use only the three available LEDs connected to the PortDRpiRD1, andRD2
Unfortunately, even if you get hold of a PIM adapter board to attach the Starter Kit to an
Explorer 16 board, you won’t be able to see the demo in its full glory, because the Start
Kit uses the JTAG port, and that means that four out of the eight LEDs on PortA are not
available.

This is not fair. In fact, | believe we need to change our strategy and find another way to
send our message out to the world with the PIC32 Starter Kit. The idea is to use the old
and trusty Morse code! Here is the sequence of light flashes required:

H E L L @)

The rules are simple: Once chosen a basic pulse length fdwottfeecouple tenths of a
second), every other interval is required to generate a proper Morse code message bas
on integer multiples of it. A dash will be three times longer. The pause between dash an
dots is going to be one single dot long, the pause between letters will be three dots long
and finally the pause between words will be five dots long. Once more, we can encode
the entire message using an array of alternating 1s and 0s. Here is the modified code
example:

#include <p32xxxx.h>

/l 1. define timing constant
#define DOT_DELAY 18000

/I 2. declare and initialize an array with the message bitmap
char bitmap[] = {

/I'H ...

1,0,1,0,1,0,1,0,0,0,

IIE.

1,0,0,0,

/e .-..

1,0,1,1,1,0,1,0,1,0,0,0,

56 Day3

/e .-.
1,0,1,1,1,0,1,0,1,0,0,0,
Il ---
1,1,1,0,1,1,1,0,1,1,1,
/I end of word
0,0,0,0,0

3

/I 3. the main program
main()
{
/I 3.1 variable declarations
inti; /l'i will serve as the index

/1 3.2 initialization

TRISD = 0; // all PORTD as output
T1CON = 0x8030; /l TMR1 on, prescale 1:256 PB=36 MHz
PR1 = OxFFFF; /I max period (not used)

// 3.3 the main loop
while(1)
{
// 3.3.1 display loop, spell a letter at a time
for(i=0; i<sizeof(bitmap); i++)
{
PORTD = bitmapli];

/I short pause

TMR1 = 0;

while (TMR1 < DOT_DELAY)
{

}
Y/ fori

}// main loop
} /I main

Notice that, to avoid having to count the dots and dashes manually to allocate the right
amount of space for the bitmap array, | used a little trick. By leaving the square brackets
(0) empty in the declaration of the array, | essentially told the compiler to figure out by

Message in a Bottle 57

itself the right size based on the number of integers used in the follow list (between curl,
bracketq}). Of course, this would have not worked if there had been no initialization list
immediately following the array declaration. A problem would have occurred later in the
for loop if | had no other way to know how many elements had eventually been added
to the array. Luckily, theizeof() function came to my rescue, giving me a byte count
(the size of the array in bytes), and since each array elemecitds dype integer, that
coincides with the exact number of elements | was looking for.

Debriefing

In this lesson we reviewed the declaration of a few basic variable types, including intege
and floating points of different sizes. Array declarations and their initialization were also
used to create an original “shaking” LED display first and Morse code laterfarsing

loops to send messages to the world.

Notes for the Assembly Experts

The++ and-- operators are actually much smarter than you might think. If the variable
they are applied to is an integer, as in our trivial examples, there is little they can do to
help, apart from saving you a few keystrokes. But if they are applied to a pointer (which
is a variable type that contains a memory address), they actually increase the address t
the exact number of bytes required to represent the quantity pointed to. For example, a
pointer to 16-bit integers will increment its address by two, while a pointer to a 32-bit
integer will increment its address by four, and so on.

The increment and decrement operators can also be applied inside a generic expressio
operatebeforeor after a variable content is fetched. Here are a few examples (assuming
the initial conditiong=0 andb=1):

a = b++; lla=1,b=2

In this first casea is assigned the value bffirst, andb is incremented later.
a=++b; [ffla=2,b=2

In this second casb,is incremented first and then its (new) value is passed to

Use these interesting options with moderation, though. The actual convenience (as in
reduction of keystrokes) is counterbalanced by an increased obfuscation of the code.

58 Day3

As per a potential increase in the efficiency, it is most probably negligible. In fact,
whether you use the increment/decrement operators or not, the MPLAB C32 compiler
optimizer, even at the lowest settings, can probably do a better job of optimizing the use
of the PIC32 registers in a generic expression without you having to fiddle with these
details.

Let me add one last word on loops. It can be confusing to see so many options: Should
you test the condition at the beginning or the end? Should you ufee ttgpe or not?

The fact is, in some situations the algorithm you are coding will dictate which one to use
but in many situations you will have a degree of freedom, and more than one type might
do. Choose the one that makes your code more readable, and if it really doesn’t matter,
in the main loop, just choose the one you like and be consistent.

Notes for the PIC Microcontroller Experts

Depending on the target microcontroller architecture and ultimately the arithmetic and
logic unit (ALU), operating on bytes versus operating on word quantities can make a big
difference in terms of code compactness and efficiency. In the PIC16 and PIC18 8-bit
architectures there is a strong incentive to use byte-sized integers wherever possible; in
the PIC32, 32-bit word-sized integers can be manipulated with the same efficiency. The
only limiting factor, preventing us from always using 32-bit integers with the MPLAB
C32 compiler, is the consideration of the relative preciousness of the internal resources
the microcontroller, and in this case the RAM memory.

Notes for the C Experts

Even if PIC32 microcontrollers have a relatively large RAM memory, larger than the
Flash memory of most 8-bit microcontrollers, embedded-control applications will always
have to contend with the reality of cost and size limitations. If you learned to program

in C on a PC or a workstation, you probably never thought twice about udimg an
whenever you needed an integer. Well, this is the time to think again. Shaving one byte
a time off the requirements of your application might, in some cases, mean you're able
fit in a smaller PIC32 microcontroller, saving fractions of a dollar that when multiplied
by the thousands or millions of units (depending on your production run rates) can meal
real money added to the bottom line of your company. In other words, if you learn to

Message in a Bottle 59

keep the size of your variables to the strict minimum necessary, you will become a bette
embedded-control designer. Ultimately, this is what engineering is all about.

Tips & Tricks

Since the first day | have introduced you to the mysteries of the stattup) code, that

little piece of code that the linker places automatically in between the main function and tt
reset vector. Today you might have not realized howrtbe code helped us once more. In
this last project we declared an array catliedap]] and we asked for it to be initialized
with a specific series of values, but the array, being a data structure, resides in RAM durir
execution. It is one of thet0 code responsibilities to copy the contents of the array from
a table in Flash memory to RAM, immediately before the main program execution.

Another useful service performed by ti® code is to initialize every globally

declared variable t0. In most cases this will have the effect of making your code safer
and more predictable (you always initialize your variables before use, don't you?), but it
will come at a cost. If you have large arrays allocated in RAM, and even if you chose no
to initialize them explicitly, it will take a small but finite amount of time to¢heé code

to fill them with zeros before your main program will be able to execute. In embedded-
control applications, there can be cases when this delay is not acceptable. In some
applications, a few microseconds can make the difference between blowing an expensi
power MOSFET, for example, or having your application recovering fast and safe from
a critical reset condition. In these special cases you can define the special function
_on_reset() , as in the following example:

void _on_reset(void)

{
/I something urgent that needs to be done immediately
/I after a reset or at power up
your code here
}

This function will replace an empty place holder thatctke code is normally calling

before getting to the initialization part. Be careful, though, to make it short and not to mak
too many assumptions at this point. First, remember that this function will be ezgigd

time the PIC32 goes through a reset sequence. Second, apart from the stack, you cannc
count on your program functions and global variables to be available and initialized yet!

60 Day3

Exercises

1. Improve the display/hand synchronization, waiting for a button to be pressed
before the hand sweep is started.

2. Add a switch to sense the sweep movement reversal and play the LED sequenc
backward on the back sweep.

Books

Rony, P., Larsen, D., and TitusThk 8080A Bugbook, Microcomputer Interfacing And
Programming(Howard W. Sams & Co., Inc, Indianapolis, IN, 1976) . This is the boc
that introduced me to the world of microprocessors and changed my life forever. No
high-level language programming here, just the basics of assembly programming ar
hardware interfacing. (Too bad this book is already considered museum material; se
link below.)

Links

www.bugbookcomputermuseum.com/BugBook-TitlesAtink to the “Bugbooks
museum”; 30 years since the introduction of the Intel 8080 microprocessor and it is
like centuries have already passed.

http://en.wikipedia.org/wiki/Morse_cadsearn about the Morse code, its history, and its
applications.

NUMB3RS

The Plan

Just yesterday we learned about different types of C variables, and we stressed the
importance of using the right type of variable for each application to preserve a precious
resource: RAM. | don’t know about you, but | am now very curious about putting those
variables to work and seeing how the MPLAB32 compiler performs basic arithmetic

on them. Knowing that the PIC32 has a set of 32 “working” registers and a 32-bit ALU,

| am expecting to see some very efficient code, but | also want to compare the relative
performance of the same operation performed on different data types and, in particular,
floating-point types. Hopefully after today we will have a better understanding of how

to balance performance and memory resources, real-time constraints, and complexity t
better fit the needs of our embedded-control applications.

Preparation

This entire lesson will be performed exclusively with software tools that include the
MPLAB IDE, MPLAB C32 compiler, and the MPLAB SIM simulator.

Use the New Project Setup checklist to create a new project SBJRIB3RS and a new
source file calledNUMB3RS.c.

The Exploration

To review all the available data types, | recommend you take a look at the MPLAB C32
User Guide. You can start in Chapter 1.5, where you can find a first list of the supported
integer types (setable 4.1).

62 Day 4

Table 4.1: MPLAB C32 integer types comparison table.

Type Bits Min Max
char, signed char 8 —128 127
unsigned char 8 0 255
short, signed short 16 —32768 32767
unsigned short 16 0 65535
int, signed int, long, signed long 32 23 2311
unsigned int, unsigned long 32 0 2%24
long long, signed long long 64 -2 3 2689
unsigned long long 64 0 2 641

As you can see, there are 10 different integer types specified in the ANSI C standard,
includingchar, int, short, long, and long long , both in the signed (default)
and unsigned variant. The table shows the number of bits allocated specifically by the
MPLAB C32 compiler for each type and, for your convenience, spells out the minimum
and maximum values that can be represented.

It is expected that when the type is signed, one bit must be dedicated to the sign itself.
The resulting absolute value is halved, while the numerical range is centered around ze
We have also noted before (in our previous explorations) how the MPLAB C32 compiler
treatsint andlong as synonyms by allocating 32 bits (4 bytes) for both of them. In fact,
8-, 16-, and 32-bit quantities can be processed with equal efficiency by the PIC32 ALU.
Most of the arithmetic and logic operations on these integer types can be coded by the
compiler using single assembly instructions that can be executed very quickly—in most
cases, in a single clock cycle.

Thelong long integer type (added to the ANSI C extensions in 1999) offers 64-bit
support and requires 8 bytes of memory. Since the PIC32 core is based on the MIPS
32-bit architecture, operations tmmg long integers must be encoded by the compiler
using short sequences of instructions inserted inline. Knowing this, we are already
expecting a small performance penalty for usong long integers; what we don’t
know is how large it will be.

NUMB3RS 63

Let's look at a first integer example; Wetart by typing the following code:

main ()
{
int i,j,k;
i =1234; /[assign an initial value to i
j =5678; /[assign an initial value to j
k=i*j; /I multiply and store the result in k
}

After building the projectRroject | Build All or Ctrl+F10), we can open the
Disassembly window\iew | Disassembly Listing) and take a look at the code
generated by the compiler:

12: i=1234;

9D00000C 240204D2 addiu v0,zero,1234
9D000010 AFC20000 sw v0,0(s8)

13: j =5678;

9D000014 2402162E addiu v0,zero,5678
9D000018 AFC20004 sw v0,4(s8)

Even without knowing the PIC32 (MIPS) assembly language, we can easily identify
the two assignments. They are performed by loading the literal values to register
first and from there to the memory locations reserved for the variglpleinted to

by theS8 register), and later for varialjle(pointed to by th&8 register with an

offset of 4).

In the following line, the multiplication is performed by transferring the values from
the locations reserved for the two integer variablaadj back to registergd andvl
and then performing a single 32-bit multiplicatianl instruction. The result, available

in vO, is stored back into the locations reservedckf@uointed to bys8 with an offset
of 8)—pretty straightforward!

14: k =i%;

9D00001C 8FC30000 Iw v1,0(s8)
9D000020 8FC20004 Iw v0,4(s8)
9D000024 70621002 mul vO,v1,v0
9D000028 AFC20008 sw v0,8(s8)

64 Day 4

Note

It is beyond the scope of this book to analyze in detail the MIPS assembly programming
interface, but | am sure you will find it interesting to note thatrthut instruction, like all

other arithmetic instructions of the MIPS core, has three operands—although in this case th
compiler is using the same registed | as both one of the sources and the destination. Note
how the MIPS core belongs to the so-calleald and storeclass of machines, as all arithmetic
operands have first to be fetched from RAM into registers (load) before arithmetic operations
can be performed, and later the result has to be transferred back to RAM (store). Finally, if yot
are even minimally interested in the MIPS assembly, note how the compiler chose to use th
addiu instruction to load more efficiently a literal word into a register. In reality this performs
an addition of an immediate value with a second operand that was chosen to be the aptly nam
registerzero .

On Optimizations (or Lack Thereof)

You will notice how the overall program, as compiled, is somewhat redundant. The valus
of j, for example, is still available in regist& when it is reloaded again—just before the
multiplication. Can’t the compiler see that this operation is unnecessary?

In fact, the compiler does not see things this clearly; its role is to ¢sedée code,

avoiding (at least initially) any assumption and using standard sequences of instructions
Later on, if the proper optimization options are enabled, a second pass (or more) is
performed to remove the redundant code. During the development and debugging phas
of a project, though, it is always good practice to disable all optimizations because

they might modify the structure of the code being analyzed and render single-stepping
and breakpoint placement problematic. In the rest of this book we will consistently
avoid using any compiler optimization option; we will verify that the required levels of
performance are obtained regardless.

Testing

To test the code, we can choose to work with the simulator from the Disassembly
Listing window itself, single-stepping on each assembly instruction. Or we can choose t

NUMB3RS 65

work from the C source in the editor window, single-stepping through each C language
statement (recommended). In both cases, we can:

1. Open the Local Variables windoviéw | L ocals) to see immediately listed, in a
small and convenient window, all the variables defined inside the current functior

(main()).

2. Open the Watch windowigw | Watch) andadd thevO andvl registers using
theAdd SFR combo box.

3. Single-stepDebugger | Step Over or F8) through the next few program lines,
observing the effects on the variables in the Watch window. As we noted before,
when the value of a variable in the Watch window or the Locals window changes
it is highlighted in red.

If you need to repeat the test, perform a Rd3elbfgger | Reset | Processor Reset), but

don’t be surprised if the second time you run the code the contents of the local variable:
appear magically in place before you initialize them. Local variables (defined inside

a function) are not cleared by the Startup code; therefore, if the RAM memory is not
cleared between reruns, the RAM locations used to hold the varialpleandk will

have preserved their contents.

Going | ong | ong

At this point, modifying only the first line of code, we can change the entire program to
perform operations on 64-bit integer variables:

main ()
{
long long i,j,k;
i =1234; /[assign an initial value to i
j =5678; /[assign an initial value to j
k=i*j /I multiply and store the result in k
}

Rebuilding the project, and switching again to the Disassembly Listing window
(if you had the editor window maximized and you did not close the Disassembly
Listing window, you could use the CttTab command to quickly alternate between the

66 Day 4

editor and the Disassembly Listing), we can see how the newly generated code is a bit
longer than the previous version. Though the initializations are still straightforward, the
multiplication is now performed using several more instructions:

15:
9D00002C
9D000030
9D000034
9D000038
9D00003C
9D000040
9D000044
9D000048
9D00004C
9D000050
9D000054
9D000058
9D00005C
9D000060
9D000064
9D000068
9D00006C

8FC30000
8FC20008
00620019
00002012
00002810
8FC30000
8FC2000C
70621802
00A01021
00431021
8FC60008
8FC30004
70C31802
00431021
00402821
AFC40010
AFC50014

k= i%;

Iw

Iw
multu
mflo
mfhi

v1,0(s8)
v0,8(s8)
v1,v0

a0

al
v1,0(s8)
v0,12(s8)
vl,vli,v0
v0,al,zero
vO,v0,v1l
a2,8(s8)
v1,4(s8)
vl,a2,vl
vO,vO,v1l
al,v0,zero
a0,16(s8)
al,20(s8)

The PIC32 ALU can process only 32 bits at a time, so the 64-bit multiplication is actuall
performed as a sequence of 32-bit multiplications and additions. The sequence used by
the compiler is generated with pretty much the same technique that we learned to use
in elementary school, only performed on a 32-bit word at a time rather than one digit

at a time. In practice, to perform a 64-bit multiplication using 32-bit instructions, there
should be four multiplications and three additions, but you will note that the compiler ha
actually inserted only three multiplication instructions. What is going on here?

The fact is that multiplying twtong long

integers (64-bit each) will produce a 128-bit

wide result. But in the previous example, we have specified that the result will be stored
in yet anothetong long
64 bits. Doing so, we have clearly left the door open for the possibility (not so remote)
of an overflow, but we have also given the compiler the permission to safely ignore the
most significant bits of the result. Knowing those bits are not going to be missed, the
compiler has eliminated completely the fourth multiplication step, so in a way, this is

already optimized code.

variable, therefore limiting the result to a maximum of

NUMB3RS 67

Note

Basic math tells us that the multiplication of twebit-wide integer values produces a
2n-bit-wide integer result. The C compiler knows this, but if we fail to provide a recipient
with enough room to contain the result of the operation, or if there is simply no larger integer
type available, as is the case of the multiplication of lw@y long integers, it has no
choice but to discard (quietly) the most significant bits of the result. It is our responsibility not
to let this happen by choosing the right integer types for the range of values used in ou
application. If necessary, you can predetermine the number of bits in the result of any produc
by finding the indexes of the first non-zero-bit (msb) for each operand and adding them
together. If the sum is larger than the number of bits of the recipient type, you know there will
be an overflow!

Integer Divisions

If we perform a similar analysis of the division operation on integer variables as in the
previous examples, we will rapidly confirm hawar , short , andint types are all
treated the same as well:

main ()

{
inti, , k;
i =1234;
j =5678;
k =ilj;
} /I main
The code produced by the compiler is extremely compact and uses alsinglesembly
instruction.

15:; k =ilj;

9D00001C 8FC30000 Iw v1,0(s8)
9D000020 8FC20004 Iw v0,4(s8)
9D000024 0062001A div v1,v0
9D000028 004001F4 teq v0,zero
9D00002C 00001012 mflo v0
9D000030 AFC20008 sw v0,8(s8)

68 Day 4

It is only when we analyze the case of a 64-bit division that we find that the compiler is
using a different technique:

main ()

{
long long i, j, k;
i =1234;
j=5678;
k =ilj;
} /I main
In fact, recompiling and inspecting the new code in the Disassembly Listing window

we reveal a misleadingly short sequence of instructions leading to a subroutine
call (al).

15: k =ilj;

9D000030 8FC40010 Iw a0,16(s8)
9D000034 8FC50014 Iw al,20(s8)
9D000038 8FC60018 Iw a2,24(s8)
9D00003C 8FC7001C Iw a3,28(s8)
9D000040 OF40001A jal 0x9d000068
9D000044 00000000 nop

9D000048 AFC20020 sw v0,32(s8)
9D00004C AFC30024 sw v1,36(s8)

The subroutine itself will appear in the disassembly listing, after all the main function
code. This subroutine is clearly separated and identified by a comment line that indicate
it is part of a library, a module called libgcc2.c. The source for this routine is actually
available as part of the complete documentation of the MPLAB C32 compiler and can b
found in a subdirectory under the same directory tree where the MPLAB C32 compiler
has been installed on your hard disk.

By selecting a subroutine in this case, the compiler has clearly made a compromise.
Calling the subroutine means adding a few extra instructions and using extra space on
the stack. On the other hand, fewer instructions will be added each time a new division
(amonglong long integers) is required in the program; therefore, overall code space
will be preserved.

NUMB3RS 69

Floating Point

Beyond integer data types, the MPLAB C32 compiler offers support for a few more data
types that can capture fractional values—the floating-point data types. There are three
types to choose from (see Table 4.2) corresponding to two levels of resdiedion;

double , andiong double

Table 4.2: MPLAB C32 floating-point
types comparison table.

Type Bits
Float 32
Double 64
Long double 64

Notice how the MPLAB C32 compiler, by default, allocates for bothitlaele and the
long double types the same number of bits, using the double precision floating-point
format defined in the IEEE754 standard.

Since the PIC32 doesn’t have a hardware floating-point unit (FPU), all operations on
floating-point types must be coded by the compiler using floating-point arithmetic
libraries whose size and complexity are considerably larger/higher than any of the integ
libraries. You should expect a major performance penalty if you choose to use these dal
types, but, again, if the problem calls for fractional quantities to be taken into account, tt
MPLAB C32 compiler certainly makes dealing with them easy.

Let’s modify our previous example to use floating-point variables:

main ()

{
float i,j,K;
i =12.34; /l assign an initial value to i
j =56.78; /[assign an initial value to j
k=i*j; /I store the result in k

}

After recompiling and inspecting the Disassembly Listing window, you will immediately
notice that the compiler has chosen to use a subroutine instead of inline code.

70 Day4

Changing the program again to use a double-precision floating-point type, long double,
produces very similar results. Only the initial assignments seem to be affected, and all v
can see is, once more, a subroutine call.

The C compiler makes using any data type so easy that we might be tempted to
always use the largest integer or floating-point type available, just to stay on the safe
side and avoid the risk of overflows and underflows. On the contrary, though, choosing
the right data type for each application can be critical in embedded control to balance
performance and optimize the use of resources. To make an informed decision, we nee
to know more about the level of performance we can expect when choosing the various
precision data types.

Measuring Performance

Let’s use what we have learned so far about simulation tools to measure the actual
relative performance of the arithmetic libraries (integer and floating-point) used by the
MPLAB C32 compiler. We can start by using the software simulator’s (MPLAB SIM)
built-in StopWatch tool, with the following code:

#include <p32xxxx.h>

main ()
{
char cl, c2, c3;
short sl, s2, s3;
int i1,i2,i3;
long long lna, 12, 13;
float 1,12, f3;
long double di, d2, d3;
cl=12; /I testing char integers (8-bit)
c2 = 34,
c3=cl*c2,
sl =1234; /I testing short integers (16-bit)
s2 = 5678,
s3=1s1 *s2;
i1 =1234567; /I testing (long) integers (32-bit)
i2 = 3456789;

i3=1i1 *i2;

NUMB3RS 71

11 =1234; /I testing long long integers (64-bit)
12 = 5678;
13=111 * 12;

fl =12.34; /I testing single precision floating point
f2 =56.78;
f3=f1 * {2;

dl=12.34; /I testing double precision floating point
d2 =56.78;
d3=d1 *d2;

} /I main

After compiling and linking the project, open the StopWatch windoeb(gger |

StopWatch) and position the window according to your preferences (see Figyre 4.1
(Personally 1 like it docked to the bottom of the screen so that it does not overlap with th
editor window and it is always visible and accessible.)

Stopwatch | %

Stopwatch Total Simulated

S}mhl Instruction I:yclesl 0 | 0

Zeo | Time (uSecs) | 0.000000 | 0.000000
Processor Frequency [MHz) £4.000000

Figure 4.1: The MPLAB SIM StopWatch window.

Zero the StopWatch timer and execute a Step-Over comnizaiaig | StepOver or

pressk8). As the simulator completes updating the StopWatch window, you can manuall
record the execution time required to perform the integer operation. The time is provide
by the simulator in the form of a cycle count and an indication in microseconds derived
by the cycle count multiplied by the simulated clock frequency, a parameter specified in
the Debugger Settings (tleEbugger | Settings | Osc/Trace tab).

Proceed by setting the cursor over the next multiplication, and exeRute Bo Cur sor
command or simply continugtepOver until you reach it. Again/ero the StopWatch,

72 Day 4

execute &tep-Over, and record the second time. Continue until all five types have been
tested (see Table 4.3).

Table 4.3: Relative performance test results using MPLAB C32 rev. 0.20
(all optimizations disabled).

Muiltiplication Test Width Cycle Count | Performance Relative to:
(Bits) Int Float

Char integer (Char) 8 6 1 —

Short integer (short) 16 6 1 —

Integer (int, long) 32 6 1 —

Long integer (long long) 64 21 3.5 -

Single precision FP (float) 32 71 11.8 1

Double precision FP (long double) 64 159 26.5 2.23

Table 4.3 records the results (cycle counts) in the first column, with two more columns
showing the relative performance ratios obtained by dividing the cycle count of each
row by the cycle count recorded for two reference types. Don’t be alarmed if you happel
to record different values; several factors can affect the measure. Future versions of the
compiler could possibly use more efficient libraries, and/or optimization features could
be introduced or enabled at the time of testing.

Keep in mind that this type of test lacks any of the rigorousness required by a true
performance benchmark. What we are looking for here is just a basic understanding of
the impact on performance that we can expect from choosing to perform our calculation
using one data type versus another. We are looking for the big picture—relative orders
of magnitude. For that purpose, the table we just obtained can already give us some
interesting indications.

As expected, 32-bit operations appear to be the fastest, whergamg integer

(64-bit) multiplications are about four times slower. Single precision floating-point
operations require more effort than integer operations. Multiplying 32-bit floating-point
numbers requires one order of magnitude more effort than multiplying 32-bit integers.
From here, going to double precision floating-point (64-bit) about doubles the number
of cycles required.

NUMB3RS 73

So, when should we use floating-point, and when should we use integer arithmetic?

Beyond the obvious, from the little we have learned so far we can perhaps extract the
following rules:

1. Use integers every time you can, i.e. when fractions are not required or when th
algorithm can be rewritten for integer arithmetic.

2. Use the smallest integer type that will not produce an overflow or underflow
if you want to save on RAM memory space, but once you are not using 64-bit
integers, you will not see any further performance improvement from going to
any integer type smaller than 32-bit.

3. If you have to use a floating-point type (fractions are required), expect an order-
of-magnitude reduction in the performance of the compiled program.

4. Double precision floating-point (long double) seems to only reduce the
performance further, by a factor of two.

Keep in mind also that floating-point types offer the largest value ranges but also are
always introducing approximations. As a consequence, floating-point types are not
recommended for financial calculations. Uts®y long integers, if necessary, and
perform all operations in cents (instead of dollars and fractions).

Debriefing

In this lesson, we have learned not only what data types are available and how much
memory is allocated to them but also how they affect the resulting compiled program in
terms of code size and execution speed. We used the MPLAB SIM simulator StopWatcl
tool to measure the number of instruction cycles required for the execution of a series o
basic arithmetic operations. Some of the information we gathered will be useful to guide
our actions in the future when we’re balancing our needs for precision and performance
in embedded-control applications.

Notes for the Assembly Experts

The brave few assembly experts that have attempted to deal with floating-point
numbers in their applications tend to be extremely pleased and forever thankful for the

74 Day 4

great simplification achieved by the use of the C compiler. Single or double precision
arithmetic becomes just as easy to code as integer arithmetic has always been.

When using integer numbers, though, there is sometimes a sense of loss of control,
because the compiler hides the details of the implementation and some operations mig|
become obscure or much less intuitive/readable. Here are some examples of conversiol
and byte manipulation operations that can induce some anxiety:

« Converting an integer type into a smaller or larger one

» Extracting or setting the most or least significant byte of a 16-bit or 32-bit data
type

« Extracting or setting one bit out of an integer variable

The C language offers convenient mechanisms for covering all such cases via implicit
type conversions, as in:

short S; /I 16-bit
int i; /1 32-bit
i=Ss;

The value o8 is transferred into the two LSBsipf and the two MSBs of are
cleared.

Explicit conversions (calletype castinymight be required in some cases where the
compiler would otherwise assume an error, as in:

short S; /I 16-bit
int i; /] 32-bit
s = (short) i;

(short) is a type cast that results in the two MSB& ¢ be discarded asis forced
into a 16-bit value.

Bit fields are used to cover the conversion to and from integer types that are smaller tha
1 byte. The PIC32 library files contain numerous examples of definitions of bit fields for
the manipulation of all the control bits in the peripher&FRs.

NUMB3RS 75

Here is an example extracted from the include file used in our project, where the Timer]
module control registeF1CONis defined and each individual control bit is exposed in a
structure defined aB1LCONDits:

extern unsigned int TLICON;
extern union {

struct {
unsigned :1;
unsigned TCS:1;
unsigned TSYNC:1;
unsigned :1;
unsigned TCKPSO0:1;
unsigned TCKPS1:1;
unsigned TGATE:1;
unsigned :6;
unsigned TSIDL:1;
unsigned :1;
unsigned TON:1;

h

struct {
unsigned :4;
unsigned TCKPS:2;

h

} TLCONDbits;

You can access each bit field using ttlet” notation, as in the following example:
T1CONDits.ON =1,

Notes for the 8-Bit PIC® Microcontroller Experts

The PIC microcontroller user who is familiar with the 8-bit PIC microcontrollers

and their respective compilers will notice a considerable improvement in performance,
both with integer arithmetic and with floating-point arithmetic. The 32-bit ALU
available in the PIC32 architecture is clearly providing a great advantage by
manipulating up to four times the number of bits per cycle, but the performance
improvement is further accentuated by the availability of up to 32 working registers,
which make the coding of critical arithmetic routines and numerical algorithms more
efficient.

76 Day 4

Notes for the 16-Bit PIC and dsPIC® Microcontroller
Experts

Users of the MPLAB C30 compiler will have probably noticed by now how the new
MPLAB C32 compiler assigns different widths to common integer types. For example,
theint and short types used to be synonyms of 16-bit integers for the MPLAB C30
compiler. Althoughshort is still a 16-bit integer, for the MPLAB C32 compilet is

now really a synonym of theng integer type. In other wordiest has doubled its size.
You might be wondering what happens to the portability of code when such a dramatic
change is factored in.

The answer depends on which way you are looking at the problem. If you are porting th
code “up,” or, in other words, you are taking code written for a 16-bit PIC architecture to
a 32-bit PIC architecture, most probably you are going to be fine. Global variables will
use a bit more RAM space and the stack might grow as well, but it is also likely that the
P1C32 microcontroller model you are going to use has much more RAM to offer. Since
the new integer type is larger than that used in the original code, if the code was proper
written, you don’t have to worry about overflows and underflows.

On the contrary, if you are planning on porting some code “down,” even if this is just
being contemplated as a future option, you might want to be careful. If you are writing
code for a PIC32 and rely on tme type to be 32-bit large, you might have a surprise
later when the same code will be compiled into a 16-bit wide integer type by the MPLAE
C30 compiler. The best way to avoid any ambiguity on the width of your integers is to
useexact-widthtypes.

A special set of exact-width integer types is offered by the inttypes.h library. They includ
the following types:

int8_t Always an 8-bit signed type.

uint8_t Always an 8-bit unsigned type.

int16_t Always a 16-bit signed type.

uintl6_t Always a 16-bit unsigned type.

int32_t Always a 32-bit signed type.

uint32_t Always a 32-bit unsigned type.

int64_t Always a 64-bit signed type.

uinté4_t Always a 64-bit unsigned type.

NUMB3RS 77

If you use them when necessary, you can make your code more portable but also more
readable because they will help highlight the portions of your code that are dependent c
integer size.

Note

Another useful and sometimes misunderstood integer tygieast , defined in the stddef.h
library. It is meant to be used every time you need a variable to contain the size of an object i
memory expressed in bytes. It is guaranteed by each ANSI compiler to have the right range s
that it's always able to contain the size of the largest object possible for a given architecture. A:
expected, the functiogsizeof() , but also most of the functions in the string.h library, makes

ample use of it.

Tips & Tricks

Math Libraries
The MPLAB C32 compiler supports several standard ANSI C libraries, including these:

« limits.h contains many useful macros defining implementation-dependent limits,
such as, for example, the number of bits compostigua type (CHAR_BIT) or
the largest integer value (INT_MAX).

« float.h contains similar implementation-dependent limits for floating-point data
types, such as, for example, the largest exponent for a single precision
floating-point variable (FLT_MAX_EXP).

« math.h contains trigonometric functions, rounding functions, logarithms, and
exponentials but also many useful constants lik&pP() .

Complex Data Types

The MPLAB C32 compiler supports complex data types as an extension of both integer
and floating-point types. Here is an example declaration for a single precision
floating-point type:

__complex__ float z;

Note

Notice the use of a double underscore before and after the keyword complex.

78 Day4

The variable so defined has nowraal and arimaginary part that can be individually
addressed using, respectively, the syntax:

_real z
and
_imag__ z

Similarly, the next declaration produces a complex variable of 32-bit integer type:
__complex__ intx;

Complex constants are easily created adding the suéfi , as in the following
examples:

X=2+3j
z = 2.0f + 3.0f};

All standard arithmetic operations{*,/) are performed correctly on complex data
types. Additionally, the- operator produces the complex conjugate.

Complex types could be pretty handy in some types of applications, making the code
more readable and helping avoid trivial errors. Unfortunately, as of this writing, the
MPLAB IDE support of complex variables during debugging is only partial, giving
access only to the “real” part through the Watch window and the mouse-over function.

Exercises

1. Write a program that uses Timer2 as a stopwatch for real-time performance
measurements.

2. If the width of Timer2 is not sufficient, use Timer2 and Timer3 joined in the new
32-bit timer mode.

w

Test the relative performance of the division for the various data types.

H

Test the performance of the trigonometric functions relative to standard arithmet
operations.

5. Test the relative performance of the multiplication for complex data types

NUMB3RS 79

Books

Britton, RobertMIPS Assembly Language Programmifigrentice Hall , 2003) . It might
seem strange to you that | am suggesting a book about assembly programming. Su
we set off with the intention to learn programming in C, but if you're like me, you
won't resist the curiosity and you will want to learn the assembly of the PIC32 MIPS
core as well.

Links

http://en.wikipedia.org/wiki/Taylor_serie$f you are curious, this site shows how the
C compiler can approximate some of the functions in the math library.

This page intentionally left blank

Interrupts

The Plan

For reasons of efficiency, size, and ultimately cost, in the embedded-control world the
smallest applications, which happen to be implemented in the highest volumes, most
often cannot afford the “luxury” of a multitasking operating system and use the interrupt
mechanisms instead to “divide their attention” among the many tasks at hand. Interrupt:
provide a very strong mechanism feal-time control, allowing our applications to deal
with asynchronous external events. Unfortunately, the C programming language does
not incorporate the concept of interrupts in its model, leaving the embedded-control
programmer with the only choice of defining interrupts as a special kind of function.

Today we will see how the MPLABC32 compiler allows us to easily manage the
interrupt mechanisms offered by the PIC32 microcontroller architecture.

Preparation

This entire lesson will be performed exclusively with software tools, including the
MPLAB IDE, the MPLAB C32 compiler, and the MPLAB SIM simulator.

Use the New Project Setup checklist to create a new project called Interrupts and a new
source file, similarly called interrupts.c.

The Exploration

An interruptis an internal or external event that requires quick attention from the CPU.
The PIC32 architecture provides a rich interrupt system that can manage as many as

82 Day 5

64 distinct sources of interrupts. If necessary, each interrupt source can have a unique
piece of code, called theterrupt service routine (ISR)rinterrupt handler directly
associated with it, to provide the required response action. Interrupts can be completely
asynchronous with the execution flow of the main program. They can be triggered at an
point in time and in an unpredictable order.

Responding quickly to interrupts is essential to allow prompt reaction to the trigger ever
and a fast return to the main program execution flow. Therefore, the goal is to minimize
theinterrupt latency defined as the time between the triggering event and the execution
of the first instruction of the ISR. In the PIC32 architecture, the latency is extremely
short. Although it is fixed for each given interrupt source—only three or four instruction
cycles—other mechanisms common among all 32-bit architectures, such as the cache
and the bus arbitration module that we will review in detail in future expeditions, may
affect the overall response time, adding a small amount of nondeterminism. A deep
understanding of the interrupt mechanism will help us minimize and possibly cancel its
effect on our applications.

The MPLAB C32 compiler will help us manage the complexity of the interrupt system
by providing a few language extensions and a rich set of functions included in the plib.h
library.

Interrupts and Exceptions

To the MIPS core running inside the PIC32, all interrupts fall generally under the
category oexceptionsThis is a very broad category of events that gathers pretty much
anything that can disrupt the normal flow of a program. A reset command produces an
exception, an error in a division can produce an exception, but also access to a memory
address that is not implemented (or restricted) will produce an exception, and the list
goes on and on. Interrupts, after all, are the most benign kind of exception that can occl
The MIPS core relies on a fewectors(pointers to functions) located conveniently in
separate RAM, program memory, or both regions to cover all possible types of exceptio
(see Table 5.1). It is once more the role of the Startup code to place such vectors and
offer default handlers for all the essential exceptions an embedded control application
might need.

Don’t worry if not all the entries in Table 5.1 make sense to you. Some of them refer

to advanced features that we will encounter and discuss in a later chapter. Some are
related to features, part of the MIPS architecture, that have no practical application in th
PIC32MX implementation.

Interrupts 83

Table 5.1: Exception vectors table of the PIC32 architecture.

Exception Source | Memory Region Description

Reset and NMI Program Normal reset and nonmaskable interrupt entry point.

On-chip debug Program Used by the ICD and EJTAG interfaces to enable in
circuit debugging features.

Cache error RAM or Program Error condition specific to the cache mechanism.

TLB refill RAM or Program Not used on PIC32 because a fixed address translation
scheme (FMT) is used in place of a full MMU.

General exception | RAM or Program All other types of exceptions.

Interrupt RAM or Program The proper interrupt vector.

The basic MIPS interrupt mechanism provides for a single vector inside the exception
table, and therefore a single interrupt service routine, to be dedicated to all possible
interrupts events. Once the interrupt (exception) occurs, the content of a special register
(known ascause) gives the service routine all the information necessary to identify the
trigger event and the most appropriate action to take in response. To be able to resume
execution after the interrupt has been dealt with, it is fundamental for an interrupt service
routine to be able to save the processor conpeatqgue before taking any action and

to be able to restore pilogug later exactly as it was before the interruption. The exact
prologue and epilogue sequences can be somewhat convoluted and their analysis is
beyond the scope of our exploration. For now, it will suffice to know that the MPLAB C32
compiler makes all this automatic and safe by allowing us to define “special” C functions
for use as interrupt handlers, as long as a few limitations are kept in consideration, such

« Interrupt service functions are not supposed to return any value (useitlype
» No parameter can be passed to the function (use paranietgr
« They cannot be called directly by other functions.

» |deally, they should not call any other function.

The first three limitations should be pretty obvious given the nature of the interrupt
mechanism—since it is triggered by an asynchronous event, there cannot be parametel
or a return value because there is no proper function call in the first place. The last is
more of a recommendation to keep in mind for efficiency considerations.

84 Days

Sources of Interrupt

The following events can be used to trigger an interrupt. Among the external sources
available for the PIC32FJ512MX360L, there are:

» 5X external pins with level trigger detection

« 22X external pins connected to the Change Notification module
» 5X Input Capture modules

+ 5X Output Compare modules

» 2X serial port interfaces (UARTS)

« 4Xx synchronous serial interfaces (SPI &A@ |

« 1X Parallel Master Port
Among the internal sources, we count:

* 1X 32internal (core) timer

e 5X 16-bit timers

* 1X analog-to-digital converter

« 1X Analog Comparators module
» 1X real-time clock and calendar
e 1X Flash controller

» 1X fail-safe clock monitor

« 2X software interrupts

e 4X DMA channels

Other models of PIC32 may have a different mix of internal and external interrupt
sources. Many of these sources in their turn can generate several different interrupts. F
example, a serial port interface peripheral (UART) can generate three types of interrupt:

« When new data has been received and is available in the receive buffer for
processing

Interrupts 85

When data in the transmit buffer has been sent and the buffer is empty, ready ar
available to transmit more

When an error condition has been generated and action might be required to
reestablish communication

By design, up to a total of 96 independent events could be managed by the PIC32
interrupt control module. That’s a lot of interrupts!

Of course, when multiple sources of interrupts are enabled and used by an application,
there is a need for the ISR to identify the specific one at hand and to be able to branch
an appropriate segment of code to deal with it. As we will see shortly, several flags and
additional control mechanisms assist the programmer with this task.

Interrupt Priorities

Each interrupt source has seven associated control bits, grouped logically in various
special-function registers:

Thelnterrupt Enablebit (typically represented with the name of the interrupt
source peripheral followed by the suffie—in the device datasheet), a single bit
of data:

1. When cleared, the specific trigger event is prevented from generating
interrupts.

2. When set, it allows the interrupt to be processed.
At power-on, all interrupt sources are disabled by default.

Thelnterrupt Flag (typically represented with a suffi), a single bit of data,

is set each time the specific trigger event is activated, independently of the status
of the enable bit. Notice that, once set, it must be cleared (manually) by the user.
In other words it must be cleared before exiting the ISR, or the same interrupt
service routine will be immediately called again.

TheGroup Priority Level(typically represented with a suffilP). Interrupts can
have up to seven levels of priority (frdpil toipl7). Should two interrupt
events occur at the same time, the highest priority event will be served first.
Three bits encode the priority level of each interrupt source. At any given point,
the PIC32 execution priority-level value is kept in the MIPS core status register.

8 Day5

Interrupts with a priority level lower than the current value will be ignored. At
power-on, all interrupt sources are assigned a default leipbof, once more
assuring that all interrupts are disabled.

« TheSubpriority Level Two more bits are allocated to define four more possible
levels of priority within a priority group. If two events of the same priority level
occur simultaneously, the one with the highest subpriority will be selected first.
Once an interrupt of a given priority group is selected, though, any following
interrupts of the same level (even if of higher subpriority) will be ignored until the
current interrupt (flag) has been cleared.

Within an assigned priority level, a relative (default) priority among the various sources i
a fixed order of appearance is defined for any given PIC32 model. When everything else
fails (both group and subgroup priorities are identical), it is the natural order to decide
between two simultaneous events (see Table 5.2).

Table 5.2: Interrupt sources of the PIC32F)512MX360L.

Natural Macro IRQ Symbol Description
Order Abbreviation
0 (highest) | CT _CORE_TIMER_IRQ Core Timer Interrupt
1 CS0 _CORE_SOFTWARE_0_IRQ Core Software Interrupt 0
2 CS1 _CORE_SOFTWARE_1_IRQ Core Software Interrupt 1
3 INTO _EXTERNAL_O_IRQ External Interrupt 0
4 T1 _TIMER_1_IRQ Timer 1 Interrupt
5 1C1 _INPUT_CAPTURE_1_IRQ Input Capture 1 Interrupt
6 ocC1 _OUTPUT_COMPARE_1_IRQ | Output Compare 1 Interrupt
7 INT1 _EXTERNAL_T_IRQ External Interrupt 1
8 T2 _TIMER_2_IRQ Timer 2 Interrupt
9 IC2 _INPUT_CAPTURE_2_IRQ Input Capture 2 Interrupt
10 ocC2 _OUTPUT_COMPARE_2_IRQ | Output Compare 2 Interrupt
11 INT2 _EXTERNAL_2_IRQ External Interrupt 2

(continued)

Interrupts 87

Table 5.2: (Continued)

Natural Macro IRQ Symbol Description

Order Abbreviation

12 T3 _TIMER_3_IRQ Timer 3 Interru pt

13 IC3 _INPUT_CAPTURE_3_IRQ Input Capture 3 Interrupt

14 oC3 _OUTPUT_COMPARE_3_IRQ | Output Compare 3 Interrupt
15 INT3 _EXTERNAL_3_IRQ External Interrupt 3

16 T4 _TIMER_4_IRQ Timer 4 Interrupt

17 1IC4 _INPUT_CAPTURE_4_IRQ Input Capture 4 Interrupt

18 oc4 _OUTPUT_COMPARE_4_IRQ | Output Compare 4 Interrupt
19 INT4 _EXTERNAL_4_IRQ External Interru pt 4

20 T5 _TIMER_5_IRQ Timer S Interrupt

21 IC5 _INPUT_CAPTURE_S5_IRQ Input Capture 5 Interrupt

22 OCs _OUTPUT_COMPARE_5_IRQ | Output Compare 5 Interrupt
23 SPITE _SPIT_ERR_IRQ SPI 1 Fault

24 SPITTX _SPIT_TX_IRQ SPI 1 Transfer Done

25 SPITRX _SPIT_RX_IRQ SPI 1 Receiver Done

26 U1E _UART1_ERR_IRQ UART 1 Error

27 U1TRX _UART1_RX_IRQ UART 1 Receiver

28 UTTX _UART1_TX_IRQ UART 1 Transmitter

29 12C1B _12C1_BUS_IRQ 12C 1 Bus Collision Event

30 12C1S _I2C1_SLAVE_IRQ 12C 1 Slave Event

31 12CTM _I2C1_MASTER_IRQ 12C 1 Master Event

32 CN _CHANGE_NOTICE_IRQ Input Change Interrupt

33 AD1 _ADC_IRQ ADC Convert Done

34 PMP _PMP_IRQ Parallel Master Port Interrupt
35 CMP1 _COMPARATOR_1_IRQ Comparator 1 Interrupt

(continued)

88 Day$

Table 5.2: (Continued)

Natural Macro IRQ Symbol Description

Order Abbreviation

36 CMP2 _COMPARATOR_2_IRQ Comparator 2 Interrupt
37 SPI2E _SPI2_ERR_IRQ SPI 2 Fault

38 SPI2TX _SPI2_TX_IRQ SPI 2 Transfer Done

39 SPI2RX _SPI2_RX_IRQ SPI 2 Receiver Done

40 U2E _UART2_ERR_IRQ UART 2 Error

41 U2RX _UART2_RX_IRQ UART 2 Receiver

42 uU2TX _UART2_TX_IRQ UART 2 Transmitter

43 12C2B _12C2_BUS_IRQ 12C 2 Bus Collision Event
44 12C2S _12C2_SLAVE_IRQ 12C 2 Slave Event

45 12C2M _12C2_MASTER_IRQ 12C 2 Master Event

46 FSCM _FAIL_SAFE_MONITOR_IRQ | Fail-safe Clock Monitor Interrupt
47 RTCC _RTCC_IRQ Real Time Clock Interrupt
48 DMAO _DMAO_IRQ DMA Channel 0 Interrupt
49 DMAT1 _DMA1T_IRQ DMA Channel 1 Interrupt
50 DMA2 _DMA2_IRQ DMA Channel 2 Interrupt
51 DMA3 _DMA3_IRQ DMA Channel 3 Interrupt
56 (lowest) | FCE _FLASH_CONTROL_IRQ Flash Control Event

Interrupt Handlers Declaration

The MPLAB C32 compiler gives us two options to declare a function as “the” default

interrupt handlervector 0) at a given interrupt priorityigl1l , for example), using
either theattribute syntaxas follows:

void __ attribute__ ((interrupt(ipl1),vector(0)))
InterruptHandler(void)

Interrupts 89

{

/I your interrupt service routine code here. . .
} /1 interrupt handler

or thepragma syntaxas follows:

#pragma interrupt InterruptHandler ipll vector 0
void InterruptHandler(void)

{

/I interrupt service routine code here. . .
} /1 interrupt handler

In both cases the result is that the compiler treats the functeoruptHandler()
with the respect due to a proper ISR, including prologue and epilogue code sequences
that provide safe context save and restore.

The MPLAB C32 compiler uses theattribute__ (()) mechanism in this and

many other circumstances as a way to specify special attributes that modify the behavic
of the compiler without violating the C language syntax. Personally, | find this syntax toc
cryptic; the double underscore, before and after, and the double parentheses in particul
are hard on my eyes. My preferred way around the problem is to use a macro (defined i
sys/attribs.h) that has the additional advantage of resembling the one found in previous
P1C24 and dsPIC libraries:

__ISR(v, ipl)

In the following example, the ISR macro is used to the same effect of the previous
code snippet:

void __ ISR(0, ipl1) InterruptHandler (void)
{

/l interrupt service routine code here. . .
} /1 interrupt handler

The choice between the two syntax styles is yours and might well depend on your very
personal preferences and previous experiences. Further, should you ever need to port
code from a different compiler, chances are that one of the two methods will match your
original source code more closely. So keep both in mind; you never know when they
might come in handy.

90 Day5

The Interrupt Management Library

With up to 96 possible sources of interrupts, to manage the sophisticated priority
mechanisms made available by the PIC32 interrupt controller module, we can definitely
use a little help in the shape of a small library int.h provided as part of the standard
PIC32 toolset.

We can invoke it directly, as in:

#include <nth >

or indirectly as part of the entire peripherals support library:
#include <lib.h >

In both cases we gain access to a good number of precious little functions and macros
(recognizable by the lower case prefix), including these:

» INTEnableSystemSingleVectoredint(); is a function that follows a
precise sequence of initialization of the interrupt control module (as prescribed
in the device datasheet) to enable the basic interrupt management mode of the
PIC32. The unusually long function name is worth typing because it relieves us
from a considerable burden, making our code easy and safe.

* mXXSetIntPriority(x); is actually just a placeholder for a long list
of similar macros (replace the€X with the interrupt source abbreviations
from Table 5.2 to obtain each macro name). It assigns a given priority level
(from 0 to7) to the chosen interrupt source. The amount of work performed is
not much in this case, but there is a considerable convenience factor because
we are spared the painful search on the device datasheet for the leaxect
register where thelP bits corresponding to the chosen interrupt source can be
selected.

* mXXClearIntFlag(); is a macro that is, once more, representative of an entire
class of macros that allow us to clear the interrupt fi&g pit) of the chosen
interrupt source.

Single Vector Interrupt Management

Without any further hesitation, let’s start laying out a first example that will use an ISR fc
service a timer. We will enable the Timer2 module, setting its period to a count of 15 anc

Interrupts 91

requesting that an interrupt be generated. The global vacialie will be incremented
at each period by the interrupt service routine:

/*

** Single Interrupt Vector test
*/

#include <p32xxxx.h >
#include <plib.h >

int count;

#pragma interrupt InterruptHandler ipl1 vector O
void InterruptHandler(void)

{

count++;
mT2ClearIntFlag();
} /I Interrupt Handler

main()

{

/I 1. init timers
PR2 = 15;
T2CON = 0x8030;

/I 2. init interrupts

mT2SetIntPriority(1);
INTEnableSystemSingleVectoredInt();
mT2IntEnable(1);

/I 3. main loop
while(1);
} /I main

There is one fundamental action that each interrupt handler (no matter how simple) is
responsible for, and that is clearing the interrupt flag before returning. This is pretty muc
all our ISR is required to do beside incrementiognt .

Notice also that in thmain() function, after the the initializatioW1.) of the timer
control register and period register, the interrupt configurafian () is completed
before enabling the interrupt source. Also, the Timer2 interrupt priagitgn(st match
the priority level declared by thgragma syntax {pl1).

92 Day 5

Note

The compiler needs to know the priority level of the interrupt routine in order to use the correct
prologue and epilogue. In fact, as we will learn shortly, interrupts of ipl7 should be given a
special treatment, shorter prologue/epilogue, since they benefit from the availability of the
alternate register set for a fast context switch.

The same code can obviously be written the “hard way,” without using the int.h library
but making direct access to the special function registers responsible for the configuratit
of the interrupt controller:
/*

** Single Interrupt vector test
*/

#include <p32xxxx.h>

#define _T2IE IECObits.T2IE

#define _T2IF IFSObits. T2IF
#define _T2IP IPC2bits.T2IP

int count;

void __ISR(0, ipl1) InterruptHandler(void)
{

count++;

_T2IF=0;
} /l interrupt handler

main()

{
/I 1. init timers
PR2 = 15;
T2CON = 0x8030;

/I 2. init interrupts

_T2IP=1;
INTEnableSystemSingleVectoredint();
_T2IE =1;

/I 3. main loop
while(1);
} /I main

Interrupts 93

Note for the PIC24 AND dsPIC Experts

Unfortunately, the “shortcut” symbolsT2IF , T2IE, and _T2IP that used to be so
conveniently defined in the standard include files for the PIC24 and dsPIC architectures are n
more part of the standard include files of the MPLAB C32 compiler. If you are porting some
16-bit code and need the compatibility, you will have to follow my example and redefine the
shortcuts you need by hand on a case-by-case basis.

It is once more a matter of personal choice. Feel free to choose the style you like or tha
you find more intuitive and readable for your application.

Now it is time to get a new project ready for some hands-on interrupt testing:

1. Save the source file (of your choicediagle.c and, using th&lew Project
checklist, create a new projesthglemcp and add the source file to it.

2. Prepare the MPLAB SIM simulator for use as the debugging tool using the
MPLAB SIM Setup checklist.

3. Now build the project using tReoject | Build command (or th€trl + F10
shortcut).

4. Open the Watch windowiew | Watch) and add the global symbedunt
selecting it in the combo box and clicking théd Symbol button.

5. Select theMR2register in the SFR combo box and click #dd SFR button to
add it to the Watch window.

6. Place a breakpoint, inside the interrupt handler routine, on the line where count
incremented and choogaimate (or Run) to execute the code.

If all went well, you should see that the program execution has stopped after a short
while, reaching the breakpoint inside the interrupt handler. Although the code had been
“stuck” for a while inside the (empty) main loop, upon reaching its period (set in the
PR2register), the Timer2 generated an interrupt request and the interrupt handler was
transferred control.

Continuing with the animation (or running again) you will see ¢batt keeps being
incremented each time the execution of the main loop is btiefsrrupted.”

Notice that each time you reach the breakpoint, in the Watch window the value of
count is constantly updated and shown in red (since it keeps changing), but the value

94 Day5

a Interrupts - MPLAB IDE - [MPLAB IDE Editor]

—JEls E Yew Projct Debuoger Progammer Took Confure Wirdow tide =8l
| DS W m@ @AW 2| [Reicase o SBBO S@al| o noomd |
[nterrupts.mew 1% [Singiet o |
=] Interrupts.mcp g
{53 Source Fiss int count:
G
Snglel.
}] F-la: Hpragma interrupt InterruptHandler ipll wvector O
2 Object Fies Eh.ru:ul InterruptHandlier | void)
23 Library Fies & :
- COUnE++;
_—_1 Unkey: Seriph mTZClearIntFlag() :
'3 Other Fies “} // Interrupt Handier
[Elmain
/7 inic cimers p |
PRZ 2
T2CON OxB8030;
f£ init intercupts
mTZSecIntPriority(1):
mTZIncEnable | 1):
INTEnableSyscem3ingleVectoredInt () :
4/ main loop
while(1): :
L) /7 main =
(] Files | it Symbols = 3|
[watch_ [[output |
Add 5FR| [0 =] AddSymbal|[_efun s =] | B | Version Conol| Findin Fées | MPLAB SIM |
Symbol Name | Value | Executing: *C\Program Fi ficrochip\MPLAB C33\binipic32-goc exe® -mprocessor=32MXIE0F51 2L -xc-c‘Singl;]
THRZ 0x00000002 Make: The target "CACIAS Inferrupts\interrupts el is out of date.
count 0x00000007 Executing: "CiProgram Files\Microchip\MPLAB C328\bin\pic32-goc exe® -mprocessor=32M<360F512L "Singlel o®-
Executing "C\Program Files\Microchip\MPLAB C32\bin\pic32-binZhex.exe” "CACIZ5 Intemupts\interrupts elf*
Loaded CACIAS interruptsintemupts elf
BUILD SUCCEEDED
[Waich1 | Watch2| Watch3] Waichd | L | "
MeLABSIM [PICHMNISOFSIZL peDx9d000054 |]] e TV R

Figure 5.1: Screenshot of the single.c project.

of TMR2is always the same and, perhaps surprisingly, not zero. In fact, when the Timer
module reaches the value set in the period regiBed) (it does reset while it generates

a new interrupt, but it also proceeds counting while the PIC32 starts the execution of
the interrupt handler. By the time the interrupt handler prologue is completed and the
program counter reaches the breakpoint, Timer2 is already showing a value of 2. What"
have just done, perhaps involuntarily, is to obtain a rough measure of the interrupt hand
overhead. Since we chose to use a prescaler of 1.8 for the Timer2 clock input, a count
2 indicates that the prologue to the interrupt service routines occupies (at least) 16 clocl
cycles, equivalent to the execution of 16 instructions. You can verify it, if you are curious
by inspecting the code produced by the compiler in the Disassembly window.

But what would have happened if we had not selected a large prescale value (1:8) or
if we had selected a shorter period? Of course you can test it by yourself with minor
modifications to the example code. You will see how the interrupt routine gets called

Interrupts 95

over and over and there is no more time spent inside the main loop. Not a big loss in ou
simple example, | agree, but in a practical application this would be a disaster. When the
interrupts are too many, too frequent, or simply poorly managed, the main program can
stalled completely. It is our responsibility to make sure that the interrupt handler routine,
including its prologue and epilogue, is not using up all the available processor cycles.

Managing Multiple Interrupts

If multiple sources of interrupts are used by an application, assigning different priority
levels to each source solves only one part of the problem. The priority decides who gets
served first if two or more interrupt events happen simultaneously. But when one of the
(many) interrupts is being served, the others will have to wait for their turn to be served.
However, in some cases the application requires not only multiple interrupts but the
ability to nestthe interrupt calls. When a lower-priority interrupt is being served and the
ISR is being executed, a higher-priority interrupt might require immediate attention, in it:
turn interrupting the handler.

To enable nesting of interrupt calls, you will have to “manually” reenable interrupts
immediately upon entry in the interrupt handler (using a MIPS assembly instruction)
instead of waiting for the epilogue code to do it automatically upon exit.

Here is a simple example that extends our first project in an imaginary application wher
Timer3 is used to produce a second periodic interrupt of high(er) priority (level 3):

/*

** Single Vector Interrupt Nesting
*/

#include <p32xxxx.h >
#include <plib.h >

int count;

void __ ISR(0, ipl1) InterruptHandler(void)
{

/I 1. re-enable interrupts immediately (nesting)
asm("ei");

/I 2. check and serve the highest priority first
if (MT3GetIntFlag())

96 Day5

{

count++;
/I clear the flag and exit
mT3ClearIntFlag();

Y1 _T3

/I 3. check and serve the lower priority
else if (mT2GetIntFlag())
{

/I spend a LOT of time here!

while(1);

/I before clearing the flag and exiting
mT2ClearIntFlag();
Yi_T2
} /I Interrupt Handler

main()

{
/I 4. init timers
PR3 = 20;
PR2 = 15;
T3CON = 0x8030;
T2CON = 0x8030;

/I'5. init interrupts

mMT2SetIntPriority(1);
mT3SetIntPriority(3);
INTEnableSystemSingleVectoredint();
mT2IntEnable(1);

mT3IntEnable(1);

/I main loop
while(1);
}// main

Notice how in // 1. thei MIPS assembly instruction is used to reenable interruptions
immediately upon entry in the handler. Omit this line of code and your interrupts will be
queued automatically and served sequentially.

Also, in // 2. we use for the first time the new maeo8GetintFlag() from the int.h
library that, intuitively enough, allows us to test the Timer3 interrupt flag. Since multiple

Interrupts 97

interrupts are enabled, we need such a test to verify which one caused the interruption .
hand. We test the highest-priority interrupt source first, and we proceed down the priorit
listin // 3. until all the sources enabled by the application are considered.

To build and test the new code, follow these simple steps:

1.

2
3
4.
5
6

Save this code aesting.c and add it to the project using one of the many options
(checklists) available.

Removaingle.c from the project.

. Build the project.

Place areakpoint on the line whereount is incremented.
AddTMVR3 to the Watch window to keep an eye on the new timer value.

ClickAnimate and observe what happens.

If all goes as planned, you will observe the following sequence of events unfold under

your eyes:

1. The main initialization code in //4. and // 5. is executed straight through.

2. The application main loop is entered, and there we stay while the timers keep
counting.

3. Timer2 reaches its period first, resets, and generates the first interrupt (level 1).

4. The interrupt handler is called and the selection process begins.

5. After the test in //3. succeeds, the culprit is found, and the handler portion relati
to the Timer2 interrupt is executed.

6. Thisis a “long” loop, and the processor is stuck here for a while.

7. Timer3 reaches its period, resets, and generates a new interrupt of higher priori
(level 3).

8. The first interrupt handler is . . . interrupted, and a new interrupt handler begins.

9. The selection process takes us immediately inside the handler portion that take:

care of Timer3, whereount is incremented and the breakpoint puts an end to
the simulation.

98 Day5

So we did observe an interrupt . . . interrupting an interrupt handler. If you proceed with
the animation from here, now you will see the whole process unroll back.

10. The Timer3 interrupt flag is cleared.
11. The (nested) handler terminates.
12. Control returns to the first handler.

13. From here, in a normal application, we would see the Timer2 handler terminate
and return to the main loop where it all started.

But don’t hold your breath; this is not going to happen this time, as you might have
noticed. To make things more “interesting,” | have designed the portion of the interrupt
handler that takes care of the Timer2 interrupt (marked as // 3.) to be an infinite loop.
This is clearly an exaggeration meant to give us ample opportunity to observe the highe
priority interrupt kicking in.

The nesting scheme can be repeated at multiple levels for as long as the stack has
room and your mind can follow the nesting Russian dgédme. In practice, | strongly
discourage you to ever indulge in more than a two-level nesting scheme. It is just too ec
to get into some pretty convoluted situations where it is going to be very hard for you

to debug your way out. If you find yourself considering such a case, stop immediately,
take a deep breath, and think again. This is probably a sign that you don’t have your
priority scheme well thought out, your handlers are too long, or both things at once. Mot
probably, there is a better and cleaner way to arrange things.

Multivectored Interrupt Management

The basic PIC32 interrupt service mechanism, we have seen so far, is not too dissimilat
from the early 8-bit PI€ architectures, where all interrupt sources were funneled by a
single interrupt vector into a single interrupt service routine. This arrangement allows
for a great simplicity, but even considering the exceptional speed of the PIC32 (and its
ability to execute one instruction per clock cycle), the need to save the processor conte
followed by the need to proceed through a sequential review of all enabled sources of
interrupts can produce considerable overhead. As a consequence, a noticeable delay
might be added in responding to a critical event.

To provide the smallest possible overhead and give lightning response to high-priority
interrupts, the PIC32 offers an alternative mechanism thatvesesed interruptand

Interrupts 99

multiple register setdn particular, the PIC32MX family offers a 64-vector table and two
complete sets of 32 working registers that can be swapped automatically.

Notice that, although there can be as many as 96 interrupt sources in the PIC32
architecture, the maximum number of vectors is limited to 64 by the underlying MIPS
core. As a consequence, the PIC32 designers have arranged for some interrupts that
belong to the same peripheral to be grouped into the same vector (see Table 5.3

Table 5.3: Vector table for the PIC32MX360F512L.

Vector Number | Vector Symbol Notes
0 _CORE_TIMER_VECTOR
1 _CORE_SOFTWARE_O0_VECTOR
2 _CORE_SOFTWARE_1_VECTOR
3 _EXTERNAL_0_VECTOR
4 _TIMER_1_VECTOR
5 _INPUT_CAPTURE_1_VECTOR
6 _OUTPUT_COMPARE_1_VECTOR
7 _EXTERNAL_1_VECTOR
8 _TIMER_2_VECTOR
9 _INPUT_CAPTURE_2_VECTOR
10 _OUTPUT_COMPARE_2_VECTOR
11 _EXTERNAL_2_VECTOR
12 _TIMER_3_VECTOR
13 _INPUT_CAPTURE_3_VECTOR
14 _OUTPUT_COMPARE_3_VECTOR
15 _EXTERNAL_3_VECTOR
16 _TIMER_4_VECTOR
17 _INPUT_CAPTURE_4_VECTOR
18 _OUTPUT_COMPARE_4_VECTOR

(continued)

100 Day5

Table 5.3: (Continued)

Vector Number

Vector Symbol

Notes

19 _EXTERNAL_4_VECTOR

20 _TIMER_5_VECTOR

21 _INPUT_CAPTURE_5_VECTOR

22 _OUTPUT_COMPARE_5_VECTOR

23 _SPIT_VECTOR Groups all three SPI1 interrupts.
24 _UART1_VECTOR Groups all three UARTT interrupts.
25 _12C1_VECTOR Groups all 12C1 interrupts.

26 _CHANGE_NOTICE_VECTOR

27 _ADC_VECTOR

28 _PMP_VECTOR

29 _COMPARATOR_1_VECTOR

30 _COMPARATOR_2_VECTOR

31 _SPI2_VECTOR Groups all three SPI2 interrupts.
32 _UART2_VECTOR Groups all three UART2 interrupts.
33 _12C2_VECTOR Groups all 12C2 interrupts.

34 _FAIL_SAFE_MONITOR_VECTOR

35 _RTCC_VECTOR

36 _DMAO_VECTOR

37 _DMA1_VECTOR

38 _DMA2_VECTOR

39 _DMA3_VECTOR

44

_FCE_VECTOR

Interrupts 101

Assigning a separate vector (pointing to a separate handler function) to each group of
interrupt sources eliminates the need to test sequentially all possible sources of interruf
to find the one that needs to be served. But for a greater boost to the response time, the
alternate register set can be a real bonus. Upon entry into the interrupt handler, the PIC
can now simply swap the entire working registers set witfeah” new one instead of
having to save the entire context on the stack with the long (standard) prologue sequen

Further, nesting vectored interrupts is still a valid option to increase the responsiveness
the system when one or more lower-priority interrupts need to give way to higher-priority
ones. But, since there is only one alternate set of registers, often referred tehasltve
registers it would be dangerous to perform the swap twice. To prevent this kind of
situation, the register set “swap” is performed automatically but only for interrupt source
of the highest level (ipl7).

With little effort, we should be able to transform the previous example to take advantage
of the multivectored interrupt mode:

1. Split the single interrupt handler into two separate functions.

2. Inthe ISR macro, replace the single defadt or 0 with the appropriate
vector number (found in Table 5.3) for each interrupt source/handler.

3. Remove the interrupt flag test; it is now implicit, and each handler is called only
when the related interrupt source has raised the flag.

4. Set the Timer3 interrupt priority to level 7 to use the alternate register set feature
Remember to match the assigned level with th8R() declaration.

5. Replace the initialization function call with the new multivectored version:
INTEnableSystemMultiVectoredint();

6. Send me an email if you managed to type the preceding function call
without any typo on your first try. Courtesy of the PIC32 libraries’ team, you
could be the winner of a yet-to-be-determined grand prize for the “longest-
functioncallspelledwithouterrorsatfirsttry” contest!

Here is the new code that you will save as multiple.c and replace as the main file in our
project:

/*
** Multiple Vector Interrupt
*

102 Day5

#include <p32xxxx.h>
#include <plib.h>

int count;

void __ISR(_TIMER_3_VECTOR, ipl7) T3InterruptHandler(void)
{
/I 1. T3 handler is responsible for incrementing count
count++;

/I 2. clear the flag and exit
mT3ClearIntFlag();
} /1 T3 Interrupt Handler

void __ ISR(_TIMER_2_VECTOR, ipl1) T2InterruptHandler(void)
{

/I 3. re-enable interrupts immediately (nesting)

asm("ei ");

/I 4. T2 handler code here
while(1);

/I'5. clear the flag and exit
mT2ClearIntFlag();
} /1 T2 Interrupt Handler

main()

{
/I 5. init timers
PR3 = 20;
PR2 = 15;
T3CON = 0x8030;
T2CON = 0x8030;

/I 6. init interrupts

mT2SetIntPriority(1);
mT3SetIntPriority(7);
INTEnableSystemMultiVectoredint();
mT2IntEnable(1);

MT3IntEnable(1);

/I'7. main loop
while(1);
} /I main

Interrupts 103

If you build and animate the project, just as we did in the previous exercise, you should
be able to verify that things are now working very much the same.

The Timer2 interrupt kicks in first and keeps the processor busy for . . . well, a very long
time. But a Timer3 interrupt manages to interrupt the handler once more and update the
count Vvariable. In both cases, you will have noticed how the execution was transferred
immediately and very efficiently to the right routine (if we have used the right vector
numbers). What is not immediately obvious is how the response to the Timer3 interrupt
has been faster than that to Timer2 (and any previous example) because of a much shor
handler prologue. If you want proof, you can switch to the Disassembly window and
directly compare the two interrupt handler prologues. You will verify that the Timer3
interrupt handler requires half the instructions (and therefore time) than the low priority
Timer2 handler prologue. The difference will only increase, in a practical application, as
the main program grows in complexity and more registers need to be saved in the prolog

Note

Even when we use the alternate register set feature, there is a need for a short prologue. In fa
when we enter a high-priority handler (ipl7) with a fresh register set, we have to initialize at
least the stack pointer (one of the registers itself), copying it from the previous set. We alsc
need to modify the interrupt priority madkA() of the PIC32, in th8tatus register, to disable
lower-priority interrupts. The resulting (shortest possible) prologue still requires about seven
assembly instructions.

A Simple Application

Adding a few more lines of code, we can transform our previous examples into a more
practical application where Timerl is used to maintain a real-time clock keeping track of
tenths of a second, seconds, and minutes. As a simple visual feedback, we will use the lo
8 bits of PortA as a binary display showing the running seconds. Here is how to proceed:

« Declare a few new integer variables that will act as the seconds and minutes
counters:

int dSec = 0;
int Sec = 0;
int Min = 0;

« Have the interrupt service routine increment the tenths of a second counter:

dSec++;

104

Day 5

Note: For simplicity in this chapter we will assume the PIC32 is configured for operation
with a single 16MHz system and pheripheral clock. In Chapter 7 we will review in more
details the oscillator module and we will learn how to operate at much higher clock
frequencies squeezing the maximum performance out of the device.

A few additional lines of code will be added to take care of the carryover into seconds

and minutes.
+ Set the Timerl prescaler to 1:64 to help achieve the desired period:
T1CON=0x8020;

» Set the period register for Timerl to a value that (assuming a 16 MHz peripheral

clock with a 62.5ns period) will give us a 1/10th of a second period between
interrupts:

PR1=25000-1; // 25,000 * 64 * 62.5ns=0.1 s

+ Set PortA (LSB) as output and disable the JTAG port to gain full control of
all LEDs:

DDPCONDbits.JTAGEN = 0;
TRISA = 0xff00;

+ Add code inside the main loop to continuously refresh the content of PortA (LSB

with the current value of the seconds counter:

PORTA = Sec;

Save the new code as clock.c and replace it as the new project source file. Here is whai

should look like:
/*
** A real time clock
*%
** example 5
*/

#include <p32xxxx.h>
#include <plib.h>

int dSec = 0;

int Sec = 0;

int Min = 0;

/[1. Timerl interrupt service routine
void __ISR(0, ipl1) TlInterrupt(void)

Interrupts

105

/I 1.1 increment the tens of a second counter
dSec++;
if (dSec > 9) // 10 tens in a second
{
dSec = 0;
Sec++; /I increment the seconds counter
if (Sec > 59) // 60 seconds make a minute
{
Sec = 0;

Min++; /I increment the minute counter

if (Min >59) // 59 minutes in an hour
Min = 0;
} /I minutes
} /I seconds

/I 1.2 clear the interrupt flag
mT1ClearIntFlag();
} /ITlinterrupt

main()

{
/I 2.1 init I/Os
DDPCONDbits.JTAGEN = 0; /I disable JTAG port
TRISA=0xff00; // set PORTA LSB as output

/I 2.2 configure Timerl module
PR1 = 25000-1; /I set the period register
T1CON = 0x8020 ;// enabled, prescaler 1:64, internal clock

/I 2.3 init interrupts

mT1SetIntPriority(1);
mT1ClearIntFlag();
INTEnableSystemSingleVectoredint();
mT1IntEnable(1);

/I 2.4. main loop
while(1)
{

/l your main code here

106 Day 5

PORTA=Sec;
} /I main loop
} /I main

To test the new project using the MPLAB SIM simulator, follow these simple steps:

1. Open the Watch window (dock it to your favorite spot).

2. Add the following variables:
« dSec, select from the Symbol pull-down box, then cliettd Symboal.
» TMR1] select from the SFR pull-down box, then cliotd SFR.
« Status , select from the SFR pull-down box, then cliottd SFR.

3. Open the Simulator StopWatch wind@etjugger | StopWatch).

4. Set a breakpoint on the first instruction of the interrupt response routine after 1.:
Set the cursor on the line and from the right-click menu, sBét@&reakpoint,
or simply double-click. By setting the breakpoint here, we will be able to observe
whether the interrupt is actually being triggered.

5. Execute a Rubdébugger | Run or press$=9). The simulation should stop
relatively quickly, with the program counter cursor (the green arrow) pointing
right at the breakpoint inside the ISR.

So we did stop inside the interrupt service routine! This means that the trigger event
was activated; that is, the Timerl reached a count of 24,999 (remember, though, that
the Timerl count starts with O; therefore, 25,000 counts have been performed), which,
multiplied by the prescaler value, means that 2500, or exactly 1.6 million, cycles
have elapsed.

The StopWatch window will confirm that the total number of cycles executed so far is,
in fact, slightly higher than 1.6 million. The StopWatch count includes the time required
by the initialization part of our program, too. At the PIC32’s execution rate (16 million
instructions per second), this all happened in a tenth of a second!

From the Watch window, we can now observe the current value of the processor interru
priority mask (M), a bit field inside thStatus register. Since we are inside an ISR that
was configured to operate at leygll , we should be able to verify that bits 10 thru 15

of the status registesfatus) contain the value.

Interrupts 107

In Figure 5.2, | have circled the portion of 8tetus register containing the interrupt
mask (M) bit field, as shown in the Watch window. Also, the StopWatch shows the
time lapsed (in milliseconds) from start to the first breakpoint. Single-stepping from the
current position (using either tiseepOver or theStepin commands), we can monitor
the execution of the next few instructions inside the ISR. Upon its completion, we can
observe how the interrupt mask returns back to zero:

1. After executing anothBun command, we should find ourselves again with the
program counter (represented graphically by the green arrow) pointing inside the
ISR. This time, you will notice that exactly 1.6 million cycles have been added to
the previous count.

2. Add thesec andM n variables to the Watch window.

3. Execute thRun command a few more times to verify that, after 10 iterations, the
seconds counte&ec is incremented.

& Interrupts - MPLAB IDE v8.01 - [MPLAB IDE Editor]
jmmmmwmmrmkmﬂpnmmmh

e

| DEH /e (58w e | bow dosRBO (SHall s uwpprR
mew X1 singiel.c| Single2.c| Nesting o | mtiple.c clocke | clockk | clockitcec|

#include <p32xxxx.h
Hinclude <plib.h>

= - Interrupts.mcp
= 1 Source Fles

ttfix]

ﬂ int dSec 0:
1] Header Files o
i-_JiOh Fdes int Sec = 0O;
LJLh::He-; int Min = 0;
f__]LNwSuut /7 1. Timerl interrupt service routine
' Other Fies Hvoid _ISR(O, ipll) TiIncerrupt(void]

ff 1.1 increment the tens of & second counter

SN e

[Watch £ | =] if | dSec > 9) // 10 tens in a second
1 t
sddsrR|[0] AsdSmea| ¥ \
Aadsrr| A o] i <8
Symbol Name I Value I Sec++: // increment the seconds counter
dSec Ox00D00001 |
Sec 0x00000000 =] if (Sec > 59) // 60 seconds make & minuce
Hin Ox00000000 | t
Status 0x00100401 Sec = 0:
Hin++: // increment the minute counter

if (Min > 59]// 59 minutes in an hour
Hin = O;
+ } // minutes

[Waten1 | Waich2] waicha] warena] fLel 1
[Stopwatch (=1 [output
Budd | Version Contiol | Findin Files MPLAB SIM

H S

Total smu

Smch | Instrucion Qﬂur—m—
_‘_J Time [mSecs] I_'c_!—

| Processor Frequancy (MHz) Tﬁm|

Figure 5.2: Screenshot Clock.c simulation.

108 Day5

To test the minutes increment, you might want to remove the current breakpoint and
place a new one a few lines below; otherwise you will have to execukaith@ommand
exactly 600 times!

1. Place the new breakpoint on the++ statement in 1.2.
2. Execut®un once and observe that the seconds counter has already been cleare

3. Execute thet ep Over command once and the minute counter will be
incremented.

The interrupt routine has been executed 600 times, in total, at precise intervals of one
tenth of a second. Meanwhile, the code present in the main loop has been executed
continuously to use the vast majority of the grand total of 960 billion cycles. In all
honesty, our demo program did not make much use of all those cycles, wasting them
all in a continuous update of the PortA content. In a real application, we could have
performed a lot of work, all the while maintaining a precise real-time clock count.

The Secondary Oscillator

There is another feature of the PIC32 Timerl module (common to all previous
generations of 8-bit and 16-bit PIC microcontrollers) that we could have used to obtain
a real-time clock. In fact, there is a low-frequency oscillator (known asettendary
oscillator) that can be used to feed the Timerl module instead of the high-frequency
clock. Since it is designed for low-frequency operation (typically it is used in conjunction
with an inexpensive 32,768 Hz crystal), it requires very little power to operate. And since
it is independent from the main clock circuit, it can be maintained in operation when

the main clock is disabled and the processor enters one of the many possible low-powe
modes. In fact, the secondary oscillator is an essential part for many of those low-powel
modes. In some cases it is used to replace the main clock, in others it remains active or
to feed the Timerl or a selected group of peripherals.

To convert our previous example for use with the secondary oscillator, we will need to
perform only a few minor modifications, such as:

+ Change the interrupt routine to count only seconds and minutes; the much slowe
clock rate does not require the extra step for the tenth of a second:

/I 1. Timerl interrupt service routine
void __ISR(0, ipl1) TlInterrupt(void)

Interrupts 109

{
/1.1
Sec++; /I increment the seconds counter
if (Sec > 59) // 60 seconds make a minute
{
Sec = 0;
Min++; /I increment the minute counter
if (Min >59) // 59 minutes in an hour
Min = 0;
} /I minutes

/[1.2 clear the interrupt flag
mT1ClearIntFlag();
} /[Tlinterrupt

« Change the period register to generate one interrupt every 32,768 cycles:

PR1 = 32768-1; Il set the period register

» Change the Timerl configuration word (the prescaler is not required anymore):
T1CON = 0x8002; /[enabled, prescaler 1:1, use secondary
oscillator

Unfortunately, you will not be able to immediately test this new configuration with the
simulator, since the secondary oscillator input is not fully supported by MPLAB SIM.

In a later lesson we will learn how a new set of tools will help us genestitadus file
that could also be used to provide a convenient emulation okEB2rystal connected
to theT1CK andSOSCI pins of the PIC32.

The Real-Time Clock Calendar (RTCC)

Building on the previous two examples, we could evolve the real-time clock
implementations to include the complete functionality of a calendar, adding the count of
days, days of the week, months, and years.

These few new lines of code would be executed only once a day, once a month, or onc
a year and therefore would produce no decrease whatsoever in the performance of the
overall application. Although it would be somewhat entertaining to develop such code

once, considering leap years and working out all the details, the PIC32MX family alread
has a complete Real-Time Clock and Calendar (RTCC) module built in and ready for us

110 Days5

How convenient! Not only does it work from the same low-power secondary oscillator,
but it comes with all the bells and whistles, including a built in Alarm function that can
generate interrupts. In other words, once the module is initialized, it is possible to activa
the RTCC module and wait for an interrupt to be generated. For example, the interrupt
can be set for the exact month, day, hour, minute, and second you desire once a year («
if set on February 29, even once every four years!).

This is what the interrupt service routine would look like:

/[1. RTCC interrupt service routine
void __ISR(0, ipl1) RTCClnterrupt(void)
{

/I 1.1 your code here, will be executed only once a year
I/l or once every 365 x 24 x 60 x 60 x 16,000,000 MCU cycles
/I that is once every 504,576,000,000,000 MCU cycles

// 1.2 clear the interrupt flag
MRTCCClearIntFlag();
} /I RTCClnterrupt

To initialize the RTCC module, though, we will need to substantially modify the main
program. The proper configuration of the RTCC module requires a number of registers t
be accessed in the right order and filled with the correct data. Fortunately, as part of the
standard PIC32 peripheral libraries including plib.h, we gain access to a powerful set of
functions that make the entire process quite painless. Here is all the code required:

main()
{
/[2.1 init I/0s
DDPCONDbits.JTAGEN = 0; // disable JTAG port
TRISA = 0xff00; // set PORTA LSB as output
/I 2.2 configure RTCC module
Rtcclnit(); [/ inits the RTCC
/I set present time
rtccTime tm; tm.sec=0x15; tm.min=0x30; tm.hour=01;

/I set present date

rtccDate dt;

dt.wday=0; dt. mday=0x15; dt.mon=0x10; dt.year=0x07;
RtccSetTimeDate(tm.l, dt.l);

Interrupts 111

/I set desired alarm to Feb 29th
dt.wday=0; dt.mday=0x29; dt.mon=0x2;
RtccSetAlarmTimeDate(tm.l, dt.l);

/I 2.2 init interrupts,
MRTCCSetIntPriority(1);
MRTCCClearIntFlag();
INTEnableSystemSingleVectoredInt();
MRTCCIntEnable(1);

// 2.3. main loop
while(1)
{
/I your main code here
...
} /I main loop
} /I main

Debriefing

In this lesson, we have seen how an interrupt service routine can be simple to code,
thanks to the language extensions built into the MPLAB C32 compiler and the powerful
interrupt control mechanisms offered by the PIC32 architecture. Interrupts can be an
extremely efficient tool in the hands of the embedded-control programmer to help mana
multiple tasks while maintaining precious timing and resources constraints. At the same
time, they can be an extremely powerful source of trouble. In the PIC32 reference mant
and the MPLAB C32 User Guide, you will find much more useful information than we
could possibly cram into one single day of exploration. Today we took the opportunity to
learn more about the uses of Timerl and the secondary low-power oscillator, and we gc
glimpse of the features of the powerful Real-Time Clock and Calendar (RTCC) module.

Notes for the PIC Microcontroller Experts

Notice that on the PIC32 architecture, a pair of convenient instructions allow enabling
and disabling of all interrupts at once. If there are portions of code that require all interrupt
to be temporarily disabled, you can use the following inline assembly commands:

asm("di");
e /I protected code here
asm("ei");

112 Day 5

But if the portion of code you want to protect from interrupts could be used at times
when you don’t know whether interrupts are already enabled/disabled, you might
want to use a bit more caution and call one of the following two functions from the
plib.h library:

+ INTDisableInterrupts(); not only disables interrupts but also returns a
value corresponding to the original interrupts status.

+ When you're finished, useTRestorelnterrupts(status); to restore the
original system status.

Tips & Tricks

According to the PIC32 datasheet, to activate the secondary low-power oscillator, you
need to set thBOSCENMNit in theOSCCONegister. But before you rush to type the code

in the last example and try to execute it on a real target board, notice tOSOON

register, containing vital controls for the MCU affecting the choice of the main active
oscillator and its speed, is protected by a locking mechanism. As a safety measure, you
will have to perform a special unlock sequence first or your command will be ignored.
The PIC32MX peripheral libraries come to our rescue in this case with a number of
useful functions that manipulate the oscillator module configuration and perform all the
necessary lock and unlock sequences, including:

*+ mOSCEnableSOSC(), lets us enable or disable@SCDisableSOSC()) the
external secondary oscillator (SOSC) at run time.

« 0OSCcConfig(), can change dynamically (during program execution) the desired
clock source, the PLL multiplier, PLL postscaler, and/or the FRC divisor.

+ mOSCSetPBDIV() , lets us change the Peripheral Bus clock divider dynamically.
Use this function with great caution because it will simultaneously affect the
operation of all your peripherals.

Note

Changing the clock source will succeed only if the Clock Switching configuration bit is
enabled. Check your settings in Benfigure | Configuration bits menu or your configuration
bit #pragmas.

Interrupts 113

Two additional functions take care of reconfiguring the PIC32MX for IDLE and SLEEP
mode operation:

* mPowerSaveSleep() , stops both the system clock and the peripheral bus clock
of the PIC32 and the device goes into an ultra low-power mode. Any reset and
active asynchronous (remember the peripheral clock is stopped) pefgpheral
event will wake up the device, even if the corresponding interrupt is not enabled.
Examples of valid wakeup sources are Change Notification module inputs,
External Interrupt pins, Reset, and Brown Out signals.

« mPowerSaveldle() , stops the system clock but leaves the peripheral clock
running. Any active peripheral interrupt source can wake up the device. Example
of valid wakeup sources are UART, SPI, Timers, Input Capture, Output Compare
and most other peripherals.

Exercises

Write interrupt-based routines for the following peripherals:
1. Edge selectable interrupts
2. Change notification interrupts

3. Output compare

Books

Curtis, Keith EEmbedded MultitaskingNewnes , Burlington, MA, 2006) . Keith
knows multitasking and what it takes to create small and efficient embedded-control
applications.

Links

http://en.wikipedia.org/wiki/InterruptsThis is a great starting point to learn about
interrupts.

http://en.wikipedia.org/wiki/Computer_multitaskinfp continue with multitasking,
especially keeping an eye on real-time multitasking and asynchronous events
handling.

This page intentionally left blank

Memory

The Plan

The beauty of using a completely integrated, single-chip microcontroller device lies

in its reduced size, its increased robustness, and the convenience of having a complete
set of peripherals harmoniously preassembled for us, ready for use. Unfortunately, as
most embedded-control designers quickly realize, it is the amount of available memory
(Flash and RAM) that most often seems to dictate the cost and availability of a product.
Learning how to make the most use of both is imperative.

Today we will review the basics of string declaration and manipulation in C language as
an excuse to investigate the memory allocation techniques used by the MPI132B
compiler. The PIC32 core offers some pretty advanced features never before seen on 8
16-bit PIC® architectures. These include the ability to remap memory spaces, to cache
memory contents, and to share the memory bus with a direct memory access (DMA)
mechanism. We will use several tools, including the Disassembly Listing window, the
Memory window, and the Map file, to investigate how the MPLAB C32 compiler and
linker operate in combination to generate the most compact and efficient code.

Preparation

This lesson will be performed exclusively with software tools, including the MPLAB
IDE, the MPLAB C32 compiler, and the MPLAB SIM simulator.

Use the New Project Setup checklist to create a new project 8allads and a new
source file, similarly calledtrings.c.

116 Day 6

The Exploration

Strings are treated in C language as simple ASCII character arrays. Every character
composing a string is assumed to be stored sequentially in memory in consecutive 8-bit
integer elements of the array. After the last character of the string, an additional byte
containing a value of O (represented in a character notation With) is added as a
termination flag.

Note

This is just a convention that applies to the standard C string manipulation library string.h. It
would be entirely possible, for example, to define a different library that, for example, stores
strings in arrays where the first element is used to record the length of the string. In fact, Pasc:
programmers will be very familiar with this method.

Let’s get started by reviewing the declaration of a variable containing a single character

char c;

As we have seen from the previous lessons, this is how we declare an 8-bit integer
(character) that is treated as a signed vahE2g .+127) by default.

We can declare and initialize it with a numerical value:
char ¢ = 0x41;

Or we can declare and initialize it with an ASCII value:
charc = ‘a';

Note the use of the single quotes for ASCII character constants. The result is the same,
and to the C compiler there is absolutely no distinction between the two declarations;
charactergsre numbers.

We can now declare and initialize a string as an array of 8-bit integers (characters):
char s[5] = { 'H, B, L, L O}
In this example, we initialized the array using the standard notation for numerical arrays

But we could have also used a far more convenient notation (a shortcut) specifically
created for string initializations:

char s[5] = "HELLO';

Memory 117

To further simplify things and save you from having to count the number of characters
composing the string (thus preventing human errors), you can use the following notatior

char s[] = "HELLO';

The MPLAB C32 compiler will automatically determine the number of characters
required to store the string while automatically adding a termination character (zero)
that will be useful to the string manipulation routines later to correctly identify the
string length. So, the preceding example is, in truth, equivalent to the following
declaration:

char s[6] = { '‘H,'E," L', 'L, o, 0}k

Assigning a value to a char (8-bit integer) variable and performing arithmetic on it is no
different than performing the same operation on any integer type:

char c; /l declare ¢ as an 8-bit signed integer
c= ‘'a'; Il assign the value "a' from the ASCII table
C ++; /l increment it -
/I it will represent the ASCII character 'b'

The same operations can be performed on any element of an array of characters (string
but there is no simple shortcut, similar to the one used above, for the initialization that
can assign a new value to an entire string:

char s[15]; /I declare s as a string of 15 characters
s= "Hello! "; //Error! This does not work!

Including the string.h file at the top of your source file, {@ain access to numerous
useful functions that will allow you to:

+ Copy the content of a string onto another:

strepy(s, "HELLO'); [/Is: "HELLO
» Append (or concatenate) two strings:

strcat(s, "WORLD); /Is: "HELLO WORLD
« Determine the length of a string:

i = strlen(s); Mi:11

and many more.

118 Day6

Memory Space Allocation

Though a compiler’s job is that of generating the code that manipulates variables, it is
the linker that is responsible for decidiwberevariables are to be placed in memory,
finding a physical address for every object in the memory space(s) available. Just as wi
numerical initializations, every time a string variable is declared and initialized, as in:

char s[] = " Exploring the PIC32 "

three things happen:

»« The MPLAB C32 linker reserves a contiguous set of memory locations (in RAM
space) to contain the variable—20 bytes in the preceding example. This space is
part of the so-calledata section.

» The MPLAB C32 linker stores the initialization value in a 20-byte-long table
(in Flash program space). This space is part ofddfeta code section or read-

only section.

+ The MPLAB C32 compiler creates a small routine that will be called before the
main() function (part of the Startup code we mentioned in previous chapters) to
copy the values into RAM, therefore initializing the variable.

In other words, the string “Exploring the PIC32” ends up using twice the space you
would expect, because a copy of it is stored in Flash program memory and space is
reserved for it in RAM memory, too. Additionally, you must consider the initialization
code and the time spent in the actual copying process. If the string is not supposed to b
manipulated during the program execution but is only used “as is,” transmitted to a seriz
port or sent to a display, there is no need to waste precious resources. Declaring the str

as aconstantwill save RAM space and initialization code and time:

const char s[] = " Exploring the PIC32 "

Now the MPLAB C32 linker will only allocate space in program memory, imdthaa
code section, where the string will be directly accessible. The string will be treated by th
compiler as a direct pointer into program memory and, as a consequence, there will be

need to waste RAM space.

In the previous examples of this lesson, we saw other strings implicitly defined as
constants—for example, when we wrote:

strepy(s, "HELLO);

Memory 119

The string “HELLO” wasmplicitly defined as ofonst char type and similarly
assigned to thendata section in program memory.

Note

If the same constant string is used multiple times throughout the program, the MPLAB C32
compiler will automatically store only one copy in tluglata section to optimize memory
use, even if all optimization features of the compiler have been turned off.

We will start investigating these issues with the MPLAB SIM simulator and the
following short snippet of code:

/*

** Strings

*/

#include <p32xxxx.h >
#include <string.h >

/I 1. variable declarations

const char a[] = " Exploring the PIC32 "
char b[100] = "Initialized "
/[2. main program
main()
{
strepy(b, "MPLAB C32"); [/ assign new contentto b
} /I main

1. Build the project using thi& oject Build checklist.
2. Add the Watch window (and dock it to the preferred position).

3. Select the two variablasandb from the symbol selection box and
click theAdd Symbol button to add them to the Watch window
(see Figure 6.1).

A little + symbol enclosed in a box will identify these variables as arrays and will
allow you to expand the view to identify each individual element (see Figure 6.2).

120 Day6

[watch1 | Watch2| Watch3| Watch4 |

Figure 6.1: Watch window containing two strings.

[3
[4]1
(sl
[€]
[n
(8]

|wad.r1mwatd12] Waich3| Weichd|

Figure 6.2: String Expanded view.

By default, MPLAB shows each element of the array as hex values, but you can change
the display to ASCII characters or to reflect your personal preferences:

1. Select one element of the array withldfiiebutton of your mouse.
2. Right-click to show the Watch window menu.

3. SelecProperties (the last item in the menu).

You will be presented with the Watch window Properties dialog box (see Figure 6.3).

From this dialog box you can change the format used to display the content of the
selected array element, but you can also observe the Memory field (grayed) that tells yc
where the selected variable is allocated: data or code space.

Memory 121

watch 21|

Watch Properties I Prefeiencesl General [

ngbd:fE ~|

Earmal:lASCII - |
Byte Urder:IHigh:an . |

Memony: |-

Figure 6.3: The Watch window Properties dialog box.

If you select the Properties dialog box for the constant sttiggu will notice that the
memory space is indicated as Program, confirming that the constant string is using only
the minimum amount of space required in the Flash program memory of the PIC32 and
no RAM needs to be assigned to it.

On the contrary, the Properties dialog box will reveal how the diringllocated in a
File Register, or in other words RAM memory.

Each variable value can be simultaneously presented in multiple formats by adding new
columns to the table inside the Watch window:

1. Select theop row of the table inside the Watch window (in the column to the
right of the default Value column).

2. Select any of the additional formats (ch€blar, for example).

3. Repeat for as many formats as you want, or have space for, inside the window.

122 Day6

Continuing our investigation, notice how the stringppears to be already initialized; the
Watch window shows it’s ready to use, right after the project build.

The stringb, on the other hand, appears to be still empty, uninitialized. Only when we
enable the MPLAB SIM simulator and we click the reset button for the first time to react
the beginning of the main function is the strimgpitialized with the proper value (see
Figure 6.4).

watch |
AddSFFil IaU "I Add Symboll | V|
Symbol Name] Value | Char | =
H a =
B b
[0} 0Ox49 L) 1

[1] Ox6E
[2] Ox69
[3] Ox74
[4] Ox69
[5] Ox61
[6] Ox6C
[71 Ox69

[Watch1 Weich2| Wetch3] wWatchd]

=

0 e ot

B

Figure 6.4: The string b after the Startup code execution.

As we have seeb,is allocated in RAM space, and the Startup code must be executed
first for the variable to be initialized and “ready for Use.

Once more we can use the Disassembly Listing window to observe the code produced |
the compiler:

14; /I 2. main program

15: main()

16: {

9D000018 27BDFFE8 addiu sp,sp, -24

9D00001C AFBF0014 sw ra,20(sp)

9D000020 AFBEO0010 sw $8,16(sp)

9D000024 03A0F021 addu s8,sp,zero

17: strepy(b, "MPLAB C32"); /[assign new content to b

9D000028 3C02A000 lui v0,0xa000

Memory 123

9D00002C 24440000 addiu ao,v0,0
9D000030 3C029D00 lui v0,0x9d00
9D000034 2445074C addiu al,v0,1868
g9D000038 0F400016 jal 0x9d000058
9D00003C 00000000 nop

18: } /I main

9D000040 03COE821 addu sp,s8,zero
9D000044 8FBF0014 Iw ra,20(sp)
9D000048 8FBEO010 Iw s8,16(sp)
9D00004C 27BD0018 addiu sp,sp,24
9D000050 03E00008 jr ra

9D000054 00000000 nop

We can see that theain() function is short and followed by tlsecpy()

library function full disassembly appended at the bottom of the listing. Don't let the
length and apparent complexity of the function distract you; it is a pretty optimized
piece of code that is designed to take maximum advantage of the 32-bit bus and
cache system used by the PIC32. Its analysis is beyond the scope of our
explorations today.

You should instead appreciate that this is the only routine attached. Although the
string.h library contains dozens of functions, and the include file string.h contains the
declarations for all of them, the linker is wisely appending only the functions that are
actually being used.

Looking at the Map

Another tool we have at our disposal to help us understand how strings (and in
general any array variable) are initialized and allocated in memory isépefile

This text file, produced by the MPLAB C32 linker, can be easily inspected with the
MPLAB editor and is designed specifically to help you understand and resolve
memory allocation issues.

To find this file, look for it in the main project directory where all the project source
files are. Seledtile | Open and then browse until you reach the project directory.

By default the MPLAB editor will list all the .c files, but you can change the File Type
field to .map (se€igure 6.5).

124

Day 6

All Source Files [".c;”. h;".asm;".as.;".inc".s;" bas 'l

&ll Source Files (*.c;” h;". asm;" as.".inc.” s, bas;" s
Assembly Source Files [*.asm;” as;"inc;™. g)

C Source Files [*.c;* h)

Basic Source Files [* bas;".inc)

SCL Source Files [*.scl)

Linker Files [*.Ink;" lkr;*.gld)

List Files [*.Ist

Al Files [%.7]

Figure 6.5: Selecting the .map file type.

Map files tend to be pretty long and verbose, but by learning to inspect only a few critice
sections, you will be able to find a lot of useful data. Essentially this file is composed of
three parts:

The List of Included Archive Membeiighis is a list of filenames of all the library
modules and object files the linker considered to build the project, followed by the
file that caused it to be included and the specific symbol that was required. Most
of these files are included automatically by the linker script, but you will promptly
recognize a line containing our main object file strings.o, where we called the
functionstrcpy() that in turn caused strcpy.o to be linked in. Here is the line
that documents it:

C:/Program Files/Microchip/../pic32mx/lib\libc.a(strcpy.o)
Strings.o (strcpy)

The Memory Configuration Tabl&his contains the position and size of each
memory area, both data and program, used by the project. This is supposed to fi
the configuration of the specific PIC32 device chosen. Here is the table:

Memory Configuration

Name Origin Length
Attributes

ksegO_program_mem 0x9d000000 0x00080000 Xr
kseg0_boot_mem 0x9fc00490 0x00000970
exception_mem 0 x9fc01000 0x00001000

ksegl boot_mem 0xbfc00000 0x00000490
debug_exec_mem 0xbfc02000 0x00000ff0

config3 Oxbfc02ff0 0x00000004

Memory 125

config2 Oxbfc02ff4 0x00000004
configl Oxbfc02ff8 0x00000004
config0 OxbfcO2ffc 0x00000004
ksegl data _mem 0xa0000000 0x00008000 w X
sfrs 0xbf800000 0x00100000
default 0x00000000 Oxffffffff

You will find some of the area names to be intuitively understandable, whereas
others (that follow a long MIPS tradition) will look rather arcane.

« The Linker Script and Memory Maphis is the longest part containing a
seemingly interminable list ahemory sectiomames. Each one of the memory
sections is eventually placed by the linker in one of the memory areas listed
previously, according to strict rules defined in the linker script. The sections we
are most interested in are the following:

1. .reset section, containing the code that will be placed by the linker at the reset
vector. This is normally filled with a default handlergset()):
.reset Oxbfc00000 0x10 C:/ ... Ipic32mx/lib/crt0.0
0xbfc00000 _reset

2. .vector_ x sections—there are 64 of them, each associated to the correspondin
interrupt handler. They will be empty unless your program is using the specific
interrupt handler.

.vector_0 0x9fc01200 0x0

3. .startup section, where the0 initialization code is placed.
.Startup 0x9fc00490 0x1e0 C:/ ... llib/crt0.0

4. text sections—you will find many of them, where all the code generated by the
MPLAB C32 compiler from your source files is placed. Here is the specific part
produced by oumain() function:

.text 0x9d000018 0x40 Strings.o
0 x9d000018 main

Note

The name of this section (.text), although somewhat misleading, follows a long tradition among
C compilers. It has been used since the original implementation of the very first C compiler.

126 Day 6

5. .rodata section, where read-only (constant) data is placed in program memory
space. Here we can find space for our constant sdrifay example:

.rodata 0x9d000738 0x20 Strings.o
0x9d000738 a
6. .data section, where RAM memory is allocated for global variables.
.data 0xa0000000 0x64 Strings.o
0xa0000000 b

7. And finally a pointer to theatal section, where the initialization value, ready
for the CO code to load into ttevariable, is placed, once more, in program

memory space:

*(.datal)
0x9d00076¢ _data_image_begin=LOADADDR(data)

To verify what can be really found at such addresses, we will need to use the Memory
window (selecWView | Memory). Here select thBata View tab to visualize the memory
contents in classibex dumgormat. Therright-click with the mouse pointer inside

the Memory window and choo$&o To from the context menu (or preSsrl + G) to
activate the Go To dialog boki@ure 6.6).

=
Go to what: Enter a Hex Address G |
i GoTo
luxlnoumsc —

Function

M Regi
S DT Enter a Hex Address between

0x00000000 and 0x1FCO2FEF

Figure 6.6: The Memory window Go To dialog box.

In the Hex Address field, type the address found alimy@&d(076c) and press the
Go To button. The Memory window will center around the selected address where you
will be able to recognize the initialization value we have been looking for.

Address 00 04 08 0oC ASCII

1D00_0760 9DO003AC 9D0004F4 9D000578 74696E49 X... Init
1D00_0770 696C6169 0064657A 00000000 00000000 ialized.

Memory 127

Pointers

Pointersare variables used to refer indirectly (point to) other variables or part of their
contents. Pointers and strings go hand in hand in C programming; in general they are a
powerful mechanism to work on any array data type. They're so powerful, in fact, that
they are also one of the most dangerous tools in a programmer’s hands and a source o
disproportionately large share of programming bugs. Some programming languages, st
as Java, have gone to the extreme of completely banning the use of pointers in an effor
to make the language more robust and verifiable.

The MPLAB C32 compiler takes advantage of the PIC32 architecture to manage with
ease large amounts of data memory and program memory (up to 4GB). The MPLAB
C32 compiler makes no distinction between pointers to data memory objectsaind
objects allocated in program memory space. This allows a single set of standard functic
to manipulate variables and/or generic memory blocks as needed from both spaces.

The following classic program example compares the use of pointers versus indexing tc
perform sequential access to an array of integers:

int *pi; // define a pointer to an integer
int i /I index/counter
int a[10]; I the array of integers

/I 1. sequential access using array indexing
for(i=0; i <10; i++)

a[il =i
/I 2. sequential access using a pointer
pi=a;
for(i=0; i <10; i++)
{

i =i

pi++;

In 1. we performed a simpfer loop, and at each round in the loop we usasian

index in the array. To perform the assignment, the compiler will have to multiply the
value ofi by the size of the array element in bytes (4) and add the resulting offset to the
initial address of the arragy

128 Day6

In 2. we initialized a pointer to point to the initial address of the aray each round in
the loop we simply used the pointer indirection operator (*) to perform the assignment;
then we simply incremented the pointer.

Comparing the two cases, we see how, by using the pointer, we can save at least one
multiplication step for each round in the loop. If inside the loop the array element is uset
more times, the performance improvement will be proportionally greater.

Pointer syntax can become very “concise” in C, allowing for some pretty effective code
to be written but also opening the door to more bugs.

At a minimum, you should become familiar with the most common contractions. The
previous shippet of code is more often reduced to the following:

/I 2. sequential access to array using pointers
for(i=0, p=a; i <10; i++)
*pit+ =i

Also note that an empty pointer—that is, a pointer without a target—is assigned a speci
valueNULL, which is implementation specific and defined in stddef.h.

The Heap

One of the advantages offered by the use of pointers is the ability to manipulate objects
that are defined dynamically (at run time) in memory. fibéapis the area of data memory
reserved for such use, and a set of functions, part of the standard C library stdlib.h,
provides the tools to allocate and free the memory blocks. They include at a minimum th
two fundamental functions: malloc() and free().

void *malloc(size_t size);

The first function takes a block of memory of requested size from the heap and returns
pointer to it.

void free(void *ptr);
The second function returns the block of memory pointed tarbyto the heap.

The MPLAB C32 linker places the heap in the RAM memory space left unused above a
project global variables and the reserved stack space. Although the amount of memory

Memory 129

left unused is known to the linker, you will have to explicitly instruct the linker to reserve
an exact amount for use by the heap, the default size being zero.

Use theProject | BuildOptions | Project menu command to open the Build Options
dialog box, select thelPLAB PIC32 Linker tab, and define the heap size in bytes.

As a general rule, allocate the largest amount of memory possible. This will allow the
malloc() function to make the most efficient use of available memory. After all, if it is
not assigned to the heap, it will remain unused.

The PIC32MX Bus

If the previous section, exploring technigues employed by the MPLAB C32 compiler an
linker for the allocation of variables, had your head spinning and you feel a little dizzy,
you might want to take a break now!

If on the contrary it only served to increase your curiosity, follow me for a little longer as
we continue the exploration to investigate the reasons for the architectural foundations «
the PIC32 memory bus.

The PIC32 architecture is different from all previous PIC microcontroller architectures
(both 8- and 16-bit) with which you might be familiar. The PIC32 follows the more
traditional Von Neumann model instead of the classic (PIC) Harvard model. The big
difference is that two completely separate and independent buses are no longer availab
A single large (32-bit) bus gives access to both the Program Memory (Flash) and Data
Memory (RAM) now.

The Von Neumann approach allows for a more economical implementation (two separa
32-bit buses would have been very expensive) and at the same time provides a simpler
unified programming model, eliminating the need for the many “tricks” used by 8- and
16-bit Harvard architectures to allow access to data tables in program memory and final
removing important barriers, allowing for the first time a PIC processor to execute code
from RAM memory!

It would seem that all these advantages would be immediately offset by a reduction in
performance, but this is not the case. In fdotexstage pipelinenechanism and fare-

fetch cachamechanism are used to allow efficient access to the bus while maintaining ar
unprecedented sustained execution ratenefinstruction per clock cycle

130 Day6

Note

Later, in the next chapter, we will have the opportunity to look in detail at the operation of the
memory cache module and analyze its impact on device performance. Without anticipating toc
much here, | would like to point out an important detail. The PIC32 core and the cache module
are actually connected by two separate 32-bit buses ¢aledD. They allow the processor to
simultaneously request instructions and data from the cache. So the PIC32 is really a Harvat
or a Von Neumann machine? leave you to decide. What matters to me is that it is just so fast
and efficient!

Given the same clock frequency—say, 20 MHz—a PIC32 can executéouptimes

more instructions per second than a PIC16 or PIC18. That is 20 million instructions per
second where a PIC16 or PIC18 would only execute 5 million instructions per second. I
also means that it can exectiiéce the number of instructions per second that a PIC24,
dsPIC30 or dsPIC33 would, given the same clock. If you consider that each one of the
PIC32 instructions can now directly manipulate an integer quantity that is 32 bits wide
(rather than 8 bits or 16 bhits), you can start to get a sense of the effective increase in
computational power provided by the PIC32.

In the next chapter we will look further into the operation of the PIC32 oscillator and
clock management circuits. We will also review in more detail the operation of the
instruction pre-fetch and data cache to help us understand where the new performance
limits of the PIC32 architecture are and how we can configure the device for optimal
performance and power consumption levels.

PIC32MX Memory Mapping

The MIPS core at the heart of the PIC32 has a number of advanced features designed
allow the separation of the memory space dedicated to an application or applications frc
that of an operating system via the use ofeamory management uifMU) and two

distinct modes of operationserandkernel Since the PIC32MX family of devices is
clearly targeting embedded-control applications that most likely would not require much
of that complexity, the PIC32 designers replaced the MMU with a sirfipdelr mapping
translation (FMT) unit and &us matrix(BMX) control mechanism.

The FMT allows the PIC32 to conform to the programming model used by all other
MIPS-based designs so that standardized address spaces are used. This fixed but

Memory 131

compatible scheme simplifies the design of tools and application and the porting of code
to the PIC32 while considerably reducing the size and therefore cost of the device.

The BMX allows a level of flexibility in partitioning the main memory areas. It also
helps control the arbitration of access to memory between the CPU data and instruction
fetch requests, the DMA peripheral requests, and the In-Circuit Debugger (ICD) logic.

Table 6.1 illustrates the relatively complex translation table and the resulting memory
map of the PIC32MX family of devices. It could be intimidating at first look, but if you
follow me through the next few paragraphs you will find it . . . well, understandable.

Table 6.1: PIC32MX translation table and memory map.

Memory Virtual Addresses Physical Addresses Size in Bytes
Type
Begin Address | End Address Begin Address | End Address Calculation
Boot 0xBFC00000 0xBFCO2FFF 0x1TFC00000 0x1FCO2FFF 12 KB
Flash
o | Program | 0xBD000000 0xBD000000 + 0x1D000000 0x1D00000 + BMXPUPBA
§_ Flash' BMXPUPBA — 1 BMXPUPBA — 1
)
§ Program | 0x9D000000 0x9D000000 + 0x1D000000 | 0x1D000000 + | BMXPUPBA
5 | Flash? BMXPUPBA — 1 BMXPUPBA — 1
3
<
= | RAM 0x80000000 0x80000000 + 0x00000000 BMXDKPBA — 1 | BMXDKPBA
£ | (Data) BMXDKPBA — 1
X
RAM 0x80000000 + | 0x80000000 + BMXDKPBA BMXDUDBA — 1 | BMXDUDBA—
(Prog) BMXDKPBA BMXDUDBA — 1 BMXDKPBA
Peripheral | 0xBF800000 OxBF8FFFFF 0x1F800000 Ox1F8FFFFF 1 MB
g | Program | 0x7D000000 + | 0x7D000000 + 0xBD000000+ | 0xBD0O0000O + | PFM Size —
:.;_ Flash BMXPUPBA PFM Size — 1 BMXPUBPA PFM Size — 1 BMXPUBPA
g RAM 0x7F000000 + | 0x7F000000 + 0xBFO00000+ | 0xBFO00000 + BMXDUPBA —
3 (Data) BMXDUDBA BMXDUPBA — 1 BMXDUDBA BMXDUPBA — 1 | BMXDUDBA
<
§ RAM 0x7F000000 + | 0x7FO00000 + 0xBFO00000 + | 0xBFO00000 + DRM Size —
D | (Prog) BMXDUPBA RAM Size® — 1 BMXDUPBA RAM Size® — 1 BMXDUPBA
Notes:
" Program Flash virtual addresses in the non-cacheable range (KSEG1).
2Program Flash virtual addresses in the cacheable and prefetchable range (KSEGO).
3The RAM size varies between PIC32MX device variants.

132 Day6

First, let’s find out where the main memory blocks (RAM and Flash memory) of the
PI1C32 are physically located inside the 32-bit addressing space (see Figure 6.7). Checl
the physical address column and you will find that RAM begins at address 0x00000000,
and Flash memory begins at 0x1D000000. Finally, all peripherals (SFRs) are found in t
block that begins at address 0x1F800000, and a 12 K portion of Flash memory is found
address 0x1FCO00000 for use by a bootloader.

S
RAM FLASH F
R

00w

f f f f f

0x00000000 0x1D0O00000 0x1F800000 0x1FCO00000 OxFFFFFFFF

Figure 6.7: PIC32 physical addressing space.

Access to those memory areas can be required for different purposes. The PIC32
designers wanted to make sure that we would be able to impose Spaesilto protect

the applications from common (programming) errors isolating regions of memory. For
example, when running an operating system (OS), we might desire to prevent applicatic
code to touch data (RAM) areas that are part of the OS. In other wseds;odemust

not be allowed to access tkernel data The BMX control unit is the one that performs

the first layer of manipulation (see Figure 6.8). Through some of its control registers, we
can split the main physical memory areas in slices of variable size. For example, using
the BMXPUPBAegister, we can split a portion of the Flash memory to be remapped for
use only in user mode at physical address 0OxBD0O0000O and higher. Similarly, RAM
data memory can be split into four slices using the regiBMxDKPBANdBMXDUDBA
separating kernel data from user data memory and then splitting further each piece of
memory for programs that want to execute from RAM to achieve higher performance;
RAM maximum access speed is typically much higher than Flash memory, even when &
cache mechanism is taken into account.

This is where the FMT (or more generically, an MMU) adds a new layer of complexity tc
the entire system, translating pHysical addresseisto virtual addressesind shuffling

Memory 133

Kernel Kernel User User
RAM RAM RAM RAM
(Data) (Prog) (Data) (Prog)

f ot f f f

0x00000000 BMXDKDBA BMXDUDBA OxBF000000+ OxBF000000+ OXFFFFFFFF
BMXDUDBA BMXDUPBA

Figure 6.8: Bus matrix RAM partitioning.

things around a bit. This is meant to create two widely separate address spaces where
your programs can run: one for user applications in the lower half of the 32-bit addressil
space (below 0x80000000) and one for kernel (above 0x80000000) in accordance with
the standard practice of all MIPS-based processors. These correspond to the two halve
of Table 6.1, where the first two columns show you the new virtual addresses assigned
each memory area in the corresponding mode.

Note

The only addresses the MPLAB C32 compiler and linker are concerned with, as seen in th
early part of this chapter, are virtual addresses!

For clarity, Figure 6.9 illustrates the resulting virtual memory map as seen by an
application program running in user mode.

Notice how the Boot Flash memoryrist mapped at all in user mode. There is no virtual
address that will allow a user program to touch the protected area. No matter how bad,
the code is running in user mode; it cannot harm the underlying operating system (or
bootloader).

Similarly, notice how the peripherals (SFRs) don’t have a corresponding mapping in the
user virtual address space. Again, no matter how bad the user code is, it cannot reach t
hardware and modify or cripple the device configuration.

134 Day 6

User Space Kernel Space
0x00000000 h 0x80000000 -
User User User i i
ELASH RAM RAM Generate an immediate
(Data) | (Prog) exception if access is
attempted!
0x7D000000 0x7F000000+ OXFFFFFFFF
BMXDUPBA
0x7F000000+
BMXDUDBA

Figure 6.9: User mode virtual memory map.

The Embedded-Control Memory Map

All this is nice and dandy if you are planning to run a heavyweight OS with all the

bells and whistles, but in most embedded-control applications yonatilise all these
features. All your code will most likely always be running in kernel mode only, at the
same level as an OS would. And even when you’re using an OS, you will find that most
real-time operating systenfRTOSs) don't use these features either, favoring speed of
execution and efficiency over “protection.” This is a reasonable choice for embedded
control. The application code is “well known”; it is supposed to be robust and well testec
and should therefore be trusted!

This is great news because it means that from now on, we can completely ignore the
bottom half of Table 6.1 and concentrate all our attention on only the kernel mode virtue
map (see Figure 6.10)!

A final note is required to clarify the reason for two virtual address spaces being
dedicated to the kernel program Flash memory. They are traditionally referred to as
ksegOandkseglin the MIPS literature. If you look at the Physical Addresses columns in
Table 6.1, you will notice that eventually both point to the same physical memory space
The difference is only in the way the memory cache mechanism will manage the two
virtual addresses. If a program is executing from the first virtual address kpeg#, (

the memory cache is automatically disabled. Vice versa, portions of code that are place

Memory 135

User Space Kernel Space
Y
B
RAM RAM FLASH FLASH S @)
(Data) (Prog) Cached Un- F (0]
(KsegO0) Cached R T
(Ksegl)
ottt
0x00000000 0x80000000 0x9D000000 0xBDO0000O OXFFFFFFFF
0xBF800000
0x80000000+ 0xBFC00000
BMXDKPBA

Figure 6.10: PIC32 Embedded-control (kernel mode) virtual memory map.

in theksegOsegment will be accessible by the cache mechanism. We will learn more in
the next few chapters about the reason for this choice and the consequences for your ¢
performance.

Debriefing

Today we have quickly reviewed the basics of string declaration and manipulation. We
have also touched briefly on the use of pointers and dynamic memory allocation. We hav
seen how the .map file can help us identify where and how the memory of the PIC32 will
be used by our applications. But today we have also explored the bus matrix module of
the PIC32 and learned how it provides us with a very flexible mechanism to control the
segmentation and access to blocks of Flash and RAM memory. Although many embedde
control applications will only use the most basic (default) configuration, the PIC32MX
architecture offers a standard address space layout that makes it compatible with a wide
range of tools and operating systems already available for the MIPS architecture.

Notes for the C Experts

In the C language, strings are defined as simple arrays of characters. The C language
model has no concept of different memory regions (RAM vs. Flash)adrise attribute

136 Day6

is normally used in C language, together with most other variable types, only to assist
the compiler in catching common parameter usage errors. When a parameter is passed
a function as aonst or a variable is declared asanst , the compiler can in fact help

flag any following attempt to modify it. The MPLAB C32 compiler extends this semantic
in a very natural way, allowing us to provide hints to the compiler and linker to make
more efficient use of the memory resources.

Notes for the Assembly Experts

The string.h library contains many block manipulation functions that can be useful, via th
use of pointers, to perform operationsamy type of data arrays, not just strings. They are:

« memcpy() , to copy the content of any block of memory to a new address
+ memmove(), to move the contents of a block of memory to a new location
« memcmp(), to compare the contents of two blocks of memory

+ memset() , to initialize the contents of a block of memory

The ctype.h library instead contains functions that help discriminate individual character
according to their positions in the ASCII table, to discriminate lowercase from uppercas
and/or to convert between the two.

Notes for the PIC Microcontroller Experts

Since the PIC32MX program memory is implemented using (single-voltage) Flash
technology, programmable at run time during code execution, it is possible to design
bootloaderbased applications—that is, applications that automatically “update” part or
all of their own code.

It is also possible to utilize a section of the Flash program memory as a nonvolatile
memory (NVM) storage area. Some pretty basic limitations apply, though. For example,
Flash memory can only be deleted in large blocks, cpbges composed of 1,024

words before data can be written one word at a time or in smaller blocksroalted
composed of 128 words.

The PIC32 peripheral library comes to our assistance, offering a small set of functions
(NVM.H) dedicated to the manipulation of on-chip Flash memory. Perhaps the most
powerful function of the lot isilvVMProgram() , capable of writing a block of arbitrary

Memory 137

length to a given virtual address, automatically performing the necessary partitioning
when page boundaries are crossed.

Tips & Tricks

String manipulation can be fun in C once you realize how to make the zero termination
character work for you efficiently. Take, for example, thepy() function:

void mycpy(char *dest, char * src)

{

while(*dest++ = *src++);

}

This is quite a dangerous piece of code, since there is no limit to how many characters
could be copied, there is no check as to whetheddte pointer is pointing to a buffer

that is large enough, and you can imagine what would happen shosld te&ing be
missing the termination character. It would be very easy for this code to continue beyon
the allocated variable spaces and to corrupt the entire contents of the data memory. Ah
the power of pointers!

Soon we will explore the DMA module and we’ll discover its ability to share the PIC32
memory bus to perform fast data transfers between memory and peripheilhsdve
explore using the DMA module to move large blocks of data between different memory
buffers very efficiently. In fact, a few of the DMA functions in the PIC32 peripheral library
are dedicated to the use of DMA channels to perform string and block manipulations,
includingDmaChnMemcpy(), DmaChnStrcpy() , andDmaChnStrncpy() . In the same

set of functions can be foummnaChnMemCrc(), which does not transfer any data but

feeds the CRC module with the contents of a given (no matter how large) block of data.
Alternatively, a CRC calculation can automatically be performed during any block transfel
performed by the DMA module by calling tecAttachChannel() function.

Exercises

You can develop new string manipulation functions to perform the following operations:
1. Search sequentially for a string in an array of strings.
2. Implement a binary string search.

3. Develop a simple hash table management library.

138 Day6

Books

Wirth, N. AlgorithmstData Structures-Programs (Prentice-Hall , Englewood Cliffs,
NJ, 1976) . With unparalleled simplicity, Wirth, the father of the Pascal programmin
language, takes you from the basics of programming all the way up to writing your
own compiler. They tell me this book is no longer easy to find; however hard it might
be to locate a copy, | promise you it will be worth the effort!

Links

http://en.wikipedia.org/wiki/Pointers#Support_in_various_programming_languages
Learn more about pointers and see how they are managed in various programming
languages.

Experimenting

Congratulations! You have endured the first six days of exploration and gained the
necessary confidence to complete simple projects using the MPLAB PIC32 software toc
suite. As a consequence, in the next group of lessons, more is going to be expected of
you!

In the second part of this book, we continue exploring one by one the fundamental
peripherals that allow a PIC32 to interface with the outside world. Since the complexity
of the examples will grow a little bit, having a PIC32 chip at hand is highly recommende
so that you will be able to test the many practical example projects. A PIC32 Starter

Kit with a PIM adapter and/or an actual PIC32MX processor module (PIM) and any

of the compatible in-circuit debuggers will do. | will also refer often to the Explorer 16
demonstration board, but any compatible third-party tool that offers similar features or
allows for a small prototyping area can be used just as effectively.

This page intentionally left blank

Running

The Plan

In the six previous days of exploration, we have gradually begun reviewing the most
basic concepts of C programming as they apply to embedded control and in particular a
they apply to the PIC32MX architecture. We have also started to familiarize ourselves
with the basic features of the PIC32 that affect its performance, such as the 32-bit
multiplier, the interrupt system, the register set(s), and the memory management modul
But so far, we have only been counting the number of assembly instructions looking
inside the disassembly window, or counting the instruction cycles, using the MPLAB
SIM simulator StopWatch. In all cases we avoided any direct reference to time when
considering the execution of code, using peripherals (timers) when necessary to provide
delays of any length. Even when discussing interrupts or comparing the efficiency of
various numeric types, we have not yet established any hard relationship with the actua
speed of executioof our code. This was done on purpose, to isolate different subjects
and keep the level of complexity growing gradually. Before we can understand how fast
we can make a PIC32 truly “run,” we need to study two new critical systems: the clock
system and the memory cache system. Both are new to tReaRli@tecture and are
essential if you want to fine-tune the PIC32 engine for maximum performance.

Preparation

Today, in addition to the usual software tools, including the MPLAB IDE and

the MPLAB C32 compiler, you will need real hardware to be able to perform our
experiments. It does not matter if you have a PIC32 Starter Kit or any of the other
in-circuit debuggers connected to an Explorer 16 demonstration board. You will need th
real thing—a PIC32MX chip “running” on the hardware platform of your choice.

142 Day7

Use the New Project Setup checklist to create a new project Ralledng and a new
source file, similarly calledunning.c.

The Exploration

Let’s start by taking a look at the main clock circuit of the PIC32MX family. As you can
see from the block diagram in Figure 7.1, this is a complex piece of hardware with whic
it will require some time to become familiar.

For those of you already knowledgeable about the previous generations of 8-bit PIC
microcontrollers, most of this diagram will look somewhat familiar. For those of you
familiar with the dsPIC33 and P1C24 H families in particular, it will look exceptionally
similar! This is of course no coincidence. All PIC microcontrollers, since the very first
PIC16C54, have sported a flexible oscillator circuit, and this flexibility has been extende
generation after generation, evolving gradually into the present form as offered on the
PIC32MX. Let’s see what can be done, and most importantly, why!

Looking at the left side of the block diagram, you will notice that there are five oscillators
or clock sources. Two of them use internal oscillators and three of them require externa
crystals or oscillator circuits:

« Internal oscillator (FRC) is designed for high-speed operation with low power
consumption. It requires no external components and provides a relatively
accurate nominal 81Hz clock ¢-2%) after calibration.

» Internal low-frequency and low-power oscillator (LPRC) is designed for
low-speed operation with low power consumption. Requires no external
components and provides a basic (low accuracy) 32 kHz clock.

« External primary oscillator (POSC) is designed for high-speed operation with
accurate (quartz-based) operation. Up tdvdz crystals can be connected
directly (to the OSCI, OSCO pins) while two gain settings are available:

XT for typical quartzes below 10 MHz and HS for quartzes at or above
the 10 MHz frequency.

« External low-frequency and low-power oscillator (also known as the secondary
oscillator, SOSC) is designed for low-speed and low-power operation with
external crystals of 32,768 Hz. It can be used as the main oscillator for the entire
chip or just as the source for the Timerl and RTCC modules. Its high accuracy
makes it the ideal clock source for applications that need exact timekeeping.

Running 143

Primary Oscillator
(POSC)
XT, HS, EC
b | Peripherals
it
XTPLL, HSPLL, ™ Osdf,cf e I PBOLK
ECPLL, FRCPLL
R
PLL Input Divider PLL Output Divider PBDIV<1:0>
FPLLIDIV<2:0> PLLODIV<2:0>
FRC
Oscillator |—— PLL Multiplier
8 MHz typical COSC<2:0> FPLLMULT<2:0>
PLLMULT<2:0> ERC CPU, Peripherals
L E—
TUN<5:0>
o FRC /16
div 16
L Postscaler FRCDIV
FRCDIV<2:0>
LPRC LPRC
Oscillator | 32 kHz typical
Secondary Oscillator
"""" 32.768 kHz
SOSCO ‘Z— SOs¢
SOSCEN and FSOSCEN
SOSCI ‘Xf—
....... Clock Control Logic
Fail-Safe FSCM INT
Clock E——
Monitor FSCM Event
>
NOSCL2:0>
COSC<2:0>
FSCMEN<1:0> OSWEN
WDT, PWRT
Timerl, RTCC

Figure 7.1: PIC32MX clock block diagram.

« External clock source (EC) mode allows an external circuit to completely replace
the oscillator and provide the microcontroller a square wave input of any desired
frequency.

These five sources offer a basic range of choices to generate an input clock signal of
desired frequency, power consumption, and accuracy, but much more can be done with

144 Day 7

the following stages, illustrated on the right side of the block diagram. In fact, the clock
produced by each source can be further multiplied and/or divided to offer an even wider
selection of frequencies.

Performance vs. Power Consumption

It is beyond the scope of this book to illustrate all possible options for each clock source
but it is important that you understand the reason why the designers of the PIC32 went
through all this effort to offer you so many different ways to produce what is, after all,

a simple square wave.

In embedded control, but also in consumer applications, whether your application is
portable—battery powered—or has a dedicated power supply of sorts, two important
constraints apply:

« Power consumption will dictate the size and cost of the power supply circuit you
will have to design. If battery operated, this parameter will dictate the size and
cost of the battery, or vice versa, the life (hours of operation) of your application.

» Performance, however measured, will dictate how much work your application
will be able to perform in a given amount of time. For some real-time
applications, this parameter can be a total deal breaker.

As is often the case, in embedded-control application design, the two constraints are

in direct conflict. To obtain a greater amount of work from a given circuit, we want to
maximize the clock speed. But because of the laws of physics that govern the operation
of any CMOS integrated circuit, the higher the clock speed provided, the higher is the
power consumption of the device. The two entities are in fact linked inexorably in a
linear relationship: Double the clock and you will double the amount of work produced,
but you will also see a corresponding increase in the power consumption of the device.

Note

The power consumption will not double as you double the frequency. Therest&ia
component and dynamiccomponent to the power consumption of each CMOS device. The
first one remains constant independent from the clock frequency; it is only the dynamic part
that will grow.

Running 145

Much can and has been done inside the PIC32 to make sure that the greatest amount
work is produced for any given ounce of power. For example, the PIC32MX datasheet
(only the advanced datasheet is available at the time of this writing) reports on the
electrical characteristics of the device that, when operating at the frequency of 4 MHz,
a typical current consumption of 1A will be observed (at 3.3 V and@h But at

72 MHz and in the same conditions, the same device will consume ju#.64

As good as these numbers are, it is still our responsibility to find the correct balance
between performance and power consumption for each application so to minimize cost,
reduce size, or simply maximize the battery life (and, let me add, “fight global warming
as welf!).

Not only does it make no sense to run an applications lltt2when the same job can

be done at 4 MHz, but also consider the fact that most applications operate in different
modes at different times. Although it might seem overkill, | will make a parallel with a
cell phone application. Most of the time, the cell phone is in standby just waiting for a
button to be pressed to awake it. At other times it could be performing simple functions
such as searching through a contact book and updating information on the internal
memory. Then only a small fraction of the time will be spent performing some hard
number crunching, digital signal processing, and running an algorithm to compress and
decompress the audio input and output streams.

Similar conditions can be found in many embedded-control (and consumer) application:
and the higher the flexibility of the clock circuit, the better you will be able to manage the
power consumption of the application. To help you obtain the most complete set of pow:
management options, the PIC32 clock module offers the following features:

* Run-time switching between internal and external oscillator sources

* Run-time control over the clock dividers

* Run-time control over the PLL circuit (clock multiplier)

+ IDLE modes, where the CPU is halted and individual peripherals continue to operat

» SLEEP mode, where the CPU and peripherals are halted and awaiting a specific
event (set of) to awaken

« Separate control (divider) over the peripheral clock (PBCLK), so that when the
CPU is required to operate with a high-frequency clock, the power consumption
of the peripheral modules can be optimized

146 Day7

The Primary Oscillator Clock Chain

We will begin our exploration at the primary oscillator clock signal chain, since it is

the most common and, in many of the following chapters, we will need to develop
demonstration projects that will require either a high level of performance or high clock
accuracy. As you can verify visually, on the Explorer 16 demonstration board and PIC3Z
Starter Kit, an 8 MHz crystal is connected across the OSCI and OSCO pins. At this
frequency (below 10 MHz) it is recommended we set the primary oscillator for
operation in XT mode.

Depending on the application, we are immediately confronted with two possibilities. We
could use the 8 MHz input signal as is or feed it to a multiplier (PLL) circuit. The appeal
of the second option is obvious, but with it comes the need to learn more about PLL
circuits.

Phase locked loops (PLLs) are complex little circuits, but the designers have managed
to hide all the complexity of the PIC32 PLL from us with the condition that we respect
a few simple rules. First, we need to feed it with a specific input frequency range

(<4 MHz). Second, we need to allow it time to stabilize or “lock” before we attempt to
execute code and synchronize with it. A simple control mechanism is provided (via the
OSCCONegister illustrated in Figure 7.2) to select the frequency multiplication factor
(PLLMULT) and to verify the proper lockin@l(OCK,.

U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

— = PLLODIV<2:0> FRCDIV<2:0>

bit 31 bit 24
R/W-0 R-0 u-0 RIW-x RIW-x R/W-x RIW-x RIW-x
DRMEN | SOSCRDY — PBDIV<1:0> PLLMULT<2:0>

bit 23 bit 16
u-0 R-0 R-0 R-0 u-0 RIW-x RIW-x RIW-x

— COSC<2:0> = NOSC<2:0>

bit 15 bit 8
R/W-0 r-0 R-0 R/W-0 R/W-0 r-0 R/W-0 R/W-0
CLKLOCK — | SLOCK | SLPEN | CF | — SOSCEN | OSWEN
bit 7 bit 0

Figure 7.2: The OSCCON register.

Running 147

So when using the Explorer 16 board or the PIC32 Starter Kit, to respect the first rule
we will need to reduce the input frequency from 8 MHz to 4 MHz. Looking at the block
diagram in Figure 7.1 or the simplified diagram in Figure 7.3, you will notice how the
input divider is conveniently available to us to perform the first frequency reduction.

System
Input Output Clock
—1 |:> Divider |:> PLL |:> Divider |:>
8 MHz 1:2 4MHz| 1 x 18 72MHzl 1:1 72 MHz

Figure 7.3: Primary oscillator clock chain.

The multiplication factor of the PLL can be selected among a number of values ranging
from 15X all the way up to 24 and it is controlled by theLLMULTbits. Since the
maximum operating frequency of the PIC32MX is (at the time of this writing) restricted
to 75 MHz, selecting a factor of X8will give 72 MHz, the closest match compatible

with the device operating specifications. The output divider block provides us with a
final opportunity to manage the clock frequency. When we will need the maximum
performance, we will leave the output divider set to a 1:1 ratio. Should our application
require it, we will be able to reduce the power consumption by dividing the output
frequency all the way down to 1:256th or approximatelyd88. Below this frequency

we would be much better served by using the secondary oscillator (SOSC), its operatin
range is in fact between ¥z and 100 kHz, or by the low power internal oscillator
(LPRC) operating at approximately 32 kHz. For our reference, from the advanced
datasheet we learn that the typical power consumption of the PIC32 when operating off
the LPRC would be just 2Q0A!

The Peripheral Bus Clock

As another way to optimize performance and power consumption in an application, the
PIC32 feeds a separate clock signal to all the peripherals. This is obtained by sending t
System clock through yet another divide circuit (extending further the chain of modules
illustrated in Figure 7.3), producing the PB clock signal. Very often a high processor
speed means that a large prescaler is required in front of a timer to obtain the required
timing, or a large baud rate divider is required for a serial port (more on this later).
Thanks to the peripheral bus divider, the share of power consumed by the peripheral bu
can be reduced while the processor is free to operate at maximum speed.

148 Day 7

This feature is controlled by tfBDIV bits found, once more, inside tBSCCON

register. A reasonable value that we have been using so far and we will continue to use
consistently for the peripheral bus across all future example projects will be 36 MHz
corresponding to 1:2 ratio between the system clock and the PB clock.

Initial Device Configuration

The ability to control the clock at run time gives us a great tool to manage power, but
what happens when the device is first activated, at power-up?

As you might know, there is a group of bits known asctivdiguration bitsstored in the
nonvolatile (Flash) memory of the PIC32. These bits provide the initial configuration
of the device. The oscillator module uses a few of those bits to get the initial setting
for theOSCCONegister. These are the configuration bits you can set using the MPLAB
Configure | Configuration Bits. . . menu.

It is about time that we review the settings | have been recommending that you use sinc
the beginning using the Device Configuration checklist.

My recommended configuration for all the exercises in this book is represented in
Figure 7.4. It includes the following options, in order of importance for the oscillator
configuration:

1. Use the primary oscillator with PLL circuit.

2. Select the XT mode for the primary oscillator.

_ioixi
™ Configuration Bits st in code.
Setting
C TFFFFFFF ICE/ICD Comm Channel Select ICE EMUC2/EMUD2 pins shared with P
Boot Flash Write Protect Boot Flash is writable
Code Protect Protection Disabled
1FCOZFF8 FF7FDDSB Oscillator Selection Bits Primary Osc w/PLL (XT+,HS+,EC+PLL)
Secondary Oscillacor Enable Disabled
Internal/External Switch Over Disabled
Primary Oscillator Configuration XT osc mode
CLEQO Qutput Signal Active on the OSCO Pin Enabled
Peripheral Clock Divisor Pb_Clk is Sys_Clk/2
Clock 3witching and Monitor Selection Clock awitching disabled: fail safe clock monito
Watchdog Timer Postscaler 1:1048576
Watchdog Timer Enable WDT Disabled (SVDTEN EBit Controls)
1FCOZFF4 FFFSFFES PLL Input Divider 2x Divider
PLL Multiplier 18x Multiplier
System PLL Outpuc Clock Divider PLL DPivide by 1
4| | ¥

Figure 7.4: Device Configuration dialog box.

Running 149

3. Setthe PLL input divider to 1:2 ratio (to produceMHE input as we have
seen).
4. Setthe PLL multiplier to 18
5. Setthe PLL output divider to 1:1 ratio (to produce a 72 MHz system clock outpu
6. Set the peripheral clock divider to 1:2 ratio (to produceMREPB clock

output).
The following additional options complete the configuration:

7. Enable the clock output. This can be disabled when using any of the internal
oscillators to gain control of an additional 1/O pin.

8. Disable the secondary oscillator. (You will be able to enable it later, at run time

9. Disable the internal/external oscillator switchover. (We will use only the
external crystal in all exercises, but you might experiment with other settings.)

Finally, the following options are commonly used during debugging and development:

10. Share DBG2 and PGM2 if you are using the ICD/ICSP interface. (This depenc
on your in circuit debugger of choice.)

11. Allow the Boot Flash to be modified (Bootloader write protection off).
12. Disable code protection (at least during development).

13. Disable the Watchdog timer.

14. Disable clock switching and FailSafe Clock Monitor.

Once set, these configuration bits are stored in the workspace file (.mcw) and will be
programmed into the device configuration bits by your programming tool of choice each
time new code is programmed into the device.

By comparing Figures 7.2 and 7.4, you will notice that the value of the PLL input divider
is present only as a configuration bit option, but it cannot be modified via3€ON
register. If you reflect on this, you will find it is logical. Since the external crystal value
cannot change (unless the part is unsoldered from the PCB and a new one of different
frequency is put in its place), there is no possible reason to modify the input divider valu
at run time. If the value set by the configuration bits was incorrect in the first place, the
PLL multiplier would not be working and the PIC32 could not execute any code anyway.

150 Day7

Setting Configuration Bits in Code

As a way to make the project code self-documenting and to avoid any possible future
mishap (should the project file be lost and the source code of an application used with tl
wrong settings), the MPLAB C32 compiler offers one additional mechanism to assign
values to the device configuration bits. It is based on the use #frdgna config

directive.

Since the number of configuration bits and their values can change from device to devic
MPLAB offers a list of the available options for each PIC32 device model as part of the
Help system. Sele¢ielp | Topic to open the help system selection dialog box, and click
PIC32M X Config Settings (seeFigure 7.5).

MPLAB Help Topics ' X|

System -
MPLAB IDE
MPLAB Editor

Language Tools
MPASM Assembler
MPLINK Obiject Linker
MPLAB ASM30
MPLAB LINK30
PIC18 Config Settings
COFF File Format
PIC32MX Config Settings

Debuggers i
‘ I LA AR 1S S I L‘_I

| 0K I Cancel |

Figure 7.5: MPLAB Help Topics dialog box.

Select the device model that you are usiti@;32M X360F512L , and then identify the
correct syntax to be used for each configuration bit. Table 7.1 shows the PLL output
divider example.

Running 151

Table 7.1: PLL output divider values

FPLLODIV =DIV_1 Divide by 1
FPLLODIV =DIV_2 Divide by 2
FPLLODIV =DIV_4 Divide by 4
FPLLODIV =DIV_8 Divide by 8
FPLLODIV =DIV_16 Divide by 16
FPLLODIV = DIV_32 Divide by 32
FPLLODIV = DIV_64 Divide by 64
FPLLODIV = DIV_256 Divide by 256

Multiple configuration bits can be set insidémagma config
them with a comma, as in the following example, where | have reproduced the standard

oscillator settings as described previously:

#pragma config POSCMOD=XT, FNOSC=PRIPLL

statement by separating

#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1

Notice that if a parameter is not specified in#pegma , it will assume the default value

as specified in the device datasheet.

Let's complete the configuration with one mépeagma statement to set the peripheral
bus clock divider, disable the watchdog and the code protection, and to enable
programming of the boot memory as required for all our future projects (at least during

the development phase):

#pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=0OFF

My recommendation is that you place this code at the top of the source file containing t

main function in each new project.

To avoid conflicts with the configuration bits set by MPLAB in the Configuration Bits
dialog box (refer back to Figure 7.4), make sure to checkahéguration Bits Set

in Code check box.

152 Day7

Note

When the Configuration Bits Set in Code check box is checked, the entire contents of the dialo
box are grayed out. This is the default for every new project. Be careful, though—if you forget
to set the#pragma config statement in your code, you'll end up with the default device
configuration, as described in the device datasheet. This default configuration is designed fo
“safe” operation and most of its settings are conflicting or incorrect for use during development.
| chose not to set the configuration bit in code in the first few chapters of the book to avoid the
“distractiori in your code and to avoid having to anticipate too much too soon. From now on,
the choice is yours!

Heavy Stuff

It is time to write some tough code, program it on a PIC32 Starter Kit or an Explorer 16
demonstration board, and start measuring the actual performance of the PIC32MX.

See what | found in my code archives! Buried in a remote subdirectory of my hard drive
back from the old days at university when | studied the basics of digital signal processin
| wrote this code:

[/l input vector
unsigned char inB[N_FFT];

/[input complex vector

float xr[N_FFT];
float xi[N_FFT];

/I Fast Fourier Transformation
void FFT(void)

{

int m, K, i, j;
float a, b, ¢, d, wwr, wwi, pr, pi;

/I FFT loop

m = N_FFT/2;

i=0;

while(m > 0)

{ * 1og(N) cycle */
k=0;
while(k < N_FFT)
{ /I batterflies loop

Running 153

for(i = 0; i <m;i++)

{ /] batterfly
a = xr[i+k]; b = xi[i+k];
¢ = xr[i+k+m]; d = xi[i+k+m];
wwr=wr[i<<j]; wwi = wii<<j];

pr=a-c; pi=b-d;

xrli+k] =a+c;
xi[i+k] =b+d;
xr[i+k+m] = pr* wwr - pi * wwi;
Xi[i+k+m] = pr* wwi + pi * wwr;
} I fori
k += m<<1;
} /1 while k
m >>=1;
i+
} // while m
I FFT

This is the Fast Fourier Transform (FFT) function, one of the most common digital signs
processing tools, albeit in a simplified form designed to operate on a set of samples
whose size is purposely chosen as a power of two. The FFT is an efficient algorithm

to compute the discrete Fourier transform (DFT) and its inverse, that is, what takes us
from a signatime domairrepresentation to the same signal infteguency domain
representation and back. In other words, if you supply as input to an FFT function an
array of valuesifB[]) that represent samples of an input signal, the function will

return a new array containing values corresponding to the amplitudes of each harmonic
(sinusoidal component) of the input signal—i.e., the siflrguency spectrunkFTs are

of great importance to a wide variety of applications beyond digital signal processing,
including solving partial differential equations and algorithms for quick multiplication of
very large integers. Many studies have been done on how to optimize FFTs and determ
the minimum possible number of arithmetic operations required to perform them on a
given data set. But we are not interested in optimizing the algorithm here; on the contral
we will use the “scholastic” implementation as an example of an algorithm requiring
heavy floating-point arithmetic for our performance-testing purposes.

Actually, the algorithm illustrated previously represents only a part of the work that a
complete discrete Fourier transform implementation requires. To obtain the necessary
accuracy, the input data set must firstAdedowedbefore use. Think of it as though a

154 Day7

segment of the input signal was cut abruptly and its sharp edges at the extremities neec
be filed to smooth out the algorithm response:

/I apply Hann window to input vector
void windowFFT(unsigned char *s)

{
int i
float *xrp, *xip, *wwp;
/I apply window to input signal
Xrp = Xr; Xip = Xi; wwp = Ww;
for(i=0; i <N_FFT; i++)
{
*Xrp++ = (*s++ - 128) * (*‘wwp++);
*Xip++ = 0;
Y/ fori
} /I windowFFT

After the FFT, the modulus of the (complex) output must be taken and scaled back in
place, in this case overwriting the input array:

void powerScale(unsigned char *r)
{

inti, j;

float t, max;

float xrp, xip;

/I compute signal power (in place) and find maximum
max = 0;
for(i=0; i <N_FFT/2; i++)
{

j = revfi];

xrp = xr[if;

xip = xi[iJ;

t = Xrp*xrp + Xip*xip;

Xl =t

if (t >max)

max =t;

}

/I bit reversal, scaling of output vector as unsigned char

Running 155

max = 255.0/max;

for(i=0; i <N_FFT/2; i++)
{

t = xr[rev[i]] * max;

*r++ =
}

} /I powerScale

To streamline operation and avoid obvious inefficiencies, a minimum of housekeeping is
typically performed ahead of time by initializing a few arrays containing frequently used
values such as the so-calletiations array thewindow arrayitself, and théit reversal

array. Here is how we define them and the initialization function we can use:

/I input vector
unsigned char inB[N_FFT];
volatile int inCount;

/I rotation vectors
float wr[N_FFT/2];
float WI[N_FFT/2];

/I bit reversal vector
short rev[N_FFT/2];

Il window
float ww[N_FFT];
void initFFT(void)
{
inti, m, t, k;
float *wwp;

for(i=0; i <N_FFT/2; i++)
{

// rotations

wirli] = cos(PI2N *i);

wi[i] = sin(PI2N * i);

/I bit reversal
t=i;

m = 0;
k=N_FFT-1;
while (k >0)

156 Day7

{
m=(m < L+t &1);
t=t > 1;
k=k > 1;
}
rev[i]=m;
Y/ fori

/[initialize Hanning window vector
for(wwp=ww, i=0; i <N_FFT; i++)
*wwp++ = 0.5 - 0.5 * cos(PI2N * i);

} I/ initFFT

Scared? Confused? Don't be! Take this code as is; it's heavy stuff. The larger N_FFT, tf
number of samples in your input array, the harder it gets for our PIC32 to work on it.

All we need to do, for now, is to package it nicely in a source file, save it as fft.c, and
then add it to the source files of a new project that we will call Running.

To keep things clean and tidy, let’s also prepare a small include file fft.h where we will
define all the symbols required to use the fft.c module.

/*

* FFT.h

%

** power of two optimized algorithm

*
#include <math.h >
#define N_FFT 256 /I samples must be power of 2

#define PI2N 2 * M_PI/N_FFT

extern unsigned char inB[];
extern volatile int inCount;

Il preparation of the rotation vectors
void initFFT(void);

[/l input window
void windowFFT(unsigned char *source);

/I fast fourier transform
void FFT(void);

Running 157

/I compute power and scale output
void powerScale(unsigned char *dest);

Add fft.h to the include files of the Running project as well.

Next let’s create our project main source file. How about run.c for a name (see
Figure 7.6)?

=i 3 Running.mcp
B] Source Files
- LS FRTc
5 E] run.c
El (L Header Files
LB e
.| object Files
[Library Files
-3 Linker Script
... Other Files

@ Symbols

Figure 7.6: The Running project’s Project window.

Let’s add the configuration bit settings at the very top of the source code for
maximum visibility, and let’s include the fft.h file as well since we will soon use all its
functions:

/*
** Run.c
*%
*
/I configuration bit settings
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FWDTEN=OFF, CP=OFF, BWP=0OFF

158 Day7

#include <p32xxxx.h >
#include <plib.h >
#include " fft.h

Now let’s create a main function that, in order, will perform the following:

1. Initializations:
1.1. ThenitFFT() function needs to be called first:

1.1. Filling the input buffeinB[]) with a test signal, a sinusoid for simplicity:

main()

{
inti, t;
double f;

/I 1. initializations
initFFT();

/l test sinusoid
for (i=0; i <N_FFT; i++)
{
f=sin(2 * PI2N * i);
inBJ[i] = 128+(unsigned char) (120.0 * f);
} /I for

2. The actual FFT algorithm, composed of the sequence of three function calls:

/I 2. perform FFT algorithm
windowFFT(inB);
FFT();
powerScale(inB);

3. A main (infinite) loop where it can rest after the exhausting performance:

I/ 3. infinite loop
while(1);
} /I main

Ready, Set, Go!

At this point we could already build the project, program a device, and, using a couple ¢
breakpoints and a manual stopwatch, we could try to capture the actual time required. E

Running 159

the effort would be extremely tedious and imprecise. | have a better idea: Why don't we
make the PIC32 time itself?

We can use, once more, one of the five 16-bit timers available or, for the occasion, we
could experiment using for the first time a “pair” of timer modules combined to form a
32-bit timer. This option is available for the pairs formed by Timer2 and Timer3 together
as well as Timer4 and Timer5. The latter pair is used in the following example, to bracke
the FFT sequence:

/l'init 32-bit timer4/5
OpenTimerd5(T4_ON | T4_SOURCE_INT, 0);
/I clear the 32-bit timer count
WriteTimer45(0);

/I insert FFT function calls here

// read the timer count
t = ReadTimer45();

Notice how | used the functions from the timer.h library, and including plib.h at the top o
the program, we automatically included all the peripheral libraries at once.

TheOpenTimerXX() function allows us to configure the timer, selecting the clock
source and the prescaler value. It is equivalent to writing directly Ixt@Nregister as

we did in the previous explorations, if only slightly more readable. The main drawback,
as often is the case for these peripheral libraries, is that you won't find the list of valid
parameters to use (suchTas SOURCE_INT inside the device datasheet where the timer
module is described; you will have to rely instead on a separate document (the library
manual) and often resort to inspecting personally the include file—timer.h in this case. I
is in fact by inspecting this file (you can open it with the MPLAB Editor) that you will
learn how, when used as a pair, the correct parameters to pass to the initialization funct
are taken from those of the first module of the pair (T4 in our case).

The functionwriteTimerXX() , as you would expect, allows us to set the initial counter
value and effectively start our stopwatch, while the fundeadTimerxX() will read

a 32-bit count value. It won't stop our stopwatch, but it will take a reading at that precise
moment; that is what we need.

Let's open the Watch window by selecting YHiew | Watch menu and\dd the symbol
t toit. Unless you have already configured the Watch window to use decimal as the

160 Day7

default format, click with theight mouse button on top of the symbal to activate
the Watch window context menu, and choBseperties. SelectDecimal as the default
representation for this variable.

Now you are ready to build our project and program it onto the device with your
development tool of choice. Sebeeakpoint on the line containing the infinite loop,
presskun, and sit back and relax while the PIC32 works hard to solve the problem

for you. After a short while, MPLAB will come back alive as the PIC32 reaches the
breakpoint, and we will be able to read the timed value from the 32-bit integer variable
In my case it turned out to be 6,140,495!

Well, at least now you understand why | suggested we use a 32-bit timer. As fast as a f
Fourier transform can be, it is hard work, and a 16-bit timer would not suffice to keep
track of such a large number of cycles.

Converting the timer count in actual seconds, milliseconds, and microseconds is not hal
if we remember how we configured the oscillator and the primary clock path. The PIC32
system bus clock frequency was set to 72 MHz, while all the peripherals were provided
36 MHz peripheral bus clock. Dividing the timer value by the peripheral bus frequency,
we obtain:

T =t/Fpb= 6,142 543 36 000 00& .0 17062

We can automate the conversion by asking the PIC32 to do it for us from now on—just
add the following line of code after the stopwatch capture:

f =t/36E6

This will reuse the variablie to perform the division using floating-point arithmetic.
Addf to the Watch window so that, from now on, we will get to see the result of our
experiments expressed correctly in seconds and fractions (see Figure 7.7).

Fine-Tuning the PIC32: Configuring Flash Wait States

Whether you think that 170 ms is a good time in which to perform a 256-point FFT or
not, of one thing | am sure: The PIC32 can do better. In fact, beyond selecting the faste:
clock speed and properly configuring the oscillator module, a number of advanced
mechanisms on the PIC32 still require our attention to achieve the fine tuning that will

Running 161

Watch B
Add SER| [20 ~| Add Symbol | [IEETENGE ~|
Syrbol Name I Value A
t 6142543
1 o 0.170626194444444

| Watch1 Watch2| Watch3| watch4|

Figure 7.7: Testing the PIC32 performance using a 32-bit timer.

provide us with the highest possible level of performance. The number-one limitation

to the performance of an embedded control processor is the speed of its Flash memory
Unfortunately, once more, there is a conflict of interest; the fastest available Flash
memory banks are also the ones requiring the highest power consumption.

The designers of the PIC32 found that a perfect balance could be obtained by using a
low-power Flash memory and decoupling the PIC32 core system bus from the memory
bus by providing the ability to add a number of wait states (corresponding to up to sever
clock cycles), during which the processor is stalled waiting for data to be fetched from
the Flash memory. Depending on the difference in speed between memory and core,
an increasing number of wait states might be required. By default, at power-up this
mechanism is set for the safest possible condition that is reached by setting the maximt
number of wait states. Hence there is an opportunity for us to reduce the number to the
minimal possible value, given the actual operating specifications of the device. The
number of wait states is controlled by thieECONpecial function register

(see Figure 7.8) and in particular by BrVMWdits.

We could directly assign values, between 0 and 7, tGHECONegister’s bits, as in the
following example:

CHECONDits.PFMWS = 7; /I set max number of waitstates

But we would have to assume the responsibility for identifying the minimum safe numbe
of wait states for the worst-case operating conditions of our application (relying on the
electrical characteristics from the device datasheet). In fact, should we use the wrong
number of wait states, the execution of code from Flash memory could become erratic,

162 Day7

u-0 u-0 u-0 u-0 u-0 u-0 u-0 u-0
- 1 - 1 - 1 - T T - T -1 —
31 30 29 28 27 26 25 24
u-0 u-0 U-0 u-0 U-0 u-0 u-0 R/W-0
— [- [— T — T = T = T —]CHECOH
23 22 21 20 19 18 17 16
u-0 U-0 r-0 r-0 U-0 u-0 R/W-0 R/W-0
- [= 1T =T =T = T =" DCSZ[1:0]
15 14 13 12 11 10 9 8
u-0 u-0 R/W-0 R/W-0 u-0 R/W-1 R/W-1 R/W-1
— T =] PREFEN[1:0] [—] [PFMWS[2:0]
7 6 5 1 3 2 1 0

Figure 7.8: The CHECON control register.

and to make things worse, this would become detectable only under specific extreme
conditions of power supply voltage and temperature.

As a better alternative, we can use an ad hoc library function provided with the PIC32M
peripheral librariessYSTEMConfigWaitStatesAndPB(freq) . The function requires

the system clock frequency to be passed as an integer parameter and was designed by
PIC32 application support team to set the “recommended” minimum wait states for the
given system clock frequency, taking all the guesswork away.

Note

The. . .AndPB part of the function name is supposed to remind us that the same function will
also automatically modify the peripheral clock frequency setting of the PB divider as required
to keep the peripheral bus always below 50 MHz. As it happens, this is exactly what we had th
system configured for (at power-up) anyway.

So it is time to give a second try at our project, with the attdeihg” of the wait states
performed by the following line of code (placed inside the initialization section of our
main() function):

SYSTEMConfigWaitStatesAndPB(72000000L);

Rebuild the Running project and reprogram your development board. Let the applicatiot
run once more until it reaches the breakpoint (see Figure 7.9).

Running 163

Add SEFII IaU v] Add ngboll [6 ~|
Syrbol Nawme l Value |
£ 1535635
f 0.0426565277777778

| Watch1 Watch 2| Watch 3| Watch 4|

Figure 7.9: The PIC32 performance after wait states tuning.

Now, this is an improvement! We just reduced the FFT execution time from 170 ms to
42 ms. This is better than & 4peed improvement.

Fine-Tuning the PIC32: Enabling the Instruction
and Data Cache

But there is so much more we can do. As we understand more of the PIC32 architectur
we notice that between the MIPS core bus and the memory bus there is actually an
entirely new modulethe cacheThink of it as a small but very fast block of RAM

memory sitting between the processor and the Flash memory. Every time the processor
fetches an instruction or a word of data from the Flash memory, the cache module will
keep a copy but will also remember the address. When and if the processor needs the
same data again (from the same address) in the (near) future, the cache will quickly be
able to retrieve it, avoiding any new access to the Flash memory block (and avoiding all
wait states eventually associated).

The larger a cache memory module, the higher the probability that a copy of a specific
piece of data or instruction will be found in it. The reverse is also true: The shorter the
inner loop of a given algorithm, the higher the impact that the availability of the cache
module will have on its performance. This is because once all the cache is filled and a
new instruction is fetched, the content of the cache musbtaed,” and the oldest or
least recently used instruction/data needs to be overwritten by the new information.

Unfortunately, cache memory is, by its very nature, very expensive, and the PIC32MX
designers had to balance costs and benefits by setting the maximum capacity of 16 line
of 16 bytes each, for a total of 64 complete 32-bit instructions, equivalent to 256 bytes.

164 Day 7

There is much more flexibility (and therefore complexity) involved in the inner workings

of the PIC32 cache module, but we don’t need to know much more for now to decide th
we like the cache module and we want to activate it. In fact, by default at power-on, it is
disabled, and as in the previous case, there is a convenient library function (defined in tl

pcache.h module) awaiting our call:

CheKseg0CacheOn();

Note

The KsegO is the virtual memory space where MPLAB C32 allocates all the code segments
produced by compiling our project codes by default. You will remember that code placed in this
address spaceari be cached, whereas code plac&$éegl will not be cached, regardless of

the cache module settings and status.

Rebuild the Running project and reprogram your development board. Let the applicatiot
run once more until it reaches the breakpoint (see Figure 7.10).

watch x|
AddSFRl [ac v| Add Symboil |m vl
Symbol Name | Value |

t
£ 0.0202317222222222

[Watch1 Watch2| watch3| watchd|

Figure 7.10: The PIC32 performance after enabling the cache.

Now, this is another important improvement! We just reduced the FFT execution time
from 42 ms to 20 ms. This is a furthgr @peed improvement.

Fine-Tuning the PIC32: Enabling the Instruction Pre-Fetch

But we are far from finished. The cache module of the PIC32 has another important
feature to offer that promises similarly large rewards once enabled. It is the ability

Running 165

to perform instructions pre-fetching. That is, the cache module not only records the
instructions being fetched by the PIC32 core; it also “runs ahead” and reads a whole
block of four instructions (four words of 32 bits) at a time. If the code is executed
sequentially, the next three memory fetches will be performed with the equivalent of zer
wait states. Every time a branch is executed, breaking the sequential flow of the prograr
the pre-fetched cached data is discarded and the correct next instruction is loaded but
without any additional penalty beyond the required wait states.

The cache pre-fetch is disabled by default at power-up, amRREEENDIts in the
CHECONegister control the behavior of the module. They can be set by directly accessit
the SFR or by using the maara@heConfigure() defined in the pcache.h library:

mCheConfigure(CHECON | 0 x30);

After appending this line of code to the list of initialization calls insidertiie()
function, let’s rebuild the Running project and reprogram the development board. Let th
application run once more until it reaches the breakpoint (see Figure 7.11).

watch £
Add SFR| [a0 ~| Add Symbol| [_exfun_ms =l
Symbol Name | Value I
t 592812
p 0.0164670000000000

[watch1 Watch2| watch3| watchd|

Figure 7.11: The PIC32 performance after enabling the cache.

We once more reduced the FFT execution time from 20 ms to 16.4 ms. This is a further
20-percent performance improvement.

Fine-Tuning the PIC32: Final Notes

As anticipated, the complexity of the cache module is considerable, and the number
of additional possible “tricks” is practically unlimited if you dare dig deeper. | will
mention only one last option related to accessing the RAM memory. As it happens, evel

166 Day7

regular RAM memory access is by default slowed by the presence of a single wait state
Its presence is already greatly mitigated by the cache, and the impact on the overall
processor performance can be further reduced by the efficiency of the compiler and

its use of the processor registers. Nonetheless, it is worth trying to disable it using the
mBMXDisableDRMWaitState() function.

In my experiments, this produced an almost unnoticeable performance improvement, b
the mileage can vary greatly with the nature of the applicatior-{gaes 7.12).

X
Add SFRl laU vl Add Symboll
Symbol Name | Value |
T 592525
f 0.0164590277777778

[Watch1 Watch2| watch3| watchd|

Figure 7.12: The PIC32 performance after removing the RAM wait states.

After rebuilding the project with the added last fine-tuning step, we obtained an
additional 1-percent performance improvement.

In summary, in only four lines of code we have been able to produce an almost
unimaginable performance improvement compared to our initial measurements using th
default configuration at start-up. We went from 17&2down to 16.45 ms, equivalent

to a 10 speed performance boost to our FFT algorithm!

/I configure PB frequency and the number of wait states
SYSTEMConfigWaitStatesAndPB(72000000L);

/I enable the cache for max performance
CheKseg0CacheOn();

/I enable instruction prefetch
mCheConfigure(CHECON | O x30);

/I disable RAM wait states
mBMXDisableDRMWaitState();

Running 167

Fortunately, the PIC32 support team has been preparing a shortcut for us, a single simy
library function that, from now on, will allow us to perfoat of the above optimizations
in a single function call:

SYSTEMConfigPerformance(72000000L);

A precious little function that fine-tunes the Flash memory and RAM access while
unleashing the power of the cache and pre-fetch module of the PIC32. How about
renaming itSportTuning() orRacingMode() ?

Debriefing

Step by step, today we learned to tune up the engine of the PIC32, first in coarse steps.
then gradually in finer steps, until we have been able to squeeze the most performance
out of the machine. Keep in mind that the tuning process is very much dependent on
the task at hand. Different applications will respond differently to each turn of the
various “control knobs” we have touched today. Also, the result obtained is by no mean
representative of the fastest FFT implementation possible on a PIC32. In fact, we have
deliberately chosen not to modify the original algorithm in any way, to highlight instead
the relative performance gains obtained by our use of various hardware features availat
on the PIC32MX architecture. In the process we have also learned something new abot
the peripherals set and, in particular, the PIC32 timer modules that allow us to combine
them in pairs to produce 32-bit timers.

Notes for the Assembly Experts

Once more we have resisted the temptation to use any hand optimization, avoiding
any use of the assembly language. In reality, those of you who want to learn more
about the PIC32 assembly will soon discover that there are powerful instructions in the
PIC32 instruction set that we could have used to further boost the performance of the
microcontroller in many signal processing applications. In particular, | am referring

to the multiply and accumulate instructions, or multiply and add (MADD), as they are
known in MIPS lingo.

Notes for the PIC® Microcontroller Experts

Thanks to the cache and the pre-fetch mechanism, the PIC32 can execute “almost” one
instruction per clock cycle, even when operating at the maximum clock frequency while

168 Day7

using a low-power Flash memory. The operative word héwdrisost,” since we cannot

be sure that this happens all the time. The cache is inevitably going to gemssate

here and there; for example, the MCU will have to wait from time to time while a group
of words is loaded by the pre-fetch mechanism or a new word of data is loaded into the
cache. The more your code revolves around a short loop that fits entirely in the PIC32
cache memory (256 bytes), the smaller the percentage of misses you will experience. B
the way, although we don’t have the time and space to cover the subject in the necessa
depth in this book, most of the control registers inside the cache module are actually the
to allow us some insight into the workings of the cache and to héjpafge” a specific
piece of code.

So, can we claim that the PIC32 is a 72 MIPS machine, meaning that is it really executi
72 million instructions per second? | think the wise answer is “mostly” yes, but . . . it
depends on your code and how well you can get the cache to work for you.

Tips & Tricks

One powerful tool, available as part of the MPLAB IDE, is the Data Monitor and Control
Interface, or DCMI for friends and fans. You can activate it by sele¢tolks | DCMI

on the MPLAB IDE main menu. When used in combination with any of the in circuit
debuggers and even the MPLAB SIM simulator, it can provide us with a window into
the device data space by producing graphics but also lettingtersactively” modify

the data with a sort of configurable graphical user interface (GUI). In particular, when
playing with the FFT you might be interested in checking the shape of the input signal
we synthesized (sinusoid) and in visualizing the output of the FFT routine. Once in the
DCMI window, follow the next few steps in exact order:

1. Click theDynamic Data View tab.

2. Check th&raphl check box.

3. Right-click with your mouse on tRest graph to expose the context menu.
4. SelecConfigure Data Source (see Figure 7.13).

5. Select thnB buffer among the list of Global Symbols.

6. Click theOK button.

Now set a breakpoint on the line containing@penTimer45() call, just following the
inB[] buffer initialization, and run the program.

Running

169

21|

Dynamic Data View Properties i
Graph 1 |
~—Graph Contral Settings
[~ Streaming Data Configuration — = =
_libc_data :_]
_stack
EI1N0 Address:
-rev - —
Bwi Data Size: |2 Bits
Bl wr
W DataRange: |Unsigned
- xi
& xr — Display Format:
Selected Variable: First Index:
e Last Index:
Address:
DxADO0D208 Sample Count:
[~ Display Settings
[™ Persist Previous Run Session Data
[V Auto Assign Title
Title: I Symbol; inB
% Axis Label: | % Axis
¥ fxis Label | Y fodis

Figure 7.13: DCMI Dynamic Data View Properties dialog box.

As the program halts you should see the content ofiffile buffer nicely visualized

inside the Dynamic Data View window (sEgure 7.14).

It's a 2 Hz sinusoid, or | should say a sinusoid whose period is half the input sample cou
Now we can set a second breakpoint on the line wheRetimTimer45()

function is

called, after the FFT is performed and the scaling is performed to visualize the output.

Remember that the output of an FFT contains only half the size of the input number of

samples, so you can change Saeple Count field of the visualization t428 instead of

the default value (256) automatically offered by the DCMI. Also maximize the window to

obtain a better detail (see Figure 7.15).

170 Day7

Data Monitor And Control Interface — X
Dynamic Data Control | Dynamic Data Input Dynamic Data Yiew] =
v Graph 1

Source Symbol: mB
-
| | 47

Figure 7.14: Dynamic Data View of the input signal.

Click Mere or Press ‘Esc’ to Return =

Figure 7.15: Dynamic Data View of the FFT output: The signal spectrum.

Running 171

As you can see, the one and only peak in the signal power spectrum is easily found on
X-axis (considering the sample count starts from 1) at the position that would correspon
to a frequency of 2 Hz (or two periods within the input sample count). Verify that this is
exactly what we have designed the input test signal to be!

Exercises

1. \Verify the shape and size of the output of the FFT (real and imaginary
components) before the power scaling.

2. Remove the windowing and observe if and how the spectrum of the signal
appears to change.

3. Use multiple input sinusoids to create a composite signal and observe the FFT
output.

4. Experiment with allocating (more) cache space (lines) to the data space and
observe the resulting performance changes.

Books

Sweetman, DominiGee MIPS Ruyrsecond edition (2006). This is a must-read if
you want to truly understand the most advanced features of the PIC32 MIPS
core. The second edition is recommended because it focuses on the more modern
implementations of the MIPS cores and adds notes on Linux kernel implementation
details. (Don‘t try this at home on the PIC32MX . . . not just yet.)

Links

http://en.wikipedia.org/wiki/FFTHelpful in learning more about uses of and methods to
perform a Fast Fourier Transform.

http://en.wikipedia.org/wiki/Spectral _musi€Ft can be fun! Think graphics, but also
think music composition.

http://en.wikipedia.org/wiki/Window_functioNo, we’re not talking abotihose
windows; these windows can dramatically change your views!

172 Day7

http://wn.wikipedia.org/wiki/CPU_cachdhe PIC32MX is the first PIC microcontroller
to use a cache mechanism. It is worth looking deeper in the subject to understand
which decisions and compromises the designers of the PIC32 had to make to
maximize performance while delivering an inexpensive product.

Communication

The Plan

Except for the most basic embedded-control applications, it is very likely that you will
soon find that your application needs to communicate with other more or less intelligent
devices. They could be personal computers, sensors, displays, or other microcontroller:
on the same board or remote. To reduce cost, you will be looking for a solution that use
a small number of pins and wires and that will steer your search in the direction of a
serial communication interface.

In embedded control, communication is equally a matter of understanding the protocols
as well as the characteristics of the physical media available. Learning to choose the rig
communication interface for the application can be as important as knowing how to use

Today we will compare the basic communication peripherals available in all the general
purpose devices of the new PIC32MX family. In particular we will explore asynchronous
serial communication interfaces (UART) and synchronous serial communication
interfaces (SPI andC), comparing their relative strengths and limitations for use in
embedded control applications.

Preparation

In addition to the usual software tools, including the MPEABE, MPLAB C32

compiler student version, and the MPLAB SIM simulator, this lesson will require the use
of the Explorer 16 demonstration board and one of the In-Circuit Debugging tools such
as the MPLAB ICD2, MPLAB ICD3, MPLAB REAL ICE, or PIC32 Starter Kit. If you
intend to use the latter, though, you will need the special PIC32 Starter Kit adapter (PIV

174 Day 8

The Exploration

The PIC32MX family offers seven communication peripherals that are designed to
assist in all common embedded-control applications. As many as six of theariate
communication peripherals; they transmit and receive a single bit of information at a
time. They are:

» 2X the Universal Asynchronous Receiver and Transmitters (UARTS)
« 2X the SPI synchronous serial interfaces
« 2X the PC synchronous serial interfaces

The main difference betweersgnchronousnterface (like the SPI ofC) and an
asynchronousne (like the UART) is in the way the timing information is passed from
transmitter to receiver. Synchronous communication peripherals need a physical line
(a wire) to be dedicated to thlock signal, providing synchronization between the two
devices. The device(s) that originates the clock signal is typically referred to as the
master as opposed to the device(s) that synchronizes with it, callethire(s)

Synchronous Serial Interfaces

The PC interface (see Figure 8.1), for example, uses two wires and therefore two pins o
the microcontroller: one for the clock (SCL) and one bidirectional for the data (SDA).

PIC32 I2C Peripheral
1°C interface Clock (SCL)
(Master) Data (SDA) (Slave)

Figure 8.1: I°C interface block diagram.

The SPI interface (see Figure 8.2) instead separates the data line in two, one for the in
(SDI) and one for the output (SDO), requiring one extra wire but allowing simultaneous
(faster) data transfer in both directions.

To connect multiple devices to the same serial communication interfaces (a bus
configuration), the3C interface requires a 10-bit address to be sent over the data line

Communication 175

PIC32 SPI Peripheral
SPI interface
Clock
SCK » SCK
SDO » SDI
Data
SDI |« SDO

Figure 8.2: SPI interface block diagram.

before any actual data is transferred. This slows the communication but allows the samt
two wires (SCL and SDA) to be used for as many as (theoretically) 1,000 devices. Also,
the PC interface allows multiple devices to act as masters and share the bus using a
simple arbitration protocol.

The SPI interface (sdggure 8.3), on the other side, requires an additional physical line,
the slave select (SS), to be connected to each device. In practice this means that in usit
an SPI bus, as the number of connected devices grows, the number of I/O pins requirec
on the PIC32 grows proportionally with them.

PIC32 SPI SPI
SPl interface Peripheral Peripheral
(Slave #1) (Slave #2)
SCK SCK
SDO SDO
SDI Ss SDI SS

SSCDT ﬁ A ﬁ A lll:>
SDO

Cs1
CS2

CSN

v

Figure 8.3: SPI bus block diagram.

Sharing an SPI bus among multiple masters is theoretically possible but practically very
rare. The main advantages of the SPI interface are truly its simplicity and the speed tha
can be one order of magnitude higher than that of the fad@ebtis (even without taking
into consideration the details of the protocol-specific overhead).

176 Day8

Asynchronous Serial Interfaces

In asynchronous communication interfaces (see Figure 8.4), there is no clock line,
whereas typically two data lines—TX and RX, respectively—are used for input and
output, and optionally two more lines can be used to provide a hardware handshake.
The synchronization between transmitter and receiver is obtained by extracting timing
information from the data stream itsedtart andstop bitsare added to the data, and
precise formatting (with a fixed baud rate) must be set to allow reliable data transfers.

PIC32 Asynchronous
UART interface Peripheral
X » RX
Data
RX |« TX
RTS f-mmmmmmmmmoeaeo o » CTS
Optional Handshake
CTS j¢----ommmm RTS

Figure 8.4: Asynchronous serial interface block diagram.

Several asynchronous serial interface standards dictate the use of special transceivers

improve the noise immunity, extending the physical connection distance up to several
thousand feet.

Each serial communication interface has its advantages and disadvarahes.1
summarizes the most important ones as well as the most common applications.

Table 8.1: Serial interfaces comparison table.

Synchronous Asynchronous
Peripheral SPI 12C UART
Max bit rate 20 Mbit/s 1 Mbit/s 500kbit/s
Max bus size Limited by number of | 128 devices Point to point
pins (RS232), 256 devices
(RS485)
Number of pins 3+nXCS 2 2(+2)

(continued)

Communication

177

Table 8.1: (Continued)

distance

Synchronous Asynchronous
Peripheral SPI 1’C UART
Pros Simple, low cost, high | Small pin count, Longer distance
speed allows multiple (use transceivers
masters for improved noise
immunity)
Cons Single master, short Slowest, short distance | Requires accurate

clock frequency

Typical application

Direct connection
to many common
peripherals on same
PCB

Bus connection with
peripherals on same
PCB

Interface with
terminals, personal
computers, and other
data acquisition
systems

Examples

Serial EEPROMs
(25CXXX series),
MCP320X A/D
converter, ENC28J60
Ethernet controller,
MCP251X CAN
controller . . .

Serial EEPROMs
(24CXXX series),
MCP98XX temperature
sensors, MCP322x A/D
converters . . .

RS232, RS422, RS485,
LIN bus, MCP2550
IrDA interface . . .

Parallel Interfaces

The Parallel Master Port (PMP) completes the list of basic communication interfaces of
the PIC32. The PMP has the ability to transfer up to 16 bits of information at a time whil
providing several address lines to interface directly to most commercially available LCD
display modules (alphanumeric and graphic modules with integrated controller) as well

as Compact Flash memory cards (or CF-I/O cards), printer ports, and an almost infinite
number of other basic 8- and 16-bit parallel devices available on the market and featurir

the standard control signals: -CS, -RD, and -WR.

Today we begin focusing specifically on the use of a synchronous serial interface, the

SPI. In the next few days we will also cover the asynchronous serial interface and

the PMP.

178 Day8

Synchronous Communication Using the SPI Modules

The SPI interface is perhaps the simplest of all the available interfaces, although the
PIC32 implementation is particularly rich in options and interesting features.

The SPI interface (see Figure 8.5) is essentially composed of a shift register. Bits are
simultaneously shifted in, most significant bit (MSb) first, from the SDI line and shifted
out from the SDO line in synch with the clock on the SCK pin. The size of the shift
register can vary from 8, 16, or Bis.

<} N Internal
Data Bus

[—

———— == ————- T Registers share address SPIXBUF

-
|

Transmit

Receive

SPIXSR

SDIx bit 0

|X} e
SDOx Shift
Control
Slave Select Clock Edge

|X’— and Frame Control Select

SSx Sync Control
|X} Baud Rate | PBCLK
Generator
SCKXx
Note: Acces SPIXTXB and SPIXRXB registers via Enable Master Clock

SPIXBUF register.
Figure 8.5: The SPI module block diagram.
If the device is configured as a bus master, the clock is generated internally, derived

from the peripheral bus clock (Fpb) by a baud rate generator, and output on the SCK pi
Otherwise, the device is a bus slave and the clock is received from the SCK pin.

Communication

179

As for all other peripherals we will encounter, the essential configuration options are
controlled by the SFRPIXCON and the baud rate generator control regiSRxBRG
(see Figure 8.6).

R/W-0 R/W-0 R/IW-0 u-0 U-0 U-0 U-0 U-0
FRMEN [FRMSYNC | FRMPOL — — — — —
bit 31 bit 24
U-0 U-0 U-0 u-0 U-0 U-0 R/W-0 U-0
— — — — — — SPIFE —
bit 23 bit 16
R/W-0 R/W-0 RIW-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
oON | FRz [sibL DISSDO | MODE32 | MODE16 SMP CKE
bit 15 bit 8
R/W-0 R/W-0 R/W-0 u-0 U-0 U-0 U-0 U-0
SSEN | ckP | MSTEN | — —
bit 7 bit 0

Figure 8.6: The SPIXCON control register.

Notice in Figure 8.6 that the lower (least significant) 16 bits BRINCON register
contain all the essential configuration bits, whereas the tdjitd 8ontain control bits that
refer only to advanced features of the SPI port (framed modes). This makestheN
control register compatible with the previous generations of 16-bft Ri€rocontrollers,
since the top bits default to zero.

To demonstrate the basic functionality of the SPI peripheral we will use the Explorer 16
demo board, on which the PIC32 SPI2 module is connected to a 25L.C256 EEPROM
device, often referred to as a Serial EEPROM (or SEE, or sometimeé,jpsﬁnﬁ)unced
e-squaredl This is a small and inexpensive device that containd<pi6, or 32 Kbytes,

of nonvolatile high-endurance memory.

Use the New Project Setup checklist to create a new project 8Rllexhd a new source
file, similarly calledspi2.c.

The most direct way to configure the SP12 module for communication with the serial
memory device is by manually assigning the correct value to each bitSPIt@ON
register. According to the 25LC256 device datasheet (DS21822), downloadable from

180 Day 8

the Microchip Web site, the SEE responds to a short list of 8-bit commands that must
be supplied via the SPI interface with the following setting (notice in parentheses the
corresponding values of the control bits in #®2CON register):

» 8-bit modeNIODE16 =0, MODE32=0)
» Clock IDLE level is low, clock ACTIVE is highcKP =0)
« Serial output changes on transition from ACTIVE to IDCEE =1)

We will also need to configure the PIC32 to act as the SPI bus masEEN = 1),
since the memory is a slave-only device—in other words, it expects to receive a clock
signal on the SCK pin.

The resulting configuration value can be defined as a constant that will be later assigne
to theSPI2CON register:

Il peripheral configurations
#define SPI_CONF 0 x8120 // SPI on, 8-bit master, CKE=1,CKP=0
To determine the baud rate, we will use Equation 8.1 (from the PIC32 datasheet):

Equation 8.1: Formula to determine SPI clock frequency.

F — FPB
SCK *
2* (SPIXBRG+)

We can either use tt&PI12BRG default value (0 at power-up, giving a baud rate divider of
1:2) or assign an appropriate value to slow the communication and correspondingly hel}
reduce the EEPROM power consumption—for example:

#define SPI_BAUD 15 /I clock divider Fpb/(2 * (15+1))

With such settings, the baud rate divider is set to 1:32 of Fpb, corresponding to about
280 kHz when the PIC32 is configured for a 9 MHz peripheral bus as set and document
by the following few lines that we will place at the top of our source code:

/I configuration bit settings, Fcy=72 MHz, Fpb=9MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1

#pragma config FPBDIV=DIV_8, FWDTEN=OFF, CP=OFF, BWP=OFF

Communication 181

From the Explorer 16 User Guide (DS51589 Appendix A board schematic), we learn th:
pin 12 of PortD (RD12) is connected to the memory chip-select (CS) pin. Notice that thi
is an active low input. A couple of definitions will help make our code more readable:

/'O definitions
#define CSEE _RD12 I select line for EEPROM
#define TCSEE _TRISD12 /I tris control for CSEE pin

We can now write the peripheral initialization part of our demonstration program:

/I 1. init the SPI peripheral

TCSEE =0; /l make SSEE pin output
CSEE =1; I/ de-select the EEPROM
SPI2CON = SPI_CONF; /I select mode and enable
SPI2SPI2BRG = SPI_BAUD; /I select clock speed

We can now write a small function that will be used to transfer data to and from the seri:
EEPROM device:

/I send one byte of data and receive one back at the same time
int writeSPI2(int i)

{
SPI2BUF = i; /I write to buffer for TX
while(ISPI2STATbits.SPIRBF); /I wait for transfer complete
return SPI12BUF; /I read the received value

YiwriteSPI2

ThewriteSPI12() is a truly bidirectional transfer function. It immediately

writes a character to the transmit buffer and then enters a loop to wait fecehe

flag to be set to indicate that the transmission was completed as well as data was
received back from the device. The data received is then returned as the value of the
function.

When we’re communicating with the memory device, though, there are situations

when a command is sent to the memory, but there is no immediate response. There are
also cases when data is read from the memory device, but no further commands need
to be sent by the PIC32. In the first case (for example, the write command), the return
value of the function can simply be ignored. In the second case (for example, the read
command), a dummy value can be sent to the memory while shifting in data from the
device.

182 Day8

The 25LC256 datasheet contains accurate depictions of all seven possible command
sequences that can be used to read or write data to and from the memory device.

A small table of constants can help encode and document all such commands in

our code:

/[25L.C256 Serial EEPROM commands
#define SEE_WRSR 1 Il write status register

#define SEE_WRITE 2 /I write command
#define SEE_READ 3 /l read command
#define SEE_WDI 4 I/ write disable
#define SEE_STAT 5 /l read status register
#define SEE_WEN 6 I/ write enable

Before we attempt any more complex task, let’s test the little code we have assembled
so far to verify that communication with the device can be properly established. For
example, we can use the Read Status Reg&Eer STAT) command to interrogate the
EEPROM and obtain the value of its internal status register.

Testing the Read Status Register Command

After sending the appropriate command b@EeE_STAT) with a first call to the
writeSPI12() function, we will need to send a second (dummy) byte to capture the
response from the memory device (5@gure 8.7).

s\ a

SCK

Instruction —— >

S'OOOOOW

High-impedance
SO 7 6 5 4 3 2 1 0

l«—— Data from STATUS register ——»

Figure 8.7: The complete Read Status Register command timing sequence.

Communication 183

Sending any command to the SEE requires, at a minimum, the following four-step
sequence:

1. Activate the memory, taking tl& pin low.
2. Shift out th&-bit command.

3. Depending on the specific command, send or receive multiple bytes
of data.

4. Deactivate the memory (taking high @f&pin) to complete the command.
After this step the memory will go back to a low-power consumption standby
mode.

In practice, the following code is required to perform the complete Read Status Registel
operation:

/I Check the Serial EEPROM status

CSEE = 0; I select the Serial EEPROM
writeSPI2(SEE_STAT); // send a READ STATUS COMMAND
i = writeSPI12(0); /I send dummy, read data

CSEE =1; /I deselect to complete command

The complete project listing should look like:

/*

** SPI2
*
#include <p32xxxx.h >
/I configuration bit settings, Fcy=72 MHz, Fpb=9 MHz

#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_8, FWDTEN=OFF, CP=0OFF, BWP=OFF

/1'/O definitions
#define CSEE _RD12 /I select line for Serial EEPROM
#define TCSEE _TRISD12 /I tris control for CSEE pin

/I peripheral configurations
#define SPI_CONF 0 x8120 // SPI on, 8-bit master,CKE=1,CKP=0
#define SPI_BAUD 15 /I clock divider Fpb/(2 * (15+1))

184 Day8

/[25L.C256 Serial EEPROM commands
#define SEE_WRSR 1 [l write status register

#define SEE_WRITE 2 Il write command
#define SEE_READ 3 /I read command
#define SEE_WDI 4 I/ write disable
#define SEE_STAT 5 Il read status register
#define SEE_WEN 6 I/l write enable

/I send one byte of data and receive one back at the same time
int writeSPI12(int i)

{
SPI2BUF =i; /I write to buffer for TX
while(!SPI2STATbits.SPIRBF); [/l wait for transfer complete
return SPI2BUF; /l read the received value

YiwriteSPI2

main ()
{
inti;
/I 1. init the SPI peripheral
TCSEE =0; /l make SSEE pin output
CSEE =1; /I de-select the Serial EEPROM
SPI2CON = SPI_CONF; /I select mode and enable SPI2
SPI2BRG = SPI_BAUD; /I select clock speed
/I main loop
while(1)
{
/I 2. Check the Serial EEPROM status
CSEE =0; /I select the Serial EEPROM
writeSPI2(SEE_STAT); /l send a READ STATUS COMMAND
i=writeSP12(0); /I send/receive
CSEE=1; /I deselect terminate command
} /I main loop
} /I main

Follow the Debugger Setup checklist appropriate for your tool of choice to enable the
In-Circuit Debugger and prepare the project configuration. Then follow the Project Build
checklist to compile and link the demo code. Then:

1. After connecting the Explorer 16 demo board, program the PIC32 selecting
theDebugger | Program option. By default MPLAB will choose the smallest

Communication 185

range of memory required to transfer the project code into the device so that
programming time will be minimized. After a few seconds, the PIC32 should be
programmed, verified, and ready to execute.

2. Add théVatch window to the project.
3. Selecit in the symbol selection box, then click thdd Symbol button.

4. Set the cursor on the last line of code in the main loop (containing the CSEE
deselect) and settaeakpoint (double-click).

5. Start the execution by selecting Drebugger | Run command.

6. When the execution terminates, the contents of the 25L.C256 memory Status
Register should have been transferred to the variabigible in the Watch
window.

Unfortunately, you will be disappointed to learn that the default status of the 25LC256
memory (at power-on) is represented by the valiedD (se€lable 8.2).

Table 8.2: The 25LC256 Serial EEPROM status register.

7 6 5 4 3 2 1 0
W/R - - - W/R |W/R R R
WPEN X X X BP1 BPO WEL WP

W/R = writable/readable; R = read-only.

In fact, from Table 8.2, which illustrates the contents of the EEPROM status register,
and from the device datasheet we learn that, at power-on, the Block Protection bits
(BP1 andBPO) are supposed to be cleared unless a block code protection had been set,
the Write Enable LatchNEL is disabled, and no Write In ProgregdR) flag should be
active.

Not a very telling result for our little test program. So, to spice up things a little we could
start by setting the Write Enable Latch before interrogating the Status Register; it would
be great to see bit 1 set.

186 Day 8

Let's insert the following code before Section 2 that we will promptly renumber to 2.2:

/I 2.1 send a Write Enable command

CSEE =0; /I select the Serial EEPROM
writeSPI12(SEE_WEN); /I send command, ignore data
CSEE=1;

1. Rebuild the project.
2. Reprogram the device.

3. Run (or Run to Cursor).

If everything went well, you will see now the variable i in the Watch window turn red
and show a value of 2. Now, these are the great satisfactions that you can get only by
developing code for a powerful 32-bit embedded controller!

More seriously, now that the Write Enable latch has been set, we can add a write
command and start “modifying” the contents of the EEPROM device. We can write a
single byte at a time, or we can write a long string, up to a maximum of 64 bytes, all in ¢
single sequence/command called Page Write. Read more on the datasheet about addre
restrictions that apply to this mode of operation, though.

Writing Data to the EEPROM

After sending the write command, 2 bytes of address must be supplied before
the actual data is shifted out. The following code exemplifies the correct write
sequence:

/I send a Write command

CSEE =0; /I select the Serial EEPROM
writeSPI12(SEE_WRITE); /I send command, ignore data
writeSPI2(ADDR_MSB); /I send MSB of memory address
writeSPI2(ADDR_LSB); /I send LSB of memory address
writeSPI12(data); I/l send the actual data

/I send more data here to perform a page write

CSEE =1, /I start actual EEPROM write cycle

Notice how the actual EEPROM write cycle initiates only after the CS line is
brought high again. Also, it will be necessary to wait for a time (Twc) specified

Communication 187

in the memory device datasheet for the cycle to complete before a new command
can be issued.

There are two methods to make sure that the memory is allowed the right amount of tinr
to complete the write command. The simplest one consists of inserting a fixed delay aft
the write sequence. The length of such a delay should be longer than the maximum cyc

time specified in the memory device datasheet (Twc maxrs)s

A better method consists of checking the Status Register contents before issuing any
further read/write command, then waiting for the Write In Progm#R)(flag to be

cleared; this will also coincide with the Write Enable WEfI being reset. By doing

so, we will be waiting only the exact minimum amount of time required by the memory
device in the current operating conditions.

Reading the Memory Contents

Reading back the memory contents is even simpler. Here is a snippet of code that will
perform the necessary sequence:

/I send a Write command

CSEE =0; /I select the Serial EEPROM
writeSPI2(SEE_READ); /I send command, ignore data
writeSPI2(ADDR_MSB); /I send MSB of memory address
writeSPI12(ADDR_LSB); /I send LSB of memory address
data=writeSPI12(0); /I send dummy, read data

/I read more data here sequentially incrementing the address
CSEE =1, /[terminate the read sequence

/I and return to low power

The read sequence can be indefinitely extended by sequentially reading the entire
memory contents if necessary and, upon reaching the last memory address (OX7FFF),
rolling over and starting from 0x0000 again.

A 32-Bit Serial EEPROM Library

We can now assemble a small library of functions dedicated to accessing the 25LC256
serial EEPROM. The library will hide all the details of the implementation, such as the
SPI port used, specific sequences, and timing details. It will expose instead only two
basic commands to read and write integer data types (32-bit) to a generic (black box)
nonvolatile storage device.

188 Day 8

Let's create a new project using the Project Wizard and the usual checklist. An
appropriate name could ISEE. After creating a new source fiiee.c, we can copy most
of the definitions we prepared in the SPI project:

/*
** SEE Access Library

*/
#include "p32xxxx.h "
#include "see.h "

/I'1/O definitions
#define CSEE _RD12 /Il select line for Serial EEPROM
#define TCSEE _TRISD12 /I tris control for CSEE pin

/I peripheral configurations
#define SPI_CONF 0 x8120 /I SPI on, 8-bit master,CKE=1,CKP=0
#define SPI_BAUD 15 /I clock divider Fpb/(2 * (15+1))

/I 25LC256 Serial EEPROM commands
#define SEE_WRSR 1 /I write status register

#define SEE_ WRITE 2 /I write command
#define SEE_READ 3 /l read command
#define SEE_WDI 4 /I write disable
#define SEE_STAT 5 /I read status register
#define SEE_WEN 6 /I write enable

Let’s also copy the initialization code, the write function, and the status register read
commands. Each one will become a separate function:

/I send one byte of data and receive one back at the same time
int writeSPI2(int i)

{
SPI2BUF =i; /] write to buffer for TX
while(!SPI2STATbits.SPIRBF); // wait for transfer complete
return SPI2BUF; /I read the received value

Y1 writeSPI2

void initSEE(void)

{
/I init the SPI2 peripheral
CSEE =1; /I de-select the Serial EEPROM
TCSEE =0; /I make SSEE pin output

Communication 189

SPI2CON = SPI_CONF; I/l enable the peripheral
SPI2BRG = SPI_BAUD; /I select clock speed

I initSEE

int readStatus(void)

{
/I Check the Serial EEPROM status register
inti;
CSEE =0; /I select the Serial EEPROM
writeSPI2(SEE_STAT); /l send a READ STATUS COMMAND
i = writeSPI12(0); Il send/receive
CSEE =1; /I deselect terminate command
return i;

} /I readStatus

To create a function that reads an integer value from nonvolatile memory, first

we verify that any previous command (write) has been correctly terminated by

reading the status register. A sequential read of 2 bytes is used to assemble an integer
value:

int readSEE(int address)
{/l read a 32-bit value starting at an even address

int i;

/[wait until any work in progress is completed
while (readStatus() &0 x1); // check WIP

/I perform a 16-bit read sequence (two byte sequential read)

CSEE =0; I select the Serial EEPROM
writeSPI2(SEE_READ); /l read command

writeSPI2(address >8); // address MSB first
writeSPI12(address & Oxfc); /[address LSB (word aligned)
i = writeSPI12(0); /I send dummy, read msb

i=(i <<8)+ writeSPI12(0); /I send dummy, read Isb

i=(i <<8)+ writeSPI12(0); /l send dummy, read Isb

i= (i< <8)+ writeSPI12(0); /I send dummy, read Isb
CSEE =1,

return (i);

Y/ readSEE

190 Day 8

Finally, the write enable function can be created by extracting the short segment of cod
used to access the Write Enable latch from our previous project and adding a page writ
sequence:

void writeEnable(void)

{

/l send a Write Enable command

CSEE =0; /I select the Serial EEPROM

writeSPI2(SEE_WEN); I/l write enable command

CSEE =1; /l deselect to complete the command
Y/ writeEnable

void writeSEE(int address, int data)
{ /I write a 32-bit value starting at an even address

/[wait until any work in progress is completed
while (readStatus() & 0 x1) // check the WIP flag

/I Set the Write Enable Latch
writeEnable ();

/I perform a 32-bit write sequence (4 byte page write)

CSEE =0; I select the Serial EEPROM
writeSPI2(SEE_WRITE); /I write command
writeSPI2(address > 8); /l address MSB first
writeSPI2(address & Oxfc); // address LSB (word aligned)
writeSP12(data > 24); // send msb
writeSPI2(data > 16); I/l send msb
writeSPI2(data > 8); /I send msb
writeSPI12(data); I/l send Isb
CSEE =1,

Y/ writeSEE

More functions could be added at this point to acskess (16-bit) orlong long
(64-bit) data types, for example, but for our proof of concept this will suffice.

Note that the page write operation (see the 25LC256 memory datasheet for details) requir
the address to be aligned on a power of two boundaries (in our case, just an address divis
by 4 will do). The requirement must be extended to the read function for consistency.

Save the code in theee.c file and add it to the project using one of the three methods
shown in the checklists. You can either use the editor right-click menu and select

Communication 191

Add to Project or by right-clicking on the project window on the Source Files branch
and choosind\dd Files, then selecting theee.c file from the current project directory.

To make a few selected functions from this module accessible to other applications,
create a new file, see.h, and insert the following declarations:
/*

** SEE Access library

**

** encapsulates 25L.C256 Serial EEPROM
** as a NVM storage device for PIC32 + Explorerl6 applications
*
/I initialize access to memory device
void initSEE(void);
/I 32-bit integer read and write functions
/I NOTE: address must be an even value between 0 x0000 and 0 x3ffc
Il (see page write restrictions on the device datasheet)
int readSEE (int address);
void writeSEE(int address, int data);

This will expose only the initialization function and the integer read/write functions,
hiding all other details of the implementation.

Add the see.h file to the project by right-clicking in the project windows on the Header
Files icon and selecting it from the current project directory.

Testing the New SEE Library

To test the functionality of the library, we can create a test application containing a few
lines of code that repeatedly read the contents of a memory location (at address 16),
increment its value, and write it back to the memory.

/*
** SEE Library test

*/
/I configuration bit settings, Fcy=72 MHz, Fpb=9 MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_8, FWDTEN=OFF, CP=OFF, BWP=OFF
#include <p32xxxx.h >
#include "see.h "

192 Day8

main ()

{

int data;

/l'initialize the SPI2 port and CS to access the 25L.C256
iNtSEE();
/I main loop
while (1)
{
/I read current content of memory location
data = readSEE(16);
/I increment current value
data++; I <-set brkpt here

/I write back the new value
writeSEE(16, data);
/laddress++;

} /I main loop
} /Imain

1. Save this file &8EEtest.c and add it to the current project, too.

Invoking theBuild All command, you will observe the MPLAB C32 compiler to work
sequentially on the two source files (.c) and later the linker to combine the object codes
produce an output executable (.hex).

2. Adddat a to the Watch window.

3. Set a breakpoint on the line immediately following the read command to allow u
to test the proper operation of the SEE library.

4. Click theRun command and watch the program stop after the first read.

5. Note the value of data and tiieam again. It should increment continuously, and
even when resetting the program or completely disconnecting the board from the
power supply to reconnect it later, we will observe that the contents of location 1
will be preserved and successively incremented.

Careful—if the main program loop is left running indefinitely without any breakpoint,
the library test program will quickly turn into a test of the Serial EEPROM endurance.
In fact, the loop will continue to reprogram location 16 at a rate that will be mostly

Communication 193

dependent on the actual Twc of the device. In a best-case scenario (maximum

Twc = 5 ms), this will mean 200 updates every second. Or, in other terms, the theoretic
endurance limit of the EEPROM (1,000,000 cycles) will be reached in 5,000 seconds, o
slightly less than one hour and a half of continuous operation.

Debriefing

Today we have just started our exploration of the serial interfaces, comparing the basic
differences among them and reviewing some of their most common uses in embedded
control. In particular, we have experimented briefly with the SPI module in its simplest
configuration to gain access to a 25LC256 Serial EEPROM memory, one of the most
common types of nonvolatile memory peripherals used in embedded-control application
The small library module we developed will hopefully be useful to you in future
applications, to provide additional nonvolatile storageK3®/ites) to your applications

on the Explorer 16.

Notes for the C Experts

The C programmer used to developing code for large workstations and personal
computers will be tempted to further develop the library to include the most flexible and
comprehensive set of functions. My word of advice is to resist, hold your breath, and
count to 10, especially before you start adding any new parameter to the library functior
In the embedded-control world, passing more parameters means using up more stack
space, spending more time copying data to and from the stack, and in general producin
larger output code. Keep the libraries simple and therefore easy to test and maintain. Tf
does not mean that proper object-oriented programming practices should not be followe
On the contrary, our example can be considered an exampigect encapsulatign

since most of the details of the SPI interface and Serial EEPROM internal workings hav
been hidden from the user, who is provided instead with a simple interface to a generic
storage device organized in 32-bit words.

Notes for the Explorer 16 Experts

One of the least-known features of the Explorer 16 board is related to the use of two
digital multiplexer devices (74HCT4053) present on the board and marked U6 and
U7. The first one in particular was added to the board to allow the swap of the SDI
and SDO lines of the SPI1 port reaching the PICTail™ connectors so that two

194 Day8

Explorer 16 boards could be cross-connected and the two microcontrollers could
exchange data. The swap is controlled byRBR&2 pin when configured as a digital

output and pulling low (otherwise a pull-up resistor takes care of things). Proper
connection requires, of course, that one of the two microcontrollers be configured as
master, therefore producing the SCK signal, and the other as slave. Also keep in mind
that only one of the two boards can be connected to the power supply; the other will be
powered via the PIC Tail connector. Similafyg13 andRB14, in conjunction with the

U7 multiplexer, are designed to allow cross-connection via the UARTL1 serial interface.

Notes for the PIC24 Experts

The SPI module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differenc
that will affect your code while you're porting an application to the PIC32:

1. TheSPIxCON register control bits layout has been updated to resemble more
closely the layout of most other peripherals so that the maiileRz, andiDL
bits are now located in the standard position (bit 15, bit 14, bit 13). They used to
be found in thesSPIXSTAT register.

2. The upper half of tH&PIXCON register (being now expanded to 32 bits) provides
room for the framing control bité:RMEN, SPIFSD...) previously located in a
second control regist&PIXCON2.

3. The newODE32bit now selects the 32-bit mode operation.

4. The clock prescaler/divider of the SPI module (which used to be a twottigr 3
bit prescaler) is expanded to a full 9-bit baud rate generator module cleanly
controlled by a separate regisg®?IxBRG.

Tips & Tricks

If you store important data in an external nonvolatile memory (SEE), you might want
to put some additional safety measures in place (both hardware and software). From a
hardware perspective, make sure that:

« Adequate power supply decoupling (capacitor) is provided close to the device.

* A pull-up resistor (1& Ohm) is provided on the Chip Select line, to avoid
floating during the microcontroller power-up and reset.

Communication 195

An additional pull-down resistor (10 k Ohm) can be provided on the SCK clock
line to avoid clocking of the peripheral during power-up, when the PIC32 I/Os
might be floating (tri-state).

Verify clean and fast power-up and down slopes are provided to the
microcontroller to guarantee reliable Power-On Reset (POR) operation.

If necessary, add an external voltage supervisor (see MCP809 devices for
example).

A number of software methods can then be employed to prevent even the most remote
possibility that a program bug or the proverbial cosmic ray might trigger the write
routine. Here are some suggestions:

Avoid reading and especially updating the SEE content right after power-up.
Allow a few milliseconds for the power supply to stabilize (this will be heavily
application dependent).

Add a software write-enable flag, and demand that the calling application set the
flag before calling the write routine, possibly after verifying some application-
specific entry condition.

Add a stack-level counter; each function in the stack of calls implemented by the
library should increment the counter upon entry and decrement it on exit. The
write routine should refuse to perform if the counter is not at the expected level.

Some users refuse to use the SEE memory locations corresponding to the
first address (0x0000) and/or the last addresfiQxelieving they could be
statistically more likely to be subject to corruption.

More seriously, store two copies of each essential piece of data, performing two
separate calls to the write routine. If each copy contains a checksum or, simply b
comparison, when reading it back, it will be easy to identify a memory corruption
problem and possibly recover.

Exercises

Although the PIC32 SPI peripheral module operates off the peripheral clock system tha
could be ticking as fast as BHz, few peripherals can operate at such speeds at 3 V.
Specifically, the 25L.C256 series Serial EEPROMSs, operate with a maximum clock rate «
5 MHz when the power supply is in the ¥.50 4.5 V range. This means that the fastest

196 Day 8

SPI port configuration compatible with the memory device can be obtained with a baud
rate generator configured for 1:8 operation (36 MHz@5 MHz). A sequential read
command could therefore provide a maximum throughput close to 4 Mbit per second

or 512 Kbytes per second. Even at such a rate, the PIC32 would be able to execute
140 instructions before each new byte of data is received. This means that in our simple
SEE application example, a lot of processing power is wasted sitting in loops and waitin
for each byte to be transferred.

1. Develop a more advanced library based on an interrupt-driven state machine ar
or using the DMA to make a more efficient use of the PIC32 processing power.
We explore the use of the DMA in conjunction with the SPI port in Chapter 13,
although it won’t be to interface to a serial EEPROM but for more mundane and

fun applications.

2. Try enabling the new 32-bit mode of the SPI module to accelerate basic read ar
write word operation. But watch out: The SEE commands are byte wide, so you
will probably need to switch back and forth between 8- and 32-bit modes. Are
you really going to save any time/code?

Books

Eady, FNetworking and Internetworking with Microcontrolle(®ewnes, Burlington,
MA , 2004) . An entertaining introduction to serial communication in embedded
control. The author explores the basic synchronous and asynchronous communicat
interfaces to help 8-bit microcontrollers communicate.

Links

www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1406&dDoc
Name=en010003Use this link or search the Microchip Website for a free software
tool called Total Endurance Software. It will help you estimate the endurance you ca
expect from a given NVM device in your actual application conditions. It will give
you an indication of the total number of e/w cycles or the number of expected years
of your application life before a certain target failure rate is reached.

Asynchronous Communication

The Plan

Once you remove the clock line from the serial interface between two devices, what yoL
obtain is an asynchronous communication interface. Whether you want full bidirectional
(duplex) communication or just half-duplex (one direction at a time), multipoint, or
point-to-point communication, there are many asynchronous protocols that can make
communication possible and allow for efficient use of the media. In this lesson we will
review the PIC32 asynchronous serial communication interface modules, UART1 and
UART2, to implement a basic RS232 interface. We will develop a console library that
will be handy in future projects for interface and debugging purposes.

Preparation

In addition to the usual software tools, including the MPEABE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board, your In-Circuit Debugger of choice, and a PC with an RS232
serial port (or a serial to USB adapter). You will also need a terminal emulation program
If you are using the Microsoft Windows operating system, the HyperTerminal applicatior
will suffice (Start|Programs| Accessories| Communication | Hyper Terminal).

The Exploration

The UART interface is perhaps the oldest interface used in the embedded-control
world. Some of its features were dictated by the need for compatibility with the

198 Day9

first mechanical teletypewriters. This means that at least some of its technology has
centuries’-old roots.

On the other hand, nowadays finding an asynchronous serial port on a new computer
(and especially on a laptop) is becoming a challenge. The serial port has been declarec
a “legacy interface,” and for several years now, strong pressure has been placed on
computer manufacturers to replace it with the USB interface. Despite the decline in
their popularity and the clearly superior performance and characteristics of the USB
interface, asynchronous serial interfaces are strenuously resisting in the world of
embedded applications because of their great simplicity and extremely low cost of
implementation.

Four main classes of asynchronous serial application are still being used:

1. RS232 point-to-point connectio®ften simply referred to as “the serial port”;
used by terminals, modems, and personal computers using—+12V/
transceivers.

2. RS485 (EIA-485) multi-point serial connectidised in industrial applications;
uses a 9-bit word and special half-duplex transceivers.

3. LIN bus.A low-cost, low-voltage bus designed for noncritical automotive
applications. It requires a UART capable of baud rate autodetection.

4. Infrared wireless communicatioRequires a 38—40 kHz signal modulation and
optical transceivers.

The PIC32’'s UART modules can support all four major application classes and packs a
few more interesting features, too.

To demonstrate the basic functionality of a UART peripheral, we will use the

Explorerl6 demo board where the UART2 module is connected to an RS232 transceive
device and to a standard 9 poles D female connector. This can be connected to

any PC serial port or, in absence of tlegiacy interface” as mentioned above, to an
RS232 to USB converter device. In both cases the Windows HyperTerminal program
will be able to exchange data with the Explorerl6 board with a basic configuration
setting.

Asynchronous Communication 199

Baud Rate Generator
. L
IrDA > X BcLkx
) UXRTS
Hardware Flow Control < < le
f — g UXCTS
UARTX Receiver ® — X’ UxRX
UARTX Transmitter X’ UXTX

Figure 9.1: Simplified UART modules block diagram.

The first step is the definition of the transmission parameters. The options include:
+ Baud rate
» Number of data bits
« Parity bit, if present
» Number of stop bits
+ Handshake protocol

For our demo we will choose the fast and convenient configuration:115200, 8, N, 1, CT:
RTS—that is:

+ 115,200 baud

« 8 data bits
» No parity
+ 1 stop bit

« Hardware handshake using the CTS and RTS lines

200 Day?9

UART Configuration

Use the New Project Setup checklist to create a new project Satlietl and a new
source file, similarly callederial.c. We will start by adding a few useful I/O definitions
to help us control the hardware handshake lines:

/*

** Asynchronous Serial Communication

** UART2 RS232 asynchronous communication demonstration code
*

#include <p32xxxx.h >

/I'1/O definitions for the Explorerl6

#define CTS _RF12 /I Clear To Send, input
#define RTS _RF13 /I Request To Send, output
#define TRTS TRISFbits. TRISF13 /I Tris control for RTS pin

The hardware handshake is especially necessary in communicating with a Windows
terminal application, since Windows is a multitasking operating system and its
applications can sometimes experience long delays that would otherwise cause signific
loss of data. We will use one I/O pin as an inRR12 on the Explorer 16 board) to sense
when the terminal is ready to receive a hew character (Clear To Send), and one 1/O pin
an output RF13 on the Explorer 16 board) to advise the terminal when our application is
ready to receive a character (Request To Send).

To set the baud rate, we get to play with the Baud Rate GenefaBREG, a 16-bit

counter that feeds on the peripheral bus clock. From the device datasheet we learn that
in the normal mode of operatioBREGH=0 it operates off a 1:16 divider versus a high-
speed modeBREGH=) where its clock operates off a 1:4 divider. A simple formula,
published on the datasheet, allows us to calculate the ideal setting for our configuration
(see Equation 9.1).

Equation 9.1. UART Baud Rate with UXBREG = 1.

Baud Rate= Feg
4+ (U X BRG+)
U X BRG= £—1

4+ Baud Rate

Asynchronous Communication 201

In our case, Equation 9.1 translates to the following expression:
U2BREG = (36,000,000/4/115,200) 1= 77.125

To decide how to best round out the result, we need a 16-bit integer after all. We will us
the reverse formula to calculate the actual baud rate and determine the percentage errc
Error = ((Fpb/4/(U2BREG+1))- baud rate)/baud rate %

Rounding up to a value of 77, we obtain an actual baud rate of 115,384 baud with an
error of just 0.2 percent—well within acceptable tolerance. However, with a value of 78
we obtain 113,924 baud, a larger 1.1 percent error but still within the acceptable toleran
range for a standard RS232 pattX percent).

We can therefore define the constant BRATE as:
#define BRATE 77 // 115,200 Bd (BREGH=1)

Two more constants will help us define the initialization values for the UART2 main
control registers called U2MODE and U2STA ($égure 9.2).

u-0 u-0 u-0 u-0 u-0 u-0 u-0 u-0
| | [—] [— | [—
bit 31 bit 24
u-0 u-0 u-0 u-0 u-0 U-0 u-0 u-0
— | | | | | [— |
bit 23 bit 16
RIW-0 RIW-0 RIW-0 R/W-0 RIW-0 RIW-0 RIW-0 RIW-0
oN | FRz | sibL | IREN | RTsSMD | —] UEN<1:0>
bit 15 bit 8
RIW-0 RIW-0 R/IW-0 RIW-0 R/W-0 RIW-0 RIW-0 RIW-0
WAKE | LPBACK | ABAUD | RXINV | BRGH | PDSEL<1:0> | STSEL
bit 7 bit 0

Figure 9.2: The UXMODE control registers.

The initialization value for U2MODE will include the BREGH bit, the number of stop
bits, and the parity bit settings.

#define U_ENABLE 0 x8008 // enable,BREGH=1, 1 stop, no parity

202 Day9

The initialization for U2STA will enable the transmitter and clear the error flags
(see Figure 9.3):

#define U_TX 0 x0400 // enable tx, clear all flags

u-0 U-0 u-0 U-0 u-0 U-0 U-0 RIW-0

- [— T — 17T — T — T — T — T AMEN

bit 31 bit 24
RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 R/W-0

ADDR<7:0>

bit 23 bit 16
RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 R-0 R-1
UTXISEL<1:0> | TXINV. | RXEN | TXBRK | TXEN | TXBF | TRMT

bit 15 bit 8
RIW-0 RIW-0 RIW-0 R-1 R-0 R-0 RIC-0 R-0
URXISEL<1:0> | ADDEN | RIDLE | PERR | FERR | OERR | RXDA

bit 7 bit 0

Figure 9.3: The UxSTA control registers.

Using the constants defined above, let’s initialize the UART2module, the baud rate
generator, and the 1/O pins used for the handshake:

void initU2(void)

{
U2BRG = BRATE; [l initialize the baud rate generator
U2MODE = U_ENABLE; /l initialize the UART module
U2STA=U_TX; /I enable the Transmitter
TRTS =0; /I make RTS an output pin
RTS =1, I/l set RTS default status (not ready)
}// initU2

Sending and Receiving Data
Sending a character to the serial port is a three-step procedure:

1. Make sure that the terminal (PC running Windows HyperTerminal) is ready.
Check the Clear to Send (CTS) line. CTS is an active low signal; that is, while it
is high, we better wait patiently.

Asynchronous Communication 203

2. Make sure that the UART is not still busy sending some previous data. PIC32
UARTSs have a four-level-deep FIFO buffer, so all we need to do is wait until
at least the top level frees up; in other words, we need to check for the transmit
buffer full flag UTXBF to be clear.

3. Finally, transfer the new character to the UART transmit buffer (FIFO).
All of the above can be nicely packaged in one short function that we wipuoaft()
respecting a rule that wants all C language /O libraste®(h) to use theut- prefix

to offer a series of character output functions sugiusar() ,putc() ,fputc() and
so on:

int putU2(int c)

{
while (CTS); /l wait for ICTS, clear to send
while (U2STAbits.UTXBF); I/ wait while Tx buffer full
U2TXREG =¢;
return c;

} 1 putU2

To receive a character from the serial port, we will follow a very similar sequence:

1. Alert the terminal that we are ready to receive by asserting the RTS signal (activ
low).

2. Patiently wait for something to arrive in the receive buffer, checking the URXDA
flag inside the UART?2 status registé2STA

3. Fetch the character from the receive buffer (FIFO).

Again, all of the above steps can be nicely packaged in one last function:

char getU2(void)
{
RTS=0; /I assert Request To Send IRTS
while ('U2STAbits.URXDA); // wait for a new char to arrive
RTS=1;
return U2RXREG; Il read char from receive buffer

} 11 getU2

204 Day?9

Testing the Serial Communication Routines

To test our serial port control routines, we can now write a small program that will
initialize the serial port, send a prompt, and let us type on the terminal keyboard while
echoing each character back to the terminal screen:

main()

{

char c;

/I 1. init the UART2 serial port
initu2();

/I 2. prompt
putUz2(">');

/I 3. main loop
while (1)
{

/I 3.1 wait for a character
¢ = getU2();

/1 3.2 echo the character
putU2(c);

} /I main loop
} /I main
1. Build the project first, then follow the standard checklist to activate the Debugge

and to program the Explorer 16.

2. Connect the serial cable to the PC (directly or via a Serial-to-USB converter) an
configure HyperTerminal for the same communication parameters: 115200, n, 8,
1, RTS/CTS on the available COM port.

3. Click the HyperTermin&onnect button to start the terminal emulation.

4. SelecRun from the Debugger menu to execute the demonstration
program.

Asynchronous Communication 205

Note

| recommend, for now, that you do not attempt to single-step or use breakpoints or the
RunToCursor function when using the UART! See thips & Tricks” section at the end of the
chapter for a detailed explanation.

If HyperTerminal is already set to provide an echo for each character sent, you will
see double—literally! To disable this functionality, first hit isconnect button on
HyperTerminal. Then seleEile | Properties to open the Properties dialog box, and
select theSettings Pane tab (see Figure 9.4). This will be a good opportunity to set a
couple more options that will come in handy in the rest of the exploration.

Connect To Settings }

— Function, armow, and ctil keys act as
& Teminal keys " Windows keys

— Backspace key sends
@« Cul+H Del ¢ CtlH.Space, Ctil+H ‘

Emulation:

CARTEN | Terine Sep.. |

Telnet terminal ID: ~ {VT100

Backscroll buffer fines: |500 o

[~ Play sound when connecting or disconnecting

Input Translation... | ASCH Setup... |

[ok]| Ccancel |

Figure 9.4: The HyperTerminal Properties dialog box Settings pane.

206 Day?9

5. Select th¥T100 terminal emulation mode so that a number of commands
(activated by special “escape” strings) will become available and will give us
more control over the cursor position on the terminal screen.

6. SelecASCII Setup to complete the configuration. In particular, make sure that
theEcho typed characterslocally function isnot checked (this will immediately
improve your . . . vision). See Figure 9.5.

7. Also check thAppend line feedsto incoming line ends option. This will
make sure that every time an ASCII carriage returr) ¢haracter is received, an
additional line feed\§) character is inserted automatically.

— ASCIl Sending
7 Send line ends with line feeds
™ Echo typed characters locally

Line delay: IU milliseconds.
Character delay: IU milliseconds.

— ASCIl Receiving
[V Append line feeds to incoming line ends
I~ Force incoming data to 7-bit ASCII

¥ ‘Wrap lines that exceed terminal width

| 0K I Cancel

Figure 9.5: ASCII Setup dialog box.

Building a Simple Console Library

To transform our demo project in a proper terminal console library that could become
handy in future projects, we need only a couple more functions that will complete the

Asynchronous Communication 207

puzzle: a function to print an entire (zero-terminated) string and a function to input a full
text line. Printing a string is, as you can imagine, the simple part:

int puts(char *s)

{
while(*s) //'loop until *s == "\0 ', end of string
putU2(*s++); // send char and point to the next one
putu2("\r '), /l terminate with a cr / line feed
Y/ puts

Itis just a loop that keeps calling thetU2() function to send, one after the other, each
character in the string to the serial port.

Reading a text string from the terminal (console) into a string buffer can be equally
simple, but we have to make sure that the size of the buffer is not exceeded (should the
user type a really long string), and we have to convert the carriage return character at tf
end of the line in a prop& character for the string termination:

char *getsn(char *s, int len)

{
char *p = s; /I copy the buffer pointer
do{
*s = getU2(); // wait for a new character
if (*s== “\r ') I/l end of line, end loop
break;
St++; /I increment buffer pointer
len - ;
} while (len >1); /1 until buffer full
*s= "\0'; /I null terminate the string
return p; /I return buffer pointer
} /I getsn

In practice, the function as presented would prove very hard to use. There is no echo of
what is being typed, and the user has no room for error. Make only the smallest typo an
the entire line must be retyped. If you're like me, you make a lot of typos all the time,

and the most battered key on your keyboard is the Backspace key. A better version of tt

208 Day9

getsn() function must include character echo and at least provisions for the Backspact
key to perform basic editing. It really takes only a couple more lines of code. The echo
is quickly added after each character is received. The Backspace character (identified
by the ASCII code 0x8) is decoded to move the buffer pointer one character backward
(as long as we are not at the beginning of the line already). We must also output a spec
fic sequence of characters to visually remove the previous character from the terminal
screen:

char *getsn(char *s, int len)

{
char *p = s; /I copy the buffer pointer
intcc =0; /I character count
do{
*s = getU2(); // wait for a new character
putU2(*s); /I echo character

if ((*s == BACKSPACE) & (s >p))

{
putu2(' '); /I overwrite the last character
putU2(BACKSPACE);
len++;
S--; /I back the pointer
continue;
}
if (*s== ‘\n") /l'line feed, ignore it
continue;
if (*s== “\r ') /l end of line, end loop
break;
S++; [/l increment buffer pointer
len - ;
} while (len >1); /I until buffer full
*s= '\0'; /I null terminate the string
return p; /I return buffer pointer

} 1/ getsn

Asynchronous Communication 209

Put all the functions in a separate file that we will cafilU2.c. Then create a small
header fileconU2.h, to decide which functions (prototypes) and which constants to
publish and make visible to the outside world:

/*
** CONU2.h
** console /O library for Explorerl6 board
*/
/I'1/O definitions for the Explorerl6
#define CTS _RF12 /I Cleart To Send, in, HW handshake
#define RTS _RF13 /l Request To Send, out, HW handshake

#define BACKSPACE 0 x8 // ASCII backspace character code

[l init the serial port UART2, 115200, 8, N, 1, CTS/RTS
void initU2(void);

I/l send a character to the serial port
int putU2(int c);

/l wait for a new character to arrive to the serial port
char getU2(void);

I/l send a null terminated string to the serial port
int puts(char *s);

I receive a null terminated string in a buffer of len char
char * getsn(char *s, int n);

Testing a VT 100 Terminal

Since we have enabled the VT100 terminal emulation mode (see the previous
HyperTerminal settings), we now have a few commands available to better control
the terminal screen and cursor position, such as:

» clrscr() , to clear the terminal screen

« home() , to move the cursor to the home position in the upper-left corner of the
screen

These commands are performed by sending so-caléeadpe sequences,” defined in
the ECMA-48 standard (also ISO/IEC 6429 and ANSI X3.64), also referred to as ANSI

210 Day9

escape codes. They all start with the chara&8e(ASCII 0x 1b) and the character
[(left square bracket).

/I useful macros for VT100 terminal emulation
#define clrscr() putsU2("\x1b[2] ")
#define home() putsU2("\x1b[1,2H ")

To test the console library we can now write a small program that will:

Initialize the serial port

Clear the terminal screen

Send a welcome message/banner
Send a prompt character

Read a full line of text

o g A~ w N RE

Print the text on a new line
Save the following code in a new file that we will caDNU?2test.c:

/*
** CONU2 Test
* UART2 RS232 asynchronous communication demonstration code

*/
/I configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

#include <p32xxxx.h >
#include " CONU2.h'

#define BUF_SIZE 128

main()

{
char s[BUF_SIZE];

/I 1. init the console serial port
initu2();

Asynchronous Communication 211

/I 2. text prompt

clrscr();

home();

puts(" Exploring the PIC32! ");

/I 3. main loop
while (1)
{

// 3.1 read a full line of text
getsn(s, sizeof(s));
/I 3.2 send a string to the serial port
puts(s);
} /I main loop
Y/ main

1. Create a new project using the New Project checklist, and add all three files
conU2.h, conU2.c, and conU2test.c to the project and build all.

2. Use the appropriate debugger checklist to connect and program the Explorer 1€
board.

3. Test the editing capabilities of the new console library you just completed.

The Serial Port as a Debugging Tool

Once you have a small library of functions to send and receive data to a console throug
the serial port, you have a new powerful debugging tool available. You can strategically
position calls to print functions to present the content of critical variables and other
diagnostic information on the terminal. You can easily format the output to the most
convenient format for you to read. You can add input functions to set parameters that ce
help better test your code, or you can use the input function to simply pause the executi
and give you time to read the diagnostic output when required. This is one of the oldest
debugging tools, effectively used since the first computer was invented and connected t
a teletypewriter.

The Matrix Project

To finish today’s exploration on a more entertaining note, let’s develop a new demo
project that we will call thenatrix. The intent is that of testing the speed of the serial

212 Day9

port and the PC terminal emulation by sending large quantities of text to the terminal an
clocking its performance. The only problem is that we don’t (yet) have access to a large
storage device from which to extract some meaningful content to send to the terminal.
the next best option is that of “generating” some content using a pseudo-random numb
generator. The stdlib.h library offers a convenranti() function that returns a positive
integer between andRAND_MAXwhich, in the MPLAB C32 implementation, can be
verified to be equal to the largest signed 32-bit integer available).

Using the “reminder of” operator (denoted by%®ymbol in C language), we can

reduce its output to any smaller integer range and, in our example, produce a subset of
values that corresponds to ASCII printable characters only. The following statement, for
example, will produce only characters in the range 86no 127:

putU2(33+(rand()%94));

To generate a more appealing and entertaining output, especially if you happened to
watch the movid he Matrix we will present the (random) content by columns instead

of rows. We will use the pseudo-random number generator to change the content and tt
“length” of each column as we periodically redraw the entire screen:

/~k
** The UART Matrix

*/
#include <p32xxxx.h >
#include <stdlib.h >

#include " CONU2.h'

#define COL 40

#define ROW 23

#define DELAY 3000

main()

{
int v[40]; /l'length of each column
inti, j, k;

/I 1. initializations

T1CON =0 x8030;// TMRL1 on, prescale 256, int clock (Tpb)
initu2(); / initialize UART (115200, 8N1, CTS/RTS)
clrscr(); /I clear the terminal (VT100 emulation)

Asynchronous Communication

213

/I 2. randomize the sequence
getu2(); // wait for a character input
srand(TMR1); /I use the current timer value as seed

/I 3. init each column length

for(j=0;] <COL,; j++)
v[j]l=rand()%ROW;

/I 4. main loop

while(1)

{

home();

/I 4.1 refresh the entire screen, one row at a time
for(i=0; i <ROW; i++)
{
/I 4.1.1 refresh one column at a time
for(j=0; j <COL,; j++)
{
/I update each column
if (i <V[j])
putU2(33 + (rand()%94));
else
putu2(" ")

/[additional column spacing
putu2(" ")
} /I for j

/I 4.1.2 empty string, advance to next line

puts(™);
Y fori

/I 4.2 randomly increase or reduce each column length
for(j=0; j <COL; j++)
{
switch (rand()%3)
{
case 0: // increase length
v[j]++;
if (V[i] >ROW)
V[j]=ROW;
break;

214 Day9

case 1: // decrease length
Vil -
if (V[j] <1)
Viil=1;
break;

default:// unchanged
break;
} /I switch
} I for
} /I main loop
} /I main

Forget the performance—watching this code run is fun. It is too fast anyway; in fact, yot
will have to add a small delay loop (inside ttie loop in 4.1) to make it more pleasing
to the eye:

// 4.1.0 delay to slow down the screen update
TMR1 = 0;
while(TMR1 <DELAY);

Note

Remember to take the blue pill next time!

Debriefing

In this lesson we developed a small console 1/O library while reviewing the basic
functionality of the UART module for operation as an RS232 serial port. We connected
the Explorer 16 board to a VT100 terminal (emulated by Windows HyperTerminal).
We will take advantage of this library in the next few lessons to provide us with a new
debugging tool and possibly as a user interface for more advanced projects.

Notes for the C Experts

| am sure that, at this point, you are wondering about the possibility of using the more
advanced library functions defined in the stdio.h library, sughiag) , to direct the
stdout output stream to the UART2 peripheral. Not only is this possible, but you can
consider it done!

Asynchronous Communication 215

In addition, the stdio.h library defines two helper functiomsn_putc() and_mon_

getc() , that can be used to customize the behavior of the standard library. They are
declared with the attributeeak, which means that the MPLAB C32 linker won’t

complain about you trying to redefine them. In fact, you are supposed to redefine them |
order to implement new functionalities, such as using the SPI port as your input/output
stream or redirecting the output to an LCD display and so on.

Note

Remember that whether you customize the stdio.h functions or not, you are always responsibl
for the proper interface initialization. So before the first callptotf() , make sure

the UART2 or your communication peripheral of choice is enabled and the baud rate is se
correctly.

Notes for the PIC® Microcontroller Experts

Sooner or later, every embedded control designer will have to come to terms with the
USB bus. If, for now, a small “dongle” (converting the serial port to a USB port) can be &
reasonable solution, eventually you will find opportunities and designs that will actually
benefit from the superior performance and compatibility of the USB bus. Several 8- and
16-bit PIC microcontroller models already incorporate a USB Serial Interface Engine
(SIE) as a standard communication interface. Microchip offers a free USB software stac
with drivers and ready-to-use solutions for the most common classes of application.

One of them, known as the Communication Device Class (CDC), makes the USB
connection look completely transparent to the PC application so that even HyperTermin
cannot tell the difference. Most important, you will not need to write and/or install any
special Windows drivers. When writing the application in C, you won’t even notice the
difference, if not for the absence of a need to specify any communication parameter.

In USB there is no baud rate to set, no parity to calculate, no port number to select
(incorrectly), and the communication speed is so much higher . . .

Tips & Tricks

As we mentioned during one of the early exercises presented in this lesson, single-
stepping through a routine that enables and uses the UART to transmit and receive
data from the HyperTerminal program is a bad idea. You will be frustrated seeing the

216 Day?9

HyperTerminal program misbehave and/or simply lock up and ignore any data sent to it
without any apparent reason.

To understand the problems, you need to know more about how the MPLAB ICD2

in circuit debugger operates. After executing each instruction when in single-step

mode or upon encountering a breakpoint, the ICD2 debugger not only stops the CPU
execution but also “freezes” all the peripherals. It freezes them, as in dead-cold-ice all
of a sudden; not a single clock pulse is transmitted through their digital veins. When this
happens to a UART peripheral that is busy in the middle of a transmission, the output
serial line (TX) is also frozen in the current state. If a bit was being shifted out in that
precise instant, and specifically if it was a 1, the TX line will be held iftireak”

state (low) indeterminately. The HyperTerminal program, on the other side, would sense
this permanent “break” condition and interpret it as a line error. It will assume that

the connection is lost and it will disconnect. Since HyperTerminal is a pretty “basic”
program, it will not bother letting you know what is going on; it will not send a beep, not
an error message, nothing—it will just lock up!

If you are aware of the potential problem, this is not a big deal. When you restart your
program with the ICD2, you will only have to remember to click the HyperTerminal
Disconnect button first and then the Connect button again. All operations will resume
normally.

Exercises

1. Write a console library with buffered I/O (using interrupts) to minimize the
impact on program execution (and debugging).

2. Develop a simple command-line interpreter that recognizes a small defined set «
keywords to assist in debugging by inspecting and modifying the value of RAM
memory locations and/or providing hexadecimal memory dumps of the Flash
memory.

Books

Axelson, JSerial Port Completesecond edition (Lakeview Research, Madison,
WI, 2007) . This new edition was published just in time for me to include it here.
The author is most famous for HéEB Completébook (see below), considered
the reference book for all embedded-control programmers. Over time she has

Asynchronous Communication 217

developed and maintained a whole series completely dedicated to serial and paralle
communication interfaces.

Axelson, JUSB Completethird edition (Lakeview Research, Madison, WI, 2005) . By
the time you read this book, most probably new models of the PIC32MX family will
have been announced offering USB communication capabilities. So, | thought you
might appreciate this recommendation. Jan Axelson’s book has reached the third
edition already. She has continued to add material at every step and still managed t
keep things very simple.

Eady, FImplementing 802.11 with Microcontrollers: Wireless Networking for Embedded
Systems DesignedNewnes, Burlington, MA, 2005) . Fred brings his humor
and experience in embedded programming to make even wireless networking seem
easy.

Links

http:/én.wikipedia.org/wiki/ANSI_escape_codéis is a link to the complete table of
ANSI escape codes as implemented by the VT100 HyperTerminal emulation.

www.cs.utk.edu/~shuford/terminal/dec.htifiis is a real dive into a piece of the history
of computers. | used these terminals; does this make me look old?

This page intentionally left blank

Glass = Bliss

The Plan

| would be surprised if you told me that on your desk next to your PC there was still a
large and bulky CRT computer monitor. In a matter of a few years the entire personal
computer industry has shifted to the new technology: flat LCD panels of ever larger size
and higher resolution. In the embedded-control world, something similar has happened.
LED seven-segment displays are so 1990s! Small LCD displays have become ubiquitoL
and, besides consuming a fraction of the power of their LED counterparts, they provide
alphanumeric output (i.e., they support text) and, ever more often, graphics as well. But
wait, maybe there is already another generation of organic LED displays (OLEDS) just
around the corner and ready to demand revenge.

In this lesson, we will learn how to interface with a small and inexpensive LCD alphanumeri
display module. This project will be a good excuse for us to learn and use the Parallel Maste
Port (PMP), a flexible parallel interface available on all PIC32MX microcontrollers.

Preparation

In addition to the usual software tools, including the MPEABE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require only the use of the
Explorer 16 demonstration board and your In-Circuit Debugger of choice (PIC32 Starter
kit, ICD2, REAL ICE, or the like).

The Exploration

The Explorer 16 board can accommodate three different types of dot-matrix,
alphanumeric LCD display modules and one type of graphic LCD display module. By

220 Day10

default, it comes with a simple “2-rows by 16-character” display and a 3V alphanumeric
LCD module (most often a Tianma TM162JCAWG1) compatible with the industry-
standard HD44780 controllers. These LCD modules are complete display systems
composed of the LCD glass, column, and row multiplexing drivers; power supply
circuitry; and an intelligent controller, all assembled together in so-called Chip On
Glass (COG) technology. Thanks to this high level of integration, the circuitry required
to control the dot-matrix display is greatly simplified. Instead of the hundreds of pins
required by the column-and-row drivers to directly control each pixel, we can interface t
the module with a simple 8-bit parallel bus using just 11 I/Os.

On alphanumeric modules (see Figure 10.1) in particular, we can directly place ASCII
character codes into the LCD module controller RAM buffer (known as the Display
Data RAM buffer, or DDRAM). The output image is produced by an integrated charactel
generator (a table) using a67 grid of pixels to represent each character. The table

(see Figure 10.2) typically contains an extended ASCII character set in the sense that
it has been somewhat merged with a small subset of Japanese Kata Kana characters
as well some symbols of common use. While the character generator table is mostly
implemented in the display controller ROM, various display models offer the possibility
to extend the character set by modifying/creating new characters (from 2 to 8) accessin
a second small internal RAM buffer (the Character Generator RAM buffer, or

CGRAM).

+3.3v LcD1
pso-.—RE0/PMDO)
e (EoamIR S
10K RIW pe3f10
1 VeeF—21vo pes 12—(RE5/PMD5_1)
+3.3V |72 vce DB6
1
~as g Imm oNe DB7 RE7/PMD7_1
1.3K -

Figure 10.1: Default alphanumeric LCD module connections.

Glass = Bliss 221

Char.code

ococoo
(el Hele]
Ao RO
orOor
RO

2]) N =CF S £ D O | LN A)] Tj-oro
e A e s R e B R v | AN S e 1)

XXX X0000

T|—rro
Zorrr

| Hloorr

XXX X0001]

£
o

-

W] A A] L)]] - S S M T S

A SH AT e e 3 R0 M 7]

]

= «J W | < | | O] o
SO0 T GE[T] 0] T W

XXX X0010

XXX X0011

EESEES
[| A] o] == | w] 00] ~ O]] A R =] @00
O =Z| 2| T | 7o | |] G N M| O] O 3] D] 8ooro

XXX X0100

5

XXX X0101

XXX X0110

XXX X0111

XXX X1000

E
[

XXX X1001

XXX X1010

+| | |

XXX X1011

XXX X1100]

I IEI RN EIREE R NS

U310~

) i .~ I S
|l

XXX X1101

K

4
"
a
T
y
o
T
e]
+
s E
3

XXX X1110 .

Pld| | —|~NE[XS]] T

xxxx1111 | |+ "

=

Figure 10.2: Character generator table used by HD44780-compatible
LCD display controllers.

HD44780 Controller Compatibility

As mentioned, the ¥ 16 LCD module used in the Explorer 16 board is one among a
vast selection of LCD display modules available on the market in configurations ranging
from 1 to 4 lines of 8, 16, 20, 32, and up to 40 characters each and that are compatible
with the original HD44780 chipset, today considered an industry standard.

The HD44780 compatibility means that the integrated controller contains just two
separately addressable 8-bit registers: one for ASCII data and one for commands/statu
The standard sets of commands shown in Tables 10.1 and 10.2 can be used to set up :
control the display.

Thanks to this commonality, any code we will develop to drive the LCD on the Explorer
16 board will be immediately available for use with any of the other HD44780-
compatible alphanumeric LCD display modules.

222 Day 10
Table 10.1: The HD44780 instruction set.
Instruction Code Description Execution
RS |R/W | DB7 | DB6 | DB5 | DB4 | DB3 | DB2 | DB1 | DBO fime
Clear 0 0 0 0 0 0 0 0 1 Clears display and returns 1.64mS
display cursor to the home position
(address 0).
Cursor 0 0 0 0 0 0 0 1 * Returns cursor to home 1.64mS
home position (address 0). Also
returns display being shifted
to the original position.
DDRAM contents remain
unchanged.
Entry 0 0 0 0 0 0 1 1/D S Sets cursor move direction 40uS
mode set (1/D), specifies to shift the
display (S). These operations
are performed during data
read/write.
Display 0 0 0 0 0 1 D C B Sets on/off of all display
on/off (D), cursor on/off (C), and
control blink of cursor position
character (B).
Cursor/ 0 0 0 0 1 S/C | R/L | * * Sets cursor move or 40uS
display display shift (S/C),
shift shift direction (R/L).
DDRAM contents remain
unchanged.
Function 0 0 0 1 DL N F * * Sets interface data length
set (DL), number of display
lines (N), and character
font (F).
Set 0 0 1 CGRAM address Sets the CGRAM address. 40uS
CGRAM CGRAM data is sent and
address received after this setting.
Set 0 1 DDRAM address Sets the DDRAM address. 40uS
DDRAM DDRAM data is sent and
address received after this setting
Read busy 1 BF CGRAM/DDRAM address Reads busy flag (BF), (T
flag and indicating internal operation
address is being performed, and
counter reads CGRAM or DDRAM
address counter contents
(depending on previous
instruction).
Write to 0 write data Writes data to CGRAM or 40uS
CGRAM or DDRAM.
DDRAM
Read from 1 read data Reads data from CGRAM or | 40uS
CGRAM or DDRAM.
DDRAM

Glass = Bliss 223

Table 10.2: HD44780 command bits.

Bit Name Setting/Status

1/D 0 = Decrement cursor position 1 = Increment cursor position
S 0 = No display shift 1 = Display shift

D 0 = Display off 1 = Display on

C 0 = Cursor off 1 = Cursor on

B 0 = Cursor blink off 1 = Cursor blink on

S/C 0 = Move cursor 1 = Shift display

R/L 0 = Shift left 1 = Shift right

DL 0 = 4-bit interface 1 = 8-bit interface

N 0=1/80r1/11 Duty (1 line) 1 =1/16 Duty (2 lines)

F 0 =5 X 7 dots 1 =15 X 10 dots

BF 0 = Can accept instruction 1 = Internal operation in progress

The Parallel Master Port

The simplicity of the 8-bit bus shared by all these display modules is remarkable. Besid
the eight bidirectional data lines (which, by enabling a special “nibble” mode, could be
reduced to just four for further 1/O saving), there is:

» An Enable strobe line (E)
« A Read/Write selection line (R/W)
* An address line (RS) for the register selection

It would be simple enough to control the 11 1/0Os by accessing manually (bit banging) th
individual PORTE and PORTD pins to implement each bus sequence, but we will take
this opportunity instead to explore the capabilities of a new peripheral introduced with
the PIC24 architecture and enhanced in the PIC32 architecture: the Parallel Master Por
(PMP). This addressable parallel port was designed to ease access to a large number ¢
external parallel devices of common use, ranging from analog-to-digital converters, RAN
buffers, ISA bus compatible interfaces, LCD display modules, and even hard disk drives
and Compact Flash cards.

224 Day10

You can think of the PMP as a sort of flexible 1/0O bus added to the PIC32 architecture
that relieves the microcontroller of the mundane task of managing slow external
peripherals. The PMP offers:

« Eight- or 16-bit bidirectional data path
+ Upto 64k of addressing space (16 address lines)
» Six additional strobe/control lines, including:

1. Enable

2. Address latch

3. Read and write (separate or combined)

4. Chip Select (2x)

The PMP can also be configured to operate in slave mode to attach, as an addressable
peripheral, to a larger microprocessor/microcontroller system.

Both bus read and bus write sequences are fully programmable so that not only can the
polarity and choice of control signals be configured to match the target bus, the timing cz
also be finely tuned to adapt to the speed of the peripherals to which we want to interfac

Configuring the PMP for LCD Module Control

As in all other PIC32 peripherals, there is a set of control registers dedicated to the PMP
configuration. The first and most important oneisCONYou will recognize the familiar
sequence of control bits common to all the modwe€ON registers (see Figure 10.3).

The list of control registers that we will need to initialize is a bit longer this time and
also include®MMODE,PMADDR, PMSTAGndPMAEN. They are packed with powerful
options and they all require your careful consideration. Instead of proceeding through a
lengthy review of each and every one of them, | will list only the key choices required
specifically by the LCD module interface:

« PMP enabled
« Fully demultiplexed interface (separate data and address lines will be used)
« Enable strobe signal (on gtD4)

+ Read signal (on piRD5)

Glass = Bliss 225

u-0 u-0 u-0 u-0 u-0 u-0 u-0 u-0
— [— [— 1 — 1T — T — T — T =
bit 31 bit 24
u-0 u-0 u-0 U-0 U-0 U-0 U-0 u-0
- 1 - 1 - 1T - 1T = 1T = T = T =
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 u-0 R/W-0 R/W-0
ON [FRN | sSIDL [ADRMUX1[ADRMUXO] — | PTWREN | PTRDEN
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 u-0 R/W-0 R/W-0
CSF1 | CcsF0 | ALP | cs2Pp | csiP | = | WRSP | RDSP
bit 7 bit 0

Figure 10.3: PMCON control register.

« Enable strobe active high

+ Read active high, write active low

« Master mode with read and write signals on the sam&p#) (
« Eight-bit bus interface (using PORTE pins)

« Only one address bit is required, so we will choose the minimum configuration,
includingPMAO(on pinRB15) andPMA1(unused)

Also, considering that the typical LCD module is an extremely slow device, we will
better select the most generous timing, adding the maximum number of wait states
allowed at each phase of a read or write sequence:

* 4X Tpb wait for data set up before read/write
+ 15X Tpb wait between R/W and enable

e 4X Tpb wait data set up after enable

A Small Library of Functions to Access an LCD Display

Create a new project callédquid using the New Project checklist and a new source file
liquid.c to start creating a small LCD interface library.

226 Day 10

We will start writing the LCD initialization routine first. It is natural to start with the
initialization of the PMP port key control registers:

void LCDinit(void)

{
/I PMP initialization
PMCON = 0x83BF; /I Enable the PMP, long waits
PMMODE = 0x3FF; /I Master Mode 1
PMPEN = 0x0001; /I PMAO enabled

After these steps, we are able to communicate with the LCD module for the first time,
and we can follow a standard LCD initialization sequence as recommended by the
manufacturer. The initialization sequence must be timed precisely (see the HD44780
instruction set for details) and cannot be initiated before at least 30 ms have been
granted to the LCD module to proceed with its own internal initialization (power on
reset) sequence. For simplicity and safety, we will hardcode a delay in the LCD module
initialization function, and we will use the Timerl module to obtain simple but precise
timing loops for all subsequent steps:

//'init TMR1
T1CON = 0x8030; /l Enabled,1:256 Fpb, 1 tick ~6 us
/I wait for >30 ms
TMR1 = 0; while(TMR1<6000); // 6000 x 6 us =36 ms

For our convenience, we will also define a couple of constants that will hopefully help u:
make the following code more readable:

#define LCDDATA 1 /I RS =1 ; access data register
#define LCDCMD 0 /I RS =0 ; access command register
#define PMDATA PMDIN1 // PMP data buffer

To send each command to the LCD module, we will select the command register (settin
the addresBMAOQ = RS =) first. (see Figure 10)4

Then we will start a PMP write sequence by depositing the desired command byte in th
PMP data output buffer:

PMADDR = LCDCMD; /I command register (ADDR = 0)
PMDATA = 0x38; /I set: 8-bit interface, 2 lines, 5x7

Glass = Bliss 227

RS (PMAO)

Tb

A
A 4

R/W (RD5)

Tm

A
A 4

E (RD4)

Te

A
A 4

PMDO-7 (REO-7)

Figure 10.4: PMP-to-LCD display 8-bit interface write command sequence.

The PMP will perform the complete bus write sequence as follows:

1. The address will be published on the PMP addres®idas) (
The content " MDATAwiIll be published on the PMP data besp0-PMDY.

The R/W signal will be asserted |dvD§).

2

3

4. After 4X Tpb (Tb) the strobe signal E will be asserted high.
5. After 15X Tpb ('m) the Enable strobe will be de-asserted.
6

After 4X Tpb (Te) the data will be removed from the bus.

Notice how this sequence is quite long as it extends fot Z@b or more than 0.5us

after the PIC32 has initiated it. In other words, the PMP will still be busy executing

part of this sequence while the PIC32 will have already executed at least another 40
instructions or more. Since we are going to wait for a considerably longer amount of
time anyway 40 us) to allow the LCD module to execute the command, we will not
worry about the time the PMP requires to complete the command; we’ll just have to wai
patiently.

TMR1 = 0; while(TMR1<8); //8x6 us =48 us

228 Day10

We will then proceed similarly with the remaining steps of the LCD module initialization
sequence:

PMDATA = 0x0c; /I ON, no cursor, no blink

TMR1 = 0; while(TMR1<8); //8x6 us =48 us
PMDATA = 0x01; Il clear display

TMR1 = 0; while(TMR1<300); //300x6 us=1.8 ms

PMDATA = 0x06; /l increment cursor, no shift

TMR1 = 0; while(TMR1<300); // 300 x 6 us=1.8 ms

After the LCD module initialization, things will get a little easier and the timing loops

will no longer be necessary, because we will be able to use the LCD module Read Busy
Flag command. This will tell us whether the integrated LCD module controller has
completed the last command and is ready to receive and process a new one. To read tt
LCD status register containing the LCD busy flag, we will need to instruct the PMP

to execute a bus read sequence. This is a two-step process: First, we initiate the read
sequence by reading (and discarding) the contents of the PMP datafkmufiei) a

first time. When the PMP sequence is completed, the data buffer will contain the actual
value read from the bus, and we will read its contents from the PMP data buffer again.
But how can we tell when the PMP read sequence is complete?

Simple: We can check the PMP busy fla¢y/(/ODEbits.BUSY) in the PMMODE control
register (se€&igure 10.5).

PMP LCD Display
RD5 ——» E
REO
PMDIN Status Command
lj LCDBUSY
RE7
PMADDR
RB15 ———» RS
RD4 ———» R/W Data
PMMODE

Fj PMPBUSY

Figure 10.5: PMP-to-LCD connection block diagram.

Glass = Bliss 229

In summary, to check the LCD module busy flag, we will need to check the PMP busy
flag first to make sure that any previous command is completed, issue a read command
wait for the PMP busy flag again, and only at this point will we gain access to the actual
LCD module status register contents, including the LCD busy flag.

By passing the register address as a parameter to the read function, we will obtain a m
generic function that will be able to read the LCD status register or the data register, as
the following code:

char readLCD(int addr)

{
int dummy;
while(PMMODEDbits.BUSY); // wait for PMP to be available
PMADDR = addr; /I select the command address
dummy = PMDATA, I/ init read cycle, dummy read
while(PMMODEDbits.BUSY); // wait for PMP to be available
return(PMDATA); Il read the status register

}// readLCD

The LCD module status register contains two pieces of information: the LCD busy flag
and the LCD RAM pointer current value. We can use two simple macrs,CD()
andaddrLCD() , to split the two pieces and a third opetL.CD() , to access the data
register:

#define busyLCD() readLCD(LCDCMD) & 0x80
#define addrLCD() readLCD(LCDCMD) & OX7F
#define getLCD() readLCD(LCDDATA)

Using thebusyLCD() function we can create a function to write data or commands to the
LCD module:

void writeLCD(int addr, char c)
{
while(busyLCD());
while(PMMODEDbits.BUSY); // wait for PMP to be available
PMADDR = addr;
PMDATA =¢;
} /I writeLCD

230 Day 10

A few additional macros will help complete the library:

* putLCD() will send ASCII data to the LCD module:
#define putLCD(d) LCDwrite(LCDDATA, (d))

» cmdLCD() will send generic commands to the LCD module:
#define cmdLCD(¢) writeLCD(LCDCMD, (c))

+ homeLCD() will reposition the cursor on the first character of the first row:
#define homeLCD() writeLCD(LCDCMD, 2)

« clr,CD() will clear the entire contents of the display:
#define clrLCD() writeLCD(LCDCMD, 1)

And finally, for our convenience, we might want to adésLCD() , a function that will
send an entire null terminated string to the display module:

void putsLCD(char *s)
{

while(*s)
pPutLCD(*s++);
YiputsLCD

Let’s put all of our work together, adding a short main function:

main(void)
{

/I initializations
initLCD();

/l put a title on the first line
putsLCD("Exploring ");

/I put the cursor on the second line (addr 0x40)
cmdLCD(0x80 | 0x40);

putsLCD(*“ the PIC32");
/I main loop, empty for now
while (1)

{

}

} /I main

Glass = Bliss 231

If all went well, after building the project and programming the Explorer 16 board with
the debugger of choice, you will now have the great satisfaction of seeing the title string
showing, split between the two rows of the LCD display.

Building an LCD Library and Using the PMP Library

The exact same functionality can be obtained using the specific PMP peripheral library
by including the pmp.h library or simply including plib.h. Four functions in particular
provide us with all the tools we need to control the PMP and dialog with the LCD
display:

« mPMPOpen(), which helps us configure the parallel master port
* PMPSetAddress() , which allows us to set the address register
+ PMPMasterWrite() , which initiates a basic write sequence

« mPMPMasterReadByte() , which initiates a basic read sequence and returns a
byte value

Since we are at it, we will not only rewrite the code to use the more descriptive macros
and definitions offered by the library, we will also rearrange the code a little so to
transform it into a practical little library of its own to be used in the near future in other
projects with the Explorer 16 demonstration board.

Let’s start by creating a new project that we will €lID library. Then let’s create
a new source file calledCDlib.c. Here is the newitLCD() function as expressed
using the PMP library functions and macros:

void initLCD(void)

{

/I PMP initialization
mPMPOpen(PMP_ON | PMP_READ_WRITE_EN | 3,

PMP_DATA_BUS 8| PMP_MODE_MASTERL1 |
PMP_WAIT_BEG_4 | PMP_WAIT_MID_15 |
PMP_WAIT_END 4,

0x0001, /[only PMAQO enabled
PMP_INT_OFF); // no interrupts used

/[wait for >30 ms
Delayms(30);

232 Day 10

/linitiate the HD44780 display 8-bit init sequence
PMPSetAddress(LCDCMD); /I select command register
PMPMasterWrite(0x38); /I 8-bit int, 2 lines, 5x7
Delayms(1); 1>48 us

PMPMasterWrite(0x0c); /l ON, no cursor, no blink
Delayms(1); 1>48 us

PMPMasterWrite(0x01); /I clear display
Delayms(2); 11>1.6 ms

PMPMasterWrite(0x06); /I increment cursor, no shift
Delayms(2); 11>1.6 ms
}//initLCD

Notice how | exaggerated the timing delays in the initialization sequence in order to
use a single delay function that operates in basic increments of 1 millisecond called
Delayms() . We will see shortly how and where to define it.

Here are the other core functions that will populate our simple LCD library:

char readLCD(int addr)

{
PMPSetAddress(addr); Il select register

mPMPMasterReadByte(); /I initiate read sequence
return mPMPMasterReadByte(); // read actual data
}// readLCD

void writeLCD(int addr, char c)

{
while(busyLCD());
PMPSetAddress(addr); /I select register
PMPMasterWrite(c); / initiate write sequence
} /I writeLCD

If you found in the previous project (Liquid) that setting the cursor on the second
line of the display was a bit awkward, you will agree that adding a little smarts to the
putsLCD() function could be helpful. In particular, it would be nice to allow the routine

Glass = Bliss 233

to interpret a few special characters, likelthe end tab, and thenew ling similarly to

the way a serial port and/or a console are expected to.

void putsLCD(char *s)

{

char c;

while(*s)

{

switch (*s)

{

case '\n" /I point to second line
setLCDC(0x40);
break;

case '\r'; / home, point to first line
setLCDC(0);
break;

case '\t" /l advance next tab (8) positions
¢ = addrLCD();
while(c &7)

{

putLCD(' ");
C++;
}
if (¢ > 15) /I if necessary move to second line
setLCDC(0x40);
break;
default: /I print character
putLCD(*s);
break;
} lIswitch
S++;

} /iwhile
} /lputsLCD

This way, printing a string containing (or terminating) with the characténew line)
will set the cursor to the beginning of the second line of the LCD display. ¢haracter
(line end) will place the cursor back to the beginning of the first line\taraharacter

(tab) will produce the expected result.

234 Day 10

A standard header and a féinclude statements will complete the module:

/~k

** | CDlib.c

*/
#include <p32xxxx.h>
#include <plib.h>
#include <explore.h>
#include <LCD.h>

#define PMDATA PMDIN

Save the LCDIib.c code file we just completed and then start a new source file in the
MPLAB editor window. This will be the include fileCD.h, which will complete the
library by publishing all the macros and function prototypes required:
/*
** | CD.h

%
*/

#define HLCD 16 // LCD width=16 characters

#define VLCD 2 /[LCD height=2 rows

#define LCDDATA 1 /I address of data register
#define LCDCMD 0 [/l address of command register

void initLCD(void);
void writeLCD(int addr, char c);
char readLCD(int addr);

#define putLCD(d) writeLCD(LCDDATA, (d))
#define cmdLCD(¢) writeLCD(LCDCMD, (c))

#define cIrLCD() writeLCD(LCDCMD, 1)
#define homeLCD() writeLCD(LCDCMD, 2)

#define setLCDG(a) writeLCD(LCDCMD, (a & Ox3F) | 0x40)
#define setLCDC(a) writeLCD(LCDCMD, (a & OX7F) | 0x80)
#define busyLCD() (readLCD(LCDCMD) & 0x80)
#define addrLCD() (readLCD(LCDCMD) & OX7F)

#define getLCD() readLCD(LCDDATA)
void putsLCD(char *s);

Glass = Bliss 235

Finally, to test the newly created LCD library, let’s write a small new test program that
we will call LCDlib test.c:

/*
** |_CDlib test

*%

*
/I configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=0OFF, BWP=0OFF

#include <p32xxxx.h>
#include <LCD.h>

main()

{
initLCD();

clrLCD();
putsLCD("Exploring \nthe \tPIC32");

while(1);

THE EXPLORER.C LIBRARY

To help us initialize the PIC32 for maximum performance (see Day 7), vectored
interrupts (see Day 5) and use the features offered by the Explorer16 board (such as th
LED bar, see Day 1-3), at this point, we should start aggregating in a new small library
couple of handy functions. We will keep adding gradually new functions to it in the next
few chapters but here is its first incarnation:

/*
** Explore.c
*%

*/

#include <p32xxxx.h>
#include <plib.h>
#include <explore.h>

236 Day 10

void initEX16(void)

{
/l 1. disable the JTAG port to make the LED bar
/[available if not using the Starter Kit

#ifndef PIC32_STARTER_KIT
mJTAGPortEnable(0);

#endif

Il 2. Sysytem config performance
SYSTEMConfigPerformance(FCY);

/I 7. allow vectored interrupts
INTEnableSystemMultiVectoredint(); // Interrupt vectoring

// 8. PORTA output LEDsO0..6, make RA7 an input button
LATA =0;
TRISA = 0xFF80;

} 1/ initEX16

I
void _general_exception_handler(unsigned c, unsigned s)
{
while (1);
} /I exception handler
I

/*
** Simple Delay functions
*%

**uses: Timerl
** Notes: Blocking function

*/
void Delayms(unsigned t)
{
T1CON = 0x8000; // enable TMR1, Tpb, 1:1
while (t--)
{ It x 1ms loop
TMR1 = 0;
while (TMR1 < FPB/1000);
}

} /I Delayms

Glass = Bliss 237

The corresponding include file: explore.h will gather as well some useful definitions and
the first two functions’ prototypes:

/*
** Explore.h

*/

#define FALSE 0
#define TRUE 'FALSE
#define FCY 72000000L
#define FPB 36000000L

/ uncomment the following line if using the PIC32 Starter Kit
Il#defi ne PIC32_STARTER_KIT

[function prototypes
void initEX16(void);
void Delayms(unsigned);

Creating the include and lib Directories

To keep our files in order and our projects clean and tidy, we should apply a little disciplir
here and start grouping all the simple libraries we created so far two subdirectories:

« include where we will put all the .h files created for the simple libraries we
worked on so far, including:
1. explore.h

2. LCD.h
3. conU2.h
4. SEE.h

+ lib, where we will put all the corresponding .c modules, including:
1. explore.c

2. LCDlib.c
3. conU2.c
4. SEE.c

238 Day 10

From now on we will refer automatically to these modules by addinig¢hele
directory to thanclude search patbf each new project. The sequence of steps required
will be the following:

1. Open th8uild Options dialog box (see Figure 10.6) by choodfngject |
BuildOptions. . . | Project.

2. Inthe “Show Directories for” box, seléatiude Search Path.

2
MPLAB PIC32 Assembler | MPLAB PIC32C Compiler | MPLAB PIC32 Linker |
Directories | Trace | PIC32 Suite
~ Directories and Search Paths
Show directonies for: [include Search Path _'_I
New I Down Up I
| |
Suite DefauRsI
- Build Directory Policy -
" Assemble/Compile in source-file directory, link in output directory
& Assemble/Compile/Link in the project directory

0K | Concel | Aoy | Heb |

Figure 10.6: Build options for project dialog box.

3. Click theNew button to create a new empty entry.

Glass = Bliss 239

Select a directory.

) BasIC af
) Boot

) CN

) Geometry

\) Graphic

2 IC

) include =

4 | B

Folder: | include

Make MNew Folder |

Figure 10.7: Browse for folder dialog box.

»

Select the . . . button on the rightmost edge to open the Browse dialog box (see
Figure 10.7).

5. Select our neimcludedirectory.
6. ClickOK to close the dialog box.
7. ClickOK to accept the new setting.

8. Save the project by selectiigject | SaveProject,

With these settings, we will be able to refer to the LCD.h file withd#fault include
statement, as in:

#include <LCD.h>

without needing to add details of the path required to reach the directory where the file |
actually stored.

240 Day 10

Note

Notice the use of the angled brackets<) as opposed to the double quotes)(syntax. The
difference between the two notations lies in where the compiler will look for the file to be
included. The double quotes method we used in all previous projects tells the compiler to loo}
for a file inside the current project directory. The angled brackets, on the other hand, tell the
compiler to look for the file inside a series of directories known astthede search patithat
typically contains all the compiler-specific (MPLAB C32) library directories defined during the
installation of the program on our computer but also all the additional directories we listed in

the Include Search Path dialog box.

Advanced LCD Control

If you felt that the preceding discussion was not too complex or perhaps not rewarding
enough, here we have some more interesting stuff and a new challenge for you to
consider.

When we introduced the HD44780 compatible alphanumeric LCD modules, we
mentioned how the display content was generated by the LCD module controller using
a table, the character generator, located in ROM. But we also mentioned the possibility
to extend the character set wither-definedsymbols using an additional RAM buffer
(known as the CGRAM). Writing to the CGRAM, it is possible to create from two to
eight new character patterns, depending on the LCD display model. Of course, if we ha
32 user-defined characters, we could almost turn the entire alphanumeric display into
a complete graphical display. Unfortunately, the most popular and inexpensive LCD
modules, in particular the ones used on the Explorer 16 board, have only space for two
user-defined characters. Still, there are a number of interesting things we can do with
those. In the following, for example, we use just one of the two user-defined characters
illustrate how to develop a simple progress bar effect.

We will need a function to set the LCD module RAM buffer pointer to the beginning of
the CGRAM area using the Set CGRAM Address command, or better a macro that use:
thewriteLCD() function:

#define setLCDG(a) writeLCD(LCDCMD, (a & Ox3F) | 0x40)

Once the buffer pointer is set on the CGRAM and specifically at the beginning of the
buffer setLCDG(0)), we can use theutLCD() function to place 8 bytes of data in

Glass = Bliss 241

the buffer. Each byte of data will contribute 5 bits (LSb) to the construction of the eight
rows composing the new character pattern. After repositioning the buffer pointer into the
DDRAM area (using the maceetLCDC(0)), we can use the newly defined character
with the ASCII codex00 .

Notice that by convention, although the first line of the display corresponds to addresse:
from 0 to 15 of the DDRAM buffer, the second line is always found at addresses from
0x40 toOx4f independently of the display width—the number of characters that
compose each line of the actual display.

Progress Bar Project

It is time to start our last project for the day. We'll caltribgress. Let’s proceed with the
usual New Project checklist, and remember at the end to adutheée directory in the
include search path

A new source fileProgressBar.c, can be immediately created by inserting the standard
template andhclude statements list:

/*

**

** Progress Bar

*%

*
/I configuration bit settings, Fcy = 72MHz, Fpb = 36 MHz
#pragma config POSCMOD = XT, FNOSC = PRIPLL
#pragma config FPLLIDIV = DIV_2, FPLLMUL = MUL_18, FPLLODIV =DIV_1
#pragma config FPBDIV = DIV_2, FWDTEN = OFF, CP = OFF, BWP = OFF
#include <p32xxxx.h>
#include <explore.h>
#include <LCD.h>

We could draw a blocky progress bar using just a string of (up tdrit&” characters

that can be obtained from the LCD font table by selecting the code 0xff, giving a solid

5 X 8 black pixels pattern. But to obtain a finer resolution and smoother motion, we can
exploit instead the user-defined character feature we just learned to use. The trick is to
build most of the progress bar with X¥58) bricks and then define a single new character
of the required thickness for the tip (see Figure 10.8).

242

Day 10

T2 IIIIIIIII\I%

Oxff

o
<
o

0x00

N
mL]O]
N
N
N
N
mL]O]
N

EEEER EEENE
EEEER EEENE
EEEER EEENE
EEEER e __ |HAENER
EEEER EEENE
EEEER EEENE
EEEER EEENE
EEEER EEENE
brick brick

Figure 10.8: Drawing a progress bar.

i

°

Here is the code required to define a progress bar tip of given thickness:

void newBarTip(int i, int width)

{

char bar;
int pos;

/I save cursor position
while(busyLCD());
pos = addrLCD();

/I generate a new character at position i
/I set the data pointer to the LCD CGRAM buffer
setLCDG(i*8);

/I as a horizontal bar (0-4)x thick moving left to right
/I'7 pixel tall
if (width > 4)

width = 0;

Glass = Bliss 243

else
width = 4 - width;

for(bar=0xff; width > 0; width--)
bar<<=1: /I bar >>= 1; if right to left

/I fill each row (8) with the same pattern
putLCD(bar);
putLCD(bar);
putLCD(bar);
putLCD(bar);
putLCD(bar);
putLCD(bar);
putLCD(bar);
putLCD(bar);
/I restore cursor position
setLCDC(pos);
} /I newBarTip

Given this essential building block, drawing an actual progress bar requires only a few
more lines of code:

void drawProgressBar(int index, int imax, int size)

{ Il index is the current progress value
/l imax is the maximum value
/I size is the number of character positions available
inti;

/l scale the input values in the available space
int width=index * (size*5)/imax;

/I generate a character to represent the tip
newBarTip(TIP, width % 5); // user defined character 0

/I draw a bar of solid blocks
for (i=width/5; i>0; i--)
putLCD(BRICK); // filled block character

/I draw the tip of the bar
putLCD(TIP); // use character 0

} /I drawProgressBar

244 Day 10

As you can see, to make tthewProgressBar() function really friendly, | included a

little scaling of the input values so that the bar itself can be made to fit the desired numk
of spaces on the LCD display and the progress level is made relative to a given maximu
value passed as a parameter. To put it to the test, we’ll define a loop where a counter
value (ndex) is cycling slowly through a range of values from 0 to 99. Each value is
shown in the first three characters of the first line of the display. The rest of the line is
filled with the progress bar.

main(void)

{
int index;
char s[8];

/I LCD initialization
initLCD();

index = 0;

/I main loop
while(1)
{

clrLCD();

sprintf(s, "%2d", index);
putsLCD(s); putLCD('%");

/I draw bar
drawProgressBar(index, 100, HLCD-3);

/I advance and keep index in boundary
index++;

if (index > 99)

index=0;

/! slow down the action
Delayms(100);

} /I main loop
} /I main

Notice that it is important to slow the execution of the main loop by inserting a small
delay; otherwise the refresh of the display is so rapid that all we get to see is a sort of
ghostly faint image. Remember, LCD displays are slow little things; be patient with thernr

Glass = Bliss 245

Finally, before you start building the project, remember to add all the required library
modules we used. You will need to select the project window and right-click the source
files to Add file. Browse to thdib directory we created today and select both the
explore.c module (that will give us theelayms() function) and thé. CDIib.c module.

Now build the project, program the Explorer 16 board with the debugger of your choice,
and observe the code running and drawing a progress bar that moves smoothly from lef
to right to fill the entire top line of the LCD display. This is true (glass) bliss!

Debriefing

Today we learned how to use the Parallel Master Port to interface to an alphanumeric
LCD display module, just one of many common devices that require an 8-bit parallel
interface. Since the LCD display modules are relatively slow peripherals, it might

seem that there has been little or no significant advantage in using the PMP instead of ¢
traditional bit-banged 1/O solution. In reality, even when accessing such simple and slow
peripherals, the use of the PMP can provide two important benefits:

« The timing, sequence, and multiplexing of the control signals are always
guaranteed to match the configuration parameters, eliminating the risk of
dangerous bus collisions and/or unreliable operation as a consequence of coding
errors or unexpected execution and timing conditions (interrupts, bugs, and so or

« The MCU is completely free from tending at the external (peripheral) bus,
allowing simultaneous execution of any number of higher-priority tasks without
disruption of the interface timing.

Notes for the PIC24 Experts

The PMP module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differenc
that will affect your code while porting an application to the PIC32:

1. ThePMCONegister control bits layout has been updated to resemble more closel
the layout of most other peripherals so that the modNI€RZ, andIDL bits are
now located in the standard position (bit 15, bit 14, bit 13).

2. ThePMBEoutput signal has been removed.

3. ThePMPTTLcontrol bit is now found in theMCONegister to select Schmitt trigger
or TTL input levels. It used to be part of th@DCFGIregister on the PIC24.

246 Day 10

4. In theeMMODEegister, théRQM=11 andIRQM=10 selections have been
modified.

5. ThePMPENegister is now renamd&MAEN This has been similarly updated on
the latest revision of the PIC24 datasheets as well.

6. A singleeMDINand a singl®MDOUTegisters (now 32 bits wide) give
simultaneous access to all data buffers.

Tips & Tricks

Though basic alphanumeric displays are pretty much standardized around the HD4478
controller interface and command set, things are very different when it comes to
graphic displays. A variety of controllers are being currently offered with very different
capabilities. The most common controllers for small LCD displays are probably the New
Japan Radio (NJU6679) used in many monochrome displays (up to 128) and using

a parallel interfaces very similar to the HD44780. But the new trend is represented by
the serially interfaced EPSON (S1D15G10) controllers used in many inexpensive colol
LCD displays, often referred to as “Nokia knock-offs” because their low price is mostly
driven by the large volumes of production supposedly achieved on the latest generation
of multimedia phones. OLED displays are also going the way of the serial interfaces
(SPIs). Finally, when the resolution of the display grows beyond the QVGA (320*240),
you can no longer rely on finding a complete controller chip on glass, and you have to
start producing a complex synchronized waveform while continuously refreshing the
screen. A QVGA or more advanced display peripheral module becomes a necessity.

Exercises

1. As suggested in the previous explorations using asynchronous serial interfaces,
it is possible to redirect the output of the stdio.h library routines, such as
printf() , to the LCD display. Redefine thenon_putc() Function (see the
MPLAB C32 C Library Guide for details) to send characters to the LCD via the
parallel master port interface.

2. LCD displays are typically very slow devices. A lot of processing power is
wasted while the PIC32 is waiting for the LCD display to perform a command.
Using a buffering mechanism and timer interrupts implement a background LCD
display interface. (A basic example of such a mechanism is provided in the LCD.
¢ code provided with the Explorer 16 demonstration board for the PIC24 and
dsPIC platforms).

Glass = Bliss 247

Books

Bentham, Jerem{,CP/IP Lean: Web Servers for Embedded Sys(ék> Books,
Lawrence, KS).This book will take you one level of complexity higher, showing you
how the TCP/IP protocols, the foundation of the Internet, can be easily implementec
in a “few” lines of C code. The author knows how to keep tHilegs” as necessary
in every embedded-control application.

Links

www.microchip.com/graphic#licrochip is offering graphic libraries capable of
supporting the most popular LCD display controllers for the 16-bit and 32-bit
architectures. Check the availability of free and third-party supported libraries on the
Web Graphic Design Center. www.microchip.com/stellent/idcplg?ldcSer86e
GET_PAGE&nodele1824&appnoteen011993. This is a link to Microchip
Application Note 833, a free TCP/IP stack for all PICmicvasw.microchip.
com/stellent/idcplg?ldcServieessS_GET_PAGE&nodetdl824&appnote=en01
2108.Application Note 870 describes a Simple Network Management Protocol for
Microchip TCP/IP stack-based applications.

This page intentionally left blank

It’s an Analog World

The Plan

We live in an analog world. Temperature, humidity, and pressure but also voltages and
currents are analog. If we want our embedded-control applications to interact with the
outside world, we need to learn to interpret analog information and convert it to digital
so that a microcontroller can elaborate it and possibly produce an analog output again.
The analog-to-digital converter module is one of the key interfaces tcetd& world.

The PIC32MX family was designed with embedded-control applications in mind and
therefore is ideally prepared to deal with the analog nature of this world. A fast analog-
to-digital converter (ADC), capable of 500,000 conversions per second, is available on ¢
models with an input multiplexer that allows you to monitor a number of analog inputs
quickly and with high resolution. In this lesson we will learn how to use the 10-bit ADC
module available on the PIC32MX family to perform two simple measurements on the
Explorer 16 board: reading a voltage input from a potentiometer first and a voltage inpulf
from a temperature sensor later.

Preparation

In addition to the usual software tools, including the MPPABE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board and the In-Circuit Debugger of your choice.

The Exploration

The first step in using the ADC, like any other peripheral module inside the PIC32, is
to familiarize yourself with the module building blocks and the key control registers.

TTTTTTTTTTT T Internal Data Bus
A

i
AVDD _:_\ E
AVss — 1 § [Vre 16
VReF+ XH— L 13 ;
VReF- .-.—i D>: VR~ | Comparator
b : ViNH
1
i 'V | SH
ANO E INL
1
AN V| | |
1 _Ri C N L .
AN2 [XH—| E 10-Bit SAR 4—@on ogic
1
| <
AN3 X}—| . ; E
! 2 ! Data Formati
AN5 i
, Y i
ANG INL ! ADC1BUFO:
AN7 | ADC1BUFF
P i
AN8 E ADICONI)
._,_: ! AD1CON2
ANS | i AD1CON3
AN10 [XH— o Vinu i ADICHS
i x ! AD1PCFG
AN11 [X— |
X ' % i ADICSSL
AN12 v !
! INL !
AN13 ;
1 1
AN14 - ! E Sample Control | Control Logic
1 i Conversion Control
— |
ANILS ' Input MUX Control

-------------------------- Pin Cofig. Control

Figure 11.1: Ten-bit high-speed ADC block diagram.

Yes, this means reading the datasheet once more, and even the Explorer 16 User Guid
find out the schematics.

We can start by looking at the ADC module block diagramKspee 11.1).
This is a pretty sophisticated structure that offers many interesting capabilities:
« Upto 16 input pins can be used to receive the analog inputs.

» Two input multiplexers can be used to select different input analog channels and
different reference sources each.

It’s an Analog World 251

« The output of the 10-bit converter can be formatted for integer or fixed-point
arithmetic, signed or unsigned, 16-bit and 32-bit output.

« The control logic allows for many possible automated conversion sequences to
synchronize the process to the activity of other related modules and inputs.

« The conversion output is stored in a 32-bit-wide, 16-words-deep buffer that can t
configured for sequential scanning or simple FIFO buffering.

All these capabilities require a number of control registers to be properly configured,
and | understand how, especially at the beginning, the number of options available and
decisions to take could make you a bit dizzy. So we will start by taking the shortest and
simplest approach with the simplest example application: reading the position of the R6
potentiometer on the Explorer 16 board.

+3.3V _
)|
R6
2 o RI2 470 RB5/AN5
10K
i
—=<C12
1 NL

Figure 11.2: Detail of the Explorer 16 demonstration board R6 potentiometer.

The 10 k Ohm potentiometer is directly connected to the power supply rails so that its
output can span the entire range of values from 3.3 V to the ground reference. It is
connected to thRB5 pin that corresponds to the analog ing6 of the ADC input
multiplexer.

After creating a new project using the appropriate checklist, we can create a hew sourc
file pot.c, including the usual header file and adding the definition of a couple useful
constants. The first onBQT, defines the input channel assigned to the potentiometer; the

252 Day11

second oneAINPUTS, is a mask that will help us define which inputs should be treated a:
analog and which ones as digital:
/*
** |t '’ san analog world
** Converting the analog signal from a potentiometer
*
/
/I configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF
#include <p32xxxx.h>

#define POT 5 // 10 k potentiometer on AN5 input
#define AINPUTS Oxffef // Analog inputs POT, TSENS

The actual initialization of all the ADC control registers can be best performed by a shotr
function,initADC() , that will produce the desired initial configuration:

« AD1PCFaQwill be passed the mask selecting the analog input chanreeisillO
mark the analog inputs, 1 s will configure the respective pins as digital inputs.

+ AD1CONill set the conversion to start automatically, triggered by the
completion of the auto-timed sampling phase. Also, the output will be formatted
for a simple unsigned, right-aligned (integer) value.

+ AD1CSSLwill be cleared because no scanning function will be used (only one
input).

+ AD1CON2will select the use of MUXA and will connect the ADC reference inputs
to the analog input rails Avdd and AVss pins.

« AD1CONa3will select the conversion clock source and divider.

« Finally we seADONand the entire ADC peripheral will be activated and ready

for use.
void initADC(int amask)
{
AD1PCFG = amask; Il select analog input pins
AD1CONL1 =0; /[l manual conversion sequence control

AD1CSSL =0; // no scanning required
AD1CON2 = 0; /l use MUXA, AVss/AVdd used as Vref+/-

It’s an Analog World 253

AD1CON3=0x1F02; /l Tad=2+1) x 2 x Tpb=6x27 ns>75 ns
AD1CON1bits.ADON=1; // turn on the ADC
} /linitADC

By keepingamask as a parameter to the initialization routine, we make it flexible so it's
able to accept different (multiple) input channels in future applications.

Note

As for all other peripheral modules found inside the PIC32, a corresponding peripheral library
(adc.h) offers a set of functions and macros that are supposed to simplify or at least make tf
code that accesses the ADC module more readable. Because of the great flexibility of the AD(
module, it is my very personal opinion that it is best if you familiarize yourself first with the
low-level details of its operation by directly accessing the few control registers rather than
seeking early refuge in the peripheral library.

The First Conversion

The actual analog-to-digital conversion is a two-step process. First we need to take a
sample of the input voltage signal; then we can disconnect the input and perform the act
conversion of the sampled voltage to a digital value. The two distinct phases are controlle
by two separate control bits in tA®@1CON1IregisterSAMPandDONE The timing of the

two phases is important to provide the necessary accuracy of the measurement:

« During the sampling phase, the external signal is connected to an internal
capacitor that needs to be charged up to the input voltage. Enough time must
be provided for the capacitor to track the input voltage, and this time is mainly
proportional to the impedance of the input signal source (in our case, known to
be 10 k Ohm) as well as the internal capacitor value. In general, the longer the
sampling time, the better the result, compatible with the input signal frequency
(not an issue in our case).

« The conversion phase timing depends on the selected ADC clock source. This
is derived by the peripheral bus clock signal via a divider or, alternatively, by a
dedicated RC oscillator. The RC option, although appealing for its simplicity, is
a good choice when a conversion needs to be performed when the PIC32 is in
a low-power mode, when the peripheral clock can be turned off. The oscillator
clock divider on the other end is a better option in more general cases since it

254 Day 11

provides synchronous operation with the peripheral bus and therefore a better
rejection of the internal noise. The conversion clock should be the fastest possibl
compatibly with the specifications of the ADC module.

Here is a basic conversion routine:

int readADC(int ch)

{

AD1CHSbits.CHOSA = ch; I/l 1. select analog input
AD1CON1bits.SAMP = 1; /I 2. start sampling
T1CON = 0xs8000; TMR1 = 0; /I 3. wait for sampling time
while (TMR1 < 100); 1

AD1CON1bits.SAMP = 0; /I 4. start the conversion
while (lAD1CON1bits.DONE); // 5. wait conversion complete
return ADC1BUFO; // 6. read result

} /Il readADC

Automating Sampling Timing

As you can see, using this basic method, we have been responsible for providing the
exact timing of the sampling phase, dedicating a timer to this task and performing two
waiting loops. But on the PIC32 ADC module, the sampling phase can be self-timed up
to a maximum of 32X Tad periods. Whether we can use this feature or not will depend
ultimately on the product of the source impedance and the ADC input capacitance. By
setting theSSRCbits in theAD1CONZregister to th@x7 configuration, we can enable an
automatic start of conversion upon termination of the self-timed sampling period. The
sampling period itself is selected by #ie1CONIegisterSAMbits. Here is a new and
improved example that uses the self-timed sampling and conversion trigger:

void initADC(int amask)

{

AD1PCFG = amask; I/ select analog input pins

AD1CONL1 = 0x00EQ; /I automatic conversion after sampling

AD1CSSL = 0; /I no scanning required

AD1CON2 = 0; /l use MUXA, use Avdd & AVss as Vref+/-
AD1CONS3 = 0x1F3F; /I Tsamp = 32 x Tad,;

AD1CON1bits. ADON =1; //turn on the ADC

} //initADC

It’s an Analog World 255

Notice how making the conversion-start, triggered automatically by the completion of th
self-timed sampling phase, gives us two advantages:

» Proper timing of the sampling phase is guaranteed without requiring us to use ar
timed delay loop and/or other resource.

+ One command (start of the sample phase) suffices to complete the entire sampli
and conversion sequence.

With the ADC so configured, starting a conversion and reading the output is a trivial
matter:

» ADI1CHSselects the input channel for MUXA.

» Setting th&&DIt in AD1CONJ1starts the timed-sampling phase, immediately
followed by the conversion.

+ TheDONBhit will be set in theAD1CON1register as soon as the entire sequence is
completed and a result is ready.

+ Reading theaDC1BUFOregister will immediately return the desired conversion
result.

int readADC(int ch)

{
AD1CHSbits.CHOSA = ch; Il 1. select input channel
AD1CON1bits.SAMP = 1; /I 2. start sampling
while (lAD1CON1bits.DONE); // 3. wait conversion complete
return ADC1BUFO; Il 4. read conversion result

} /I readADC

Developing a Demo

All that remains to do at this point is to figure out an entertaining way to put the
converted value to use on the Explorer 16 demo board. The LEDs connected to PORTA
are an intriguing choice, but those of you using a PIC32 Starter Kit would not be able to
enjoy the experience, since most of the PORTA pins would be tied up by the JTAG port.
Instead we will use the LCD library developed in the previous chapter to display a
blocky bar graph. Yes, we could use the nice and smooth progress bar developed in the

256 Day 11

previous chapter (Day 10) but | don’t want you to get distracted by the details. Here is
the main routine we will use to test our analog-to-digital conversion functions:

main ()
{
inti, a;
[/ initializations

initADC(AINPUTS); // initialize the ADC
initLCD(); // initialize the LCD display

/I main loop
while(1)
{

a = readADC(POT); // select the POT input and convert

/I reduce the 10-bit result to a 4 bit value (0..15)
/I (divide by 64 or shift right 6 times
a>>=6;

/I draw a bar on the display
clrLCD();
for (1=0; i<=a; i++)
putLCD(OxFF);
/I slow down to avoid flickering
Delayms(200);
} /I main loop
} /I main

After the call to the ADC initialization routine, we can initialize the LCD display module.
Then in the main loop we perform the conversiorANB and we reformat the output to

fit our special display requirements. As configured, the 10-bit conversion output will be
returned as a right-aligned integer in a range of values betwaed1023 . By dividing

that value by 64 (or, in other words, shifting it right six times) we can reduce the range to
0 to 15 value. Printing the resulting number of “bricks” gives a blocky bar whose length
is proportional to the position of the potentiometer.

Remember to add ati ncl ude <> statement for the LCD.h library and add to the
project source files list both theplore.c andL CDlib.c modules we placed in thie
directory.

It’s an Analog World 257

Build the project and, following the usual In Circuit Debugging checklist, program the
Explorer 16 board. If all goes well, you will be able to play with the potentiometer,
moving it from side to side while observing a bar of 16 blocks moving from left to right
correspondingly.

Creating Our Own Mini ADC Library

We will use over and over the two simple routines that initialize the ADC module
and perform a single self-timed conversion. Let’s separate them into a standalone
small library calledADClib.c that we will add to our new collection inside the
directory.

/*

** ADClib.c

*%

*/
#include <p32xxxx.h>
#include <ADC.h>

[l initialize the ADC for single conversion, select input pins
void initADC(int amask)

{
AD1PCFG = amask; /I select analog input pins
AD1CON1 = 0x00EQ; /[auto convert after end of sampling
AD1CSSL =0; /I no scanning required
AD1CON2 = 0; /I use MUXA, AVss/AVdd used as Vref+/-
AD1CONS3 = Ox1F3F; /I max sample time = 31Tad
AD1CONI1SET = 0x8000; /[turn on the ADC

} //initADC

int readADC(int ch)

{
AD1CHSbits.CHOSA = ch; /I select analog input channel
AD1CON1bits.SAMP = 1; /I start sampling
while ({(AD1CON1bits.DONE); // wait to complete conversion
return ADC1BUFO; /I read the conversion result

}// readADC

Similarly we can isolate the include file LCD.h that offers the basic set of definitions and
prototypes required to access the library functions. We will save it indlugle directory.

258 Day11

/*

* ADC.h
*%

*/
#define POT 5 /I 1@ potentiometer on AN5 input
#define TSENS 4 /I TC1047 Temperature sensor on AN4

#define AINPUTS Oxffcf // Analog inputs for POT and TSENS

[l initialize the ADC for single conversion, select input pins
void initADC(int amask) ;
int readADC(int ch);

Simple enough. We are ready to proceed with more fun and games!

Fun and Games

Okay, I'll admit it, the previous project was not too exciting. After all, we have been
using a 32-bit machine operating at 72 MHz, capable of performing a 10-bit analog-to-
digital conversion several hundred thousands of times per second, only to discard all bu
4 bits of the conversion result and watch a blocky bar moving on an LCD display. How
about making it a bit more challenging and playful instead? How about developing a
monodimensional Pac-Man game, or should we call itRioe&-Man” game?

If you remember the old Pac-Man game—please don't tell me you never heard of it, but
if you really have to, check the link to a Wikipedia entry at the end of this chapter—there
is a hungry little “thing,” the Pac, that roams a two-dimensional labyrinth in a desperate
search for food. Now, with a little fantasy, we can imagine a monodimensional reduction
of the game, where the Pac is represented by a singte> character, depending on the
direction of movement. It is limited to a left/right movement on a line of the LCD display a
it is controlled by the potentiometer position. Bits of food are represented by a * character
and are placed randomly, one at a time, on the same line. As soon as the Pac reaches a
of food, it gulps it and moves on, and a new piece is placed in a different location.

Once more, the pseudo-random number generator fumatidf) (defined in stdlib.h)

will be very helpful here. All games need a certain degree of unpredictability, and
pseudo-random number generators are the way computer games provide it in a world o
logic and otherwise infinite repetition.

We can start by modifying the previous project code or typing away from scratch a
brand-newPot-Man.c file. A new project needs to be created, and | suggest we call

It’s an Analog World 259

it simply POT. Just a few more lines of code are truly needed to perform the simple
animation:

/*

** Pot-Man.c
*%

*
/I configuration bit settings, Fcy=72 MHz, Fpb=36 MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=0OFF, BWP=0OFF

#include <p32xxxx.h>
#include <explore.h>
#include <LCD.h>
#include <ADC.h>

main ()

{
inta, r,p,n;
/I 1. initializations
initLCD();

iNitADC(AINPUTS);

/I 2. use the first reading to randomize
srand(readADC(POT));

/I 3. init the hungry Pac
p = ' <I .

/I 4. generate the first random food bit position
r =rand() % 16;

/l main loop
while(1)
{

/I 5. select the POT input and convert
a = readADC(POT);

/I 6. reduce the 10-bit result to a 4 bit value (0..15)
/I (divide by 64 or shift right 6 times
a>>=6;

260

Day 11

/1 7. turn the Pac in the direction of movement
if (a<n) /I moving to the left

p= >

if (a>n) /I moving to the right

p= <

/I 8. when the Pac eats the food, generate more food
while (a==r)

r=rand() % 16;

/I 9. update display

clrLCD();

setLCDC(a); putLCD(p);
setLCDC(r); putLCD(TR

/I 10. provide timing and relative position
Delayms(200); /I limit game speed

n=

a; /l memorize previous position

} /I main loop

} /I main

In 1, we perform the usual initialization of the ADC module and the LCD display.

In 2, we read the potentiometer value for the first time and we use its position as
theseedvalue for the pseudo-random number generator. This makes the game
experience truly unique each time, provided the potentiometer is not always foun
in the leftmost or rightmost position. That would provide a seed value of O or
1023, respectively, every time and therefore would make the game quite repetitiv
because the pseudo-random sequence would proceed through exactly the same
steps at any game restart.

In 3, we assign a first arbitrary direction to the Pac.
In 4, we determine a first random position for the first bit of food.

In 5, we are already inside the main loop checking for the latest position of the
potentiometer cursor.

In 6, we reduce the integer 10-bit value to the four most significant bits to obtain
a value between 0 and 15.

In 7, we compare the new pasition with the previous loop position to determine
which way the mouth of the Pac should be facing. If the ADC reading has

It’s an Analog World 261

reduced, it means we moved the potentiometer counter-clockwise. Hence we
will make the Pac turn to the left. Vice versa, if the ADC reading has increased
compared to the previous loop value, the potentiometer must have been turned
clockwise, and we’d better turn the Pac to the right.

+ In 8, we compare the new position of the Pac—the ADC reading—with the food
position and, if the two coincide (the Pac got his lunch), a new random food
position is immediately calculated. The operation needs to be repeated in a while
loop because each time a new random valyés(calculated, there is a chance
(exactly 1/16 if our pseudo-random generator is a good one) that the new value
could be just the same. In other words, we could be creating a new “food nibblet’
right in the Pac’s mouth. Now we don’t want that—it would not be very sporting,
don’t you agree?

« Finally, in 9, we get to clean the display content and then place the two symbols
for the Pac and the food piece in their respective positions.

« In 10, we close the loop with a short delay and save the Pac’s position for the ne
loop to compare.

Don't forget to include in the project the LCDIib.c, ADClib.c, and Explore.c files found
in thelib directory. Build the project and program it onto the Explorer 16 board. You will
have to admit it: Analog-to-digital conversions are so much more entertaining now!

Sensing Temperature

Moving on to more serious things, there is a temperature sensor mounted on the Explorer
board, and it happens to be a Microchip TC1047A integrated temperature-sensing device w
a nice linear voltage output. This device is very small, it is offered in a SOT-23 (three-pin,
surface-mount) package. The power consumption is limited to 35uA (typ.) while the power
supply can cover the entire range from\2. 5.5 V. The output voltage is independent from
the power supply and is an extremely linear function of the temperature (typically within

0.5 degree C) with a slope of exactly 10 mV/C. The offset is adjusted to provide an absolute
temperature indication according to the formula shown in Figure 11.3

We can apply our newly acquired abilities to convert the voltage output to digital
information using, once more, the ADC of the PIC32. The temperature sensor is directly
connected to the AN4 analog input channel as per the Explorer 16 board schematic (se
Figure 11.4).

262 Day11

Vour = (10 mV/°C) (Temperature °C) + 500 mV

1.75
17
15
1.3
11

Vour (Volts)

0.9
0.7
0.5
0.3
0.1

—40 —30—20-10 0 10 20 30 40 50 60 70 80 90 100110120 125

Temperature (°C)

Figure 11.3: TC1047 output voltage vs. temperature characteristics.

U4
TC10474

+33V Voo Vour 2—RZ AL TRB27ANa)

ca1 L
3

T J»

p— +3.3V

Figure 11.4: Detail of the Explorer 16 demonstration board TC1047A
temperature sensor.

We can reuse the ADC library developed for the previous exercise and put it in a new
project calledTEM P, saving the previous source file Banp.c.

Let’s start modifying the code to include a new constant definiti®BNSfor the ADC
input channel assigned to the temperature sensor.

/*

* Temp.c

** Converting the analog signal from a TC1047 Temp Sensor
*

It’s an Analog World 263

/I configuration bit settings, Fcy=72 MHz, Fpb=36 MHz

#pragma config POSCMOD=XT, FNOSC=PRIPLL

#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=0OFF, BWP=0OFF

#include <p32xxxx.h>
#include <explore.h>
#include <LCD.h>
#include <ADC.h>

As you can see, nothing else needed to change with regard to the ADC configuration or
activation of the conversion sequence. Presenting the result on the LCD display might
be a little tricky, though. Temperature sensors provide a certain level of noise, and to
give a more stable reading it is common to perform a little filtering. Taking groups of
10 samples over a period of a second, for example, and performing an average will give
us a cleaner value to work with.
a=0;
for (j=0; j < 10; j++)
a+=readADC(TSENS); /l add up 10 readings
i=a/10; // divide by 10 to average

Referring to the formula in Figure 11.3, we can now calculate the absolute temperature
value as measured by the TC1047 on the Explorer 16 board. In fact, resolving for the
temperature in degrees C, we obtain:

_ Vout—500mV

~ 10mv/C

where:

Vout = ADC reading * ADC resolution (mV/bit)

Since we have configured the PIC32 ADC module to use as an internal voltage referenc
the Avdd line connected to Vdd (3.3 V), and knowing it operates as a 10-bit, we derive
that the ADC resolution is 3.3 mV/bit. Hence the temperature can be expressed as:
T (3.3*1i) — 500;
10
We could easily print the resulting absolute temperature on the LCD display, but it woul
not be fun, would it? How about providing instead a relative temperature indication

264 Day 11

using a single character (cursor) position as an index, or even better, how about using tl
temperature as a way to control the monodimensional Pac-Man game we developed in
previous project? We could heat the sensor by breathing hot air onto the sensor to move
to the right or blowing cold air on it to move it to left.

From a practical point of view, it seems easy to implement. We can sample the initial
temperature value just before the main loop and then use it as a reference to determine
offset for the Pac position relative to the center of the display. In the main loop we will
update the cursor position, moving it to the right as the sensed temperature increases o
the left as the sensed temperature decreases. Here is the complete code for the new Te
Man game, or should we call it the Breathalyzer game instead?

main ()

{

inta, i, j,n,r,p;

/I 1. initializations
initADC(AINPUTS); // initialize the ADC
initLCD();

/I 2. use the first reading to randomize

srand(readADC(TSENS));

/I generate the first random position

r =rand() % 16;

p= "<

/I 3. compute the average value for the initial reference

a=0;

for (J=0; j<10; j++)

{
a+=readADC(TSENS); // read the temperature
Delayms(100);

}
i=a/10; // average

/l main loop
while(1)
{

/I 4. take the average value over 1 second
a=_0;
for (j=0; j<10; j++)

It’s an Analog World 265

{
a +=readADC(TSENS); // read the temperature
Delayms(100);
}
a/=10; I/l average result
/I'5. compare initial reading, move the Pac
a=7+(a-i);
/I 6. keep the result in the value range 0..15
if (a > 15)
a = 15;
if (a<0)
a=_0;
/[7. turn the Pac in the direction of movement
if (a<n) /I moving to the left
p= ">
if (a>n) /I moving to the right
p= <

/I 8. as soon as the Pac eats the food, generate new
while (a==r)
r =rand() % 16;

/I 9. update display

clrLCD();

setLCDC(r); putLCD(Y,
setLCDC(a); putLCD(p);

/I 10. remember previous postion
n=a,

} /I main loop
} /I main

You will notice how most of the code has remained absolutely identical to our previous
project/game. The only notable differences are found in the following sections:

+ In3andin 4, we use a simple average of 10 values taken over a period of a
second instead of a single instantaneous reading.

« In 5, we compute the temperature difference and use it as an offset with respect
the center position (7).

266 Day 11

+ In 6, we check for boundaries. Once the difference becomes negative and more
than 4 bits wide, the display must simply indicate the leftmost position. When
the difference is positive and more than 4 bits wide, the rightmost position must
be used.

« In 10, we don’t need further delays because the temperature reading and averac
already provide already a natural pace to the game.

Build the project with the usual checklists, rememberirigdludeall the libraries
required. Program it to the Explorer 16 board using the In-Circuit debugger of choice an
give it a try.

The first problem you will encounter will be to identify the minuscule temperature senso
on the board. (Hint: It is close to the lower-left corner of the processor module and it
looks just like any surface-mount transistor). The second immediate problem will be

to find the right way to breathe on the board to produce warm or cold air as required to
move the Pac. It is more complex than it might appear. In fact, personally, | found the
cooling part to be the hardest; some friends are suggesting that this might be a problem
related to my current position. If you work in marketing, they say, it’s just hot air!

Debriefing

In this lesson we have just started scratching the surface and exploring the possibilities
provided by the ADC module of the PIC32. We have used one simple configuration of
the many possible and only a few of the advanced features available. We have tested o
newly acquired capabilities with two types of analog input available on the Explorer 16
board, and hopefully we had some fun in the process.

Notes for the PIC24 Experts

The ADC module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differenc
that will affect your code while porting an application to the PIC32:

1. IntheAD1CONTIregister, the conversion format options are now extended to a
32-bit fractional word.

2. TheCLRASAMontrol bit has been added to &21CON1Iregister to allow the
conversion sequence to be stopped after the first interrupt.

It’s an Analog World 267

3. IntheAD1CONZ2egister a new autocalibration mode has been added to reduce
the ADC offset. Th@©FFCALcontrol bit has been added to enter the calibration
mode.

4. TheAD1CHSregister control bits are now in the upper half of the register 32-bit
word. There is also a singieHONBOcontrol bit for the selection of the negative
input of the second input multiplexer.

Tips & Tricks

If the sampling time required is longer than the maximum available optiofiTégd),

you can try to extend Tad first or, a better option, swap things around and enable the
automatic sampling start (at the end of the conversion). This way the sampling circuit
is always open, charging, whenever the conversion is not occurring. Manually clearing
the SAMPDiIt will trigger the actual conversion start. Further, having Timer3 periodically
clearing thesSAMPcontrol bit for you (one of the options for tR8RC bits inAD1CON)

and enabling the ADC end of conversion interrupt will provide the widest choice of
sampling periods possible for the least amount of MCU overhead possible. No waiting
loops, only a periodic interrupt when the results are available and ready to be fetched.

Further, not all applications require a complete conversion of analog input values. The
PIC32MX family offers also analog comparator modules (two), with dedicated input
multiplexers. They can assist in those applications in which we need a fast response to
analog input as it crosses a threshold. No need to set up the ADC, select a channel, an
perform a conversion; the comparison is done continuously. An interrupt (or an output
signal) is produced immediately as the reference voltage is reached.

Speaking of reference voltages, yet another module, called the Comparator Reference,
effectively representing a small digital-to-analog converter of sorts, can generate up to
32 reference voltages to be used with the comparator modules or independently.

Exercises

1. Use the ADC FIFO buffer to collect conversion results and set up Timer3 for
automatic conversion and the interrupt mechanism so that a call is performed on
once the buffer is full and temperature values are ready to be averaged.

2. Experiment with interfacing other types of analog sensors (using the prototyping
area of the Explorer 16 board) such as pressure sensors, humidity sensors, and

268 Day 11

even accelerometers. Two- and/or three-axis solid-state accelerometers are gett
very inexpensive and readily available. All it takes to interface to them is a few
analog input pins and a fast 10-bit ADC module.

Books

Baker, BonnieA Baker’'s Dozen: Real Analog Solutions for Digital Desigrisiswvnes,
Burlington, MA). For proper care and feeding of an analog-to-digital converter, look
no further than this cookbook.

Links

www.microchip.com/filterlabDownload the free FilterLab software from the Microchip
Web site; it will help you quickly and efficiently design antialiasing filters for your
analog inputs.

www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=2102¶m=
en021419&pageld=79&pageld=7Temperature sensors are available in many
flavors and a choice of interface options, including diré@tdr SPI digital output.

Expansion

Congratulations, you have endured five more days of hard fieldwork. You have learned
to use some of the key hardware peripheral modules of the PIC32MX, and you have pu
them to use on the Explorer 16 demo board.

In the third part of this book we will start developing new projects that will require you

to master several peripheral modules at once. Since the complexity of the examples wil
grow a bit more, not only is it recommended you have an actual demonstration board (tl
Explorer 16) at hand, but you’ll also need the ability to perform small modifications and
utilizing the prototyping area to add new functionality to the demonstration board. Simpl
schematics and component part numbers will be offered in the following chapters as
required. On the companion Web sikayw.ExploringPIC32.cormyou will find additional
expansion boards and prototyping options to help you enjoy even the most advanced
projects.

This page intentionally left blank

Capturing User Inputs

The Plan

If analog inputs are the essence of the interface between an embedded-control applicat
and the outside world, digital inputs are, sadly, the true foundation of the user interface.
As wrong as this might seem, for a long time now we humans have been trained to redt
our interaction with them, the machines, to buttons and switches. Probably this is becal
the alternative, using speech, gestures, and vision, requires such a leap in the complexi
of the interface that we have rather learned to accept the limitation and reduced ourselv
to communicate essentially through ones and zeros. Perhaps this explains the attention
and enthusiasm that some recent innovations are producing as pioneered by video garn
and mobile phone manufacturers; think of the Wii accelerometer-filled wand and the
iPhone multitouch sensing screen, for example.

Today we will explore various methods to capturaditional” user inputs by detecting

the activation of buttons and simple mechanical switches, reading the inputs from
rotary encoders, and eventually interfacing to computer keyboards. This will give

us the motivation to investigate a few alternative methods and evaluate their trade-offs.
We'll implement software state machines, practice using interrupts, and possibly learn
to use a few new peripherals. It’s going to be a long day, so be rested and ready to start
at dawn!

Preparation

In addition to the usual software tools, including the MPEABE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board and an In-Circuit Debugger of your choice. You will also need

272 Day12

a soldering iron and a few components ready at hand to expand the board capabilities
using the prototyping area or a small expansion board. You can check on the companio
Web site (www.exploringP1C32.com) for the availability of expansion boards that will
help you with the experiments.

Buttons and Mechanical Switches

Reading the input from a button, a mechanical switch, is one of the most common
activities for an embedded-control application. After all, a single bit of information needs
to be retrieved from a port pin configured as a digital input. But the great speed of a
microcontroller and the mechanical (elastic) properties of the switch require that we pay
some attention to the problem.

In Figure 12.1 you can see the connection of one of the four buttons present on the
Explorer 16 demonstration board. At idle, the switch offers an open circuit and the input
pin is kept at a logic high level by a pull-up resistor. When the button is pressed, the
contact is closed and the input pin is brought to a logic low level. If we could consider th
switch as an ideal component, the transition between the two states would be immediat
and unambiguous, but the reality is a little different. As representadune 12.2,

when the button is pressed and the mechanical contact is established, we obtain all but
a clean transition. The elasticity of the materials, the surface oxidation of the contacts,
and a number of other factors make it so that there can be a whole series of transitions,

+3.3V

R33

§10k

S3

lJ;L4 R34

L0704
Oi

470

Figure 12.1: Explorer 16 button schematic detail.

Capturing User Inputs 273

Contact bouncing

Button pressed

3.3V

\4

ov

Button released

Figure 12.2: Electrical response of a mechanical switch.

increasing in number and spaced with the aging and general wear of the device. This
phenomenon, generally referred tacastact bouncingcan continue in the worst cases
for several hundred microseconds if not for milliseconds.

When the button is released, a similar bouncing effect can be detected as the pressure
between the two contact surfaces is removed and the circuit is opened.

For a PIC32 operating at a high clock frequency, the timescale of the event is enormous
A tight loop polling the status of the input line could detect each and every bounce and

count them as numerous distinct activations and releases of the button. In fact, as a firs
experiment, we could devise a short piece of code to do just that so we can access the
“quality” of the buttons available on the Explorer 16 board.

Let's create a new project callBdttons, and let’'s add a first new source file to it that
we'll call bounce.c:

/*

** bounce.c
**

*
/I configuration bit settings, Fcy=72MHz, Fpb=36MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=0OFF, CP=OFF, BWP=OFF
#include <p32xxxx.h>

274 Day 12

main(void)

{

int count; /l the bounces counter

count = 0;

/I main loop

while(1)

{
/I wait for the button to be pressed
while (_RD6);

/I count one more button pres S
count++;

/l wait for the button to be released

while (! _RD6);
} /I main loop
} /I main

After initializing an integer counter, we directly enter the main loop, where we wait for
the leftmost button on the board (marked S3 and connected to the RD6 input pin) to
be pressed (transition to logic level low). As soon as we detect the button pressure, we
increment the counter and proceed to the next loop, where we wait for the button to be
released, only to continue in the main loop and start from the top.

Build the project immediately and program the code on the Explorer 16 board using
your in circuit debugger of choice. To perform our first experiment, you can now run
the code and slowly press t82 button for a predetermined number of times: let’s say
20! Stop the execution and inspect the current value of the vaclie . You can

simply move your mouse over the variable in the editor window to see a small popup
message appear (if the MPLAB option is enabled), or you can op¥vetich window

and add the variablount to it. (I suggest you set its visualization properties to
Decimal.)

In my personal experimentation, after 20 button pushes | obtained a vatumtof

varying generally between 21 and 25. As car manufacturers say: “Your mileage might
vary”! This is actually a very good result, indicating that most of the time there have bee
no bounces at all. It’s a testament to good-quality contacts, but it also reflects the fact tt
the board button has been used very little so far. If we are to design applications that us

Capturing User Inputs 275

buttons and mechanical switches, we have to plan for the worst and consider a substan
degradation of performance over the life of the product.

Button Input Packing

Planning for a general solution to apply to all four buttons available on the Explorer 16
and extensible to an entire array of similar buttons if necessary, we will start developing
simple function that will collect all the inputs and present them conveniently encoded in
single integer code. Save the previous sourceSdedqAs) with the new namButtons.c

and add it to the project (replacing bounce.c):

int readK(void)
{ /I returns 0..F if keys pressed, 0 = none
intc=0;

if (!_RD®6) // leftmost button
c |=8;
if (!_RD7)
c |=4,
if (!_RA7)
c|=2;
if (!_RD13) // rightmost button
¢ |=1;

return c;
} 1l readK

In fact, the designers of the of the Explorer 16 board have “fragmented” the input
pins, corresponding to the four buttons, between two ports in noncontiguous positions,
probably in an attempt to ease the board layout rather than to please us, the software
developers.

The functiorreadK() as proposed collects the four inputs and packs them contiguously
in a single integer returned as the function value. Figure 12.3 illustrates the resulting
encoding.

The position of the buttons is now reflected in the relative position of each bit in the
function return value, with the MSb (bit 3) corresponding to the leftmost button status.
Also, the logic of each input is inverted so that a pressed button is representeddsy a
a result, when called in the idle condition, no button pressed, the function tamt
when all the buttons are pressed, the function returns a®sdfie

276 Day 12
Bit 31 S3 S6 S5 sS4
Bit 4 through 31 = 0 8 4 2 1
RD6 RD7 RA7 RD13
7 AN
Leftmost Rightmost
button button

Notice

Figure 12.3: r eadK() button encoding.

that we have performed debouncingyet. Allreadk() does is grab a picture

of the status of the inputs and present them in a different convenient format. Should we
have a matrix of buttons arranged in X 3, 4X 4, or larger keypad, it would be easy to
modify the function while maintaining the output format and leaving untouched the rest
of the code we will develop from here.

We can quickly modify thenain() function to visualize the output on the LCD display
using the LCD.h library we developed in the previous chapters:

main(void)

{

char s[16];

int b;

initLCD(); // init LCD display

/I main loop
while(1)

{

clrLCD();

putsLCD("Press any button\n");
b = readK();

sprintf(s, "Code = %X", b);
putsLCD(s);

Delayms(100);

} /I main loop

} /I main

Build the project after adding theCDIib.c module to the list of the project sources and
program the Explorer 16 board with your In-Circuit Debugger of choice.

Capturing User Inputs 277

As you run the simple demo, you will see that as soon as a button is pressed, a new co
is immediately displayed. Multiple buttons can be pressed simultaneously, producing all
possible codes fromx01 to 0xO0f .

For our convenience, we will add tleadK() function to ourexplore.clibrary module.

In fact, if you are working with the code provided with the CD-ROM that accompanies
this book, you will notice that the function is already there but under another name,
readKEY() , SO as not to create any conflict with the previous and following examples.

Button Inputs Debouncing

It is time now to start working on the actual debouncing. The basic technique used to
filter out the spurious commutations of the mechanical switch consists of adding a smal
delay after the first input commutation is detected and subsequently verifying that the
output has reached a stable condition. When the button is released, a new short delay i
inserted before verifying once more that the output has reached the idle condition.

Here is the code for the new functigetK() that performs the four steps listed
previously and some more:

int getK(void)

{ /I wait for a key pressed and debounce
int i=0, r=0, j=0;
int c;

/I 1. wait for a key pressed for at least .1sec
do{

Delayms(10);

if ((c =readKEY()))

{

if (c>r) /I if more than one button pressed
r=c; /I take the new code

i++;

}

else
i=0;

} while (i<10);

In 1, we have do..while loop that, at regular intervals 10ms apart, uses the function
readKEY() to check on the inputs status. The loop is designed to terminate only after

278 Day12

10 iterations (for a total of 100 ms) during which there has been no bouncing. During thg
time, though, the user might have pressed more buttons. The function accommodates fi
one or more buttons to be “added” over time rather than assuming they will all be press
together with absolute synchronicity. The variablill contain the‘most complete”

button code.

/I 2. wait for key released for at least .1 sec
i =0;
do {
Delayms(10);
if ((c =readKEY()))

{

if (c>r) /I if more then one button pressed
r=c; I take the new code

i=0;
jt+; /l keep counting

}

else
i++;

} while (i<10);

In 2, the situation is reversed as buttons are releasedoT lnghile is designed to
wait for all buttons to be released until the inputs stabilize in the idle condition for at
least 100 ms.

/I 3. check if a button was pushed longer than 500ms
if (j>50)
r+=0x80; // add a flag in bit 7 of the code

In 3, we are actually making use of an additional counter represented by the yariable
that had been added to the second loop. Its role is that of detecting when the button-
pressed condition is prolonged beyond a certain threshold. In this case it's set to 500ms
When this happens, an additional flag (bit 7) is added to the return code. This can be
handy to provide additional functionalities to an interface without adding more hardware
(buttons) to the Explorer 16 board. So, for example, pressing the leftmost button for a
short amount of time produces the code8. Pressing the same button for more than

half a second will return the code88 instead.

/I 4. return code
return r;
1/l getK

Capturing User Inputs 279

Itis only in 4 that the button code encoded in the varialidereturned to the calling
program.

To test the new functionality and verify that we have eliminated all button bouncing, we
can now replace theain() function with the following code and save the resulting file
asButtons2.c:

main(void)

{

char s[16];
int b;

initLCD(); // init LCD display
putsLCD("Press any button\n");

/I main loop
while(1)
{
b = getK();
sprintf(s, "Code = %X", b);
clrLCD();
putsLCD(s);
} /I main loop

} /I main

Remember to include theCDlib.c andexplore.c modules found in thig directory to
the project.

ReplaceButtons2.c in the project source list in place of buttons.c and build the project.
After programming the Explorer 16 board with your in-circuit debugger of choice, run
the code and observe the results on the LCD display.

First you will notice that contrary to what happened in the previous demo, new codes
are displayed only after buttons are released. The furgdi®if) is in fact ablocking
function It waits for the user inputs and returns only when a new return code is ready.

Play with various combinations of buttons, pressing two or three of them more or less
simultaneously, and observe how the order of press and release does not affect the
outcome, simplifying the user input. Try long and short button combinations. You

can modify the threshold or even introduce secondary thresholds for very long button
presses.

280 Day12

Once more, because of its usefulness, | suggest we agetitifle function to our
explore.c library module. If you are using the code from the CD-ROM attached to
this book, you will find it already there with the name changegikEY() to avoid
conflicts with the examples in this chapter.

Rotary Encoders

Another type of input device based on mechanical switches (sometimes replaced

by optical sensors) and very common in many embedded-control applications is the
rotary encoderIn the past we have seen the use of a potentiometer attached to the
P1C32 ADC module to provide user input (and control the position of the Pac-Man),
but rotary encoders are pure digital devices offering a higher degree of freedom. Their
main advantage is that they offer no limitation to the movement in any of the rotation
directions. Some encoders provide information on tiesoluteposition; others of

simpler design and lower cost, knowniggemental encoderprovide only a relative
indication of movement.

In embedded applications, absolute rotary encoders can be used to identify the positior
(angle) of a motor/actuator shaft. Incremental encoders are used to detect direction of
motion and speed of motors but also for user interfaces as a rapid input tool to select ar
entry in a menu system on a display panel: think of the omnipresent input knob on car
navigators and digital radios. Another good example of a user interface application of ar
incremental encoder is a (ball) mouse, assuming you can still find one nowadays. They
used to contain two (optical) rotary encoders to detect relative motion in two dimensions
In fact, if you think of it, your computer has no idea “where” the mouse is at any given
point in time, but it knows exactly how far you moved it and in which direction’tDon

look at modern “optical” mice, though; the technology they are based on is completely
different.

To experiment with a simple and inexpensive rotary encoder (I used an ICW model fron
Bourns), | suggest you test your prototyping skills by soldering only a couple of resistors
(10 KOhm) onto the Explorer 16 board prototyping area and connecting just three wires
between the encoder and the PIC32 I/O pins, as illustrated in Figure 12.4.

When so connected, the encoder provides two output waveforms (shown in Figure 12.5
that can be easily interpreted by the PIC32. Notice that the motion of the encoder is in
steps between detent positions. At each step the encoder produces two commutations,
one on each mechanical switch corresponding to an input pin. The order of the two

Capturing User Inputs 281

+§.§V
R1 R2
10k 210k
RA9 ¢
| !
CHA
RA10 if Rotary encoder

"= GND

Figure 12.4: Rotary encoder interface detail.

FULL CYCLE PER DETENT (Normally Open in Detent Shown)
Cw > Channel A

| | | | |
I I I I I
Closed Circuit ! I I I I
IR I
Open Circuit _J 1 1 1 !
I I I I
| | | |
I I I

Closed Circuit :
Open Circuit ; | | | | | |

I I
D D D D D
Channel B

Figure 12.5: Rotary encoder output waveforms detail.

commutations tells us about the direction of rotation. Since the two waveforms are
identical but appear to be out of phase by a 90-degree angle, these simple encoders ar:
often referred to aguadrature encoders

At rest, both switches are open and the corresponding input pins are pulled up at a logit
level high. When rotating clockwise, the CHA switch is closed first, bringingatee

input pin to a logic low, then the CHB switch is closed, bringingRh&0 pin to a logic

low level. When rotating counter-clockwise, the sequence is inverted. As the encoder
reaches the next detent position, both switches are opened again.

282 Day 12

Here is a simple program that can be used to demonstrate how to interface to a rotary
encoder to track the position of a rotating knob and display a relative counter on the LC
display:

/*
** Rotary.c
*%
*
/I configuration bit settings, Fcy=72MHz, Fpb=36MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=0OFF, BWP=OFF

#include <p32xxxx.h>
#include <explore.h>
#include <LCD.h>

#define ENCHA _RA9 I/l channel A
#define ENCHB _RA10 /I channel B

main(void)

{
inti=0;
char s[16];

initLCD();

/I main loop

while(1)

{
while(ENCHA); /I detect CHA falling edge
Delayms(5); /I debounce
i+=ENCHB ? 1:-1;
while(IENCHA); Il wait for CHA rising edge
Delayms(5); /I debounce

/I display relative counter value
clrLCD();
sprintf(s, "%d", i);
putsLCD(s);
} /I main loop

} /I main

Capturing User Inputs 283

The idea behind the code in the main loop is based on a simple observation: by focusin
only on one input commutations—s&NCHA—we can detect motion. By observing the
status of the second inpaNnCHBImmediately after the activation of the first channel,

we can determine the direction of movement. This can be seen in Figure 12.5 as you
move your eyes from left to right (corresponding to a clockwise rotation); when the CHA
switch is closed (represented as a rising edge), the CHB switch is still open (low). But if
you read the same figure from right to left (corresponding to a counter-clockwise rotatio
of the encoder), when CHA is closed (rising edge), CHB is already closed (high).

Since we have not forgotten the lesson about switch bouncing, we have also added a
pair of calls to a delay routine, to make sure that we don’t read multiple commutations
when there is really just one. The length of the delays was decided based on informatio
provided by the encoder manufacturer on the device datasheet. The ICW éncoders
contacts are in fact rated for a maximum of 5ms bounces when operated at a rotation
speed of 15 RPM.

Create a new project call®btary. Save the preceding coderasary.c and remember
to add our defauihcludedirectory, as well as tHeCDlib.c andexplore.c source files
found in thelib directory, to the list of project source files.

Build and program the Explorer 16, modified for the application, to run the short demo.

If all went well, you will see a counter displayed in decimal format being continuously
updated on the LCD display as you turn the encoder knob. The counter is a signed
(32-bit) integer and as such it can swing between positive and negative values, dependi
on how much and how long you turn clockwise and counter-clockwise.

Interrupt-Driven Rotary Encoder Input

The main problem with the simple demonstration code we have just developed is in its
assumption that the entire attention of the microcontroller can be devoted to the task at
hand: detecting the commutations on the CHA and CHB input pins. This is perhaps an
acceptable use of resources when the application is waiting for user input and there are
other tasks that need to be handled by the microcontroller. But if there are and, as often
is the case, they happen to be of higher priority and importance than our application, we
cannot afford the luxury to usebdockinginput algorithm. We need to make the encoder
input a background task.

As we saw in Day 5, the simplest way to obtain a sort of multitasking capability in
embedded-control applications is to use the PIC32 interrupt mechanisms. A backgroun

284 Day 12

task becomes a small state machine that follows a simple set of rules. In our case,
transforming the algorithm developed in the previous demonstration into a state machin
and drawing its diagram (see Figure 12.6), we learn that only two states are required:

» Anidle stateR_IDLE), when the CHA encoder input is not active

» An active stateR_ DETECY, when the CHA encoder input is active

ENCHA = high ENCHA = low

ENCHA = low

ENCHA = high

Figure 12.6: Rotary encoder state machine diagram.
The transitions between the two states are simply expressed in Table 12.1

Table 12.1: Rotary encoder state machine transition.

State Conditions Effect
R_IDLE ENCHA active (low) If ENCHB is active, the direction of rotation is
counterclockwise (d = —1)

Transition to R_DETECT state

ENCHA inactive (high) Set default direction clockwise (d = 1)
Remain in current state (wait)

R_DETECT ENCHA inactive (high) Update counter
Transition to R_IDLE state

ENCHA active (low) Remain in current state (wait)

By binding the execution of the state machine to a periodic interrupt produced by one of t
timers (Timer2, for example) we can ensure that the task will be performed continuously
and, with the proper choice of timing, obtain a natural debouncing in the process.

Capturing User Inputs 285

We can create a new source file that we will Rallary2.c, starting with the usual
template and the following few declarations:

/*
** Rotary2.c
%
*
/I configuration bit settings, Fcy=72MHz, Fpb=36MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=0OFF, CP=OFF, BWP=OFF

#include <p32xxxx.h>
#include <plib.h>
#include <explore.h>
#include <LCD.h>

#define ENCHA _RA9 I/l encoder channel A
#define ENCHB _RA10 I/l encoder channel B
#define TPMS (FPB/1000) // PB clock ticks per ms
/I state machine definitions

#define R_IDLE 0

#define R_DETECT 1

volatile int RCount;
char RState;

Notice thatRCount, the variable used to maintain the relative movement counter, is
declared as wolatile to inform the compiler that its value could change unpredictably
at the hands of the interrupt service routine (state machine). This will ensure that the
compiler won't try to optimize access to it in thain() function by making wrong
assumptions, since the variable is never written to in the main loop.

Choosing to use the vectored interrupt mechanism of the PIC32 for efficiency, we can
code the interrupt service routine as follows:

void __ISR(_TIMER_2_VECTOR, ipl1) T2Interrupt(void)
{

static char d;

286 Day 12

switch (RState) {
default:
case R_IDLE: /I waiting for CHA rise
if (! ENCHA)
{
RState = R_DETECT;
if (! ENCHB)
d=-1;
}
else
d=1,;
break;

case R_DETECT: I/ waitin for CHA fall
if (ENCHA)
{
RState = R_IDLE;
RCount +=d;
}

break;
} /I switch

mT2ClearIntFlag();
} 1 T2 Interrupt

Finally, a small initialization routine is hecessary to set up the initial conditions required
for the Timer2 peripheral (with a 5 ms period) and the state machine to operate correctl

void initR(void)

{
/I init state machine
RCount = 0; [l init counter
RState = 0; [/l init state machine
/l'init Timer2
T2CON = 0x8020; /l enable Timer2, Fpb/4
PR2 = 5*TPMS/4; // 5ms period

mT2SetIntPriority(1);

mT2ClearIntFlag();

mT2IntEnable(1);
Y/ init R

Capturing User Inputs 287

The Timer2 interrupt can be set to a level 1 priority, the lowest, since the absolute timing
is not relevant here. Even when rotating the encoder very fast (120 RPM max, accordin
to the device datasheet), the commutations are going to happen on a timescale that is ¢
order of magnitude larger (20 ms). Any other task present in your application can, in fac
be assumed to have a higher priority.

Finally, here is a nemwain() function designed to put our rotary encoder routines to the
test by periodically (10 times a second) checking the val&cofint and displaying its
current value on the LCD display:

main(void)

{
inti=0;
char s[16];

iNitEX16(); // init and enable interrupts
initLCD(); [/ init LCD module
initR(); /l init Rotary Encoder

/l main loop
while(1)
{

Delayms(100); /I place holder for a complex app.

clrLCD();
sprintf(s, "RCount = %d", RCount);
putsLCD(s);

} /I main loop
} /I main

Notice the call to thanitEX16() function that, if you remember from Day 10,
besides performing the fine tuning of the PIC32 for performance, enables the vectored
interrupt mode.

Notice also that where thelayms(100) call is made, in thenain() function, you
could actually replace the core of a complex application that will now be able to operate
continuously without being “blocked” by the encoder detection routines.

288 Day 12

Keyboards

If a few buttons, a keypad, or a rotary encoder offer the possibility to inexpensively acce
user input to an embedded-control application, they pale compared to the convenience
a real computer keyboard.

With the advent of the USB bus, computers have finally been freed of a number of
“legacy interfaces that had been in use for decades, since the introduction of the first
IBM PC. The PS/2 mouse and keyboard interface is one of them. The result of this
transition is that a large number of the “old” keyboards are now flooding the surplus
market, and even new PS/2 keyboards are selling for very low prices. This creates the
opportunity to give our future PIC32 projects a powerful input capability in return for
very little complexity and cost.

Note

Interfacing to a USB keyboard is a completely different deal. You will need a USB host
interface, with all the hardware and software complexity that it implies. New PIC32 models
with USB host peripherals will address these needs, but a discussion of their use and th
command of the USB protocol required are well beyond the scope of this book.

PS/2 Physical Interface

The PS/2 interface uses a five-pin DIN (see Figure 12.7) or a six-pin mini-DIN connecto
The first was common on the original IBM PC-XT and AT series but has not been in use
for a while. The smaller six-pin version has been more common in recent years. Once tl
different pin-outs are taken into consideration, you will notice that the two are electrically
identical.

The host must provide a 5V power supply. The current consumption will vary with
the keyboard model and year, but you can expect values between 50 and 100 mA. (The
original specifications used to call for up to 275 mA max.)

The data and clock lines are both open-collector with pull-up resistors (1-10 k ohm) to
allow for two-way communication. In the normal mode of operation, it is the keyboard
that drives both lines to send data to the personal computer. When it is necessary, thou
the computer can take control to configure the keyboard and to change the status LEDs
(Caps Lock and Num Lock).

Capturing User Inputs

289

Male

(Plug)

Male

(Plug)

The PS/2 Communication Protocol

Female

(Socket)
(b)
Figure 12.7: (a) Electrical interface (5-pin DIN) and (b) Physical interface (6-pin DIN).

5-pin DIN (AT/XT):
1 - Clock

2 — Data

3-NC

4 — Ground
5—V¢ (+5V)

6-pin mini-DIN (PS/2):
1 - Data

2-NC

3 - Ground

4 -V (+5V)

5 — Clock

6 —NC

At idle, both the data and clock lines are held high by the pull-ups (located inside the key
board). In this condition the keyboard is enabled and can start sending data as soon as :
key has been pressed. If the host holds the clock line low for more than 100 us, any furth
keyboard transmissions are suspended. If the host holds the data line low and then relec
the clock line, this is interpreted as a request to send a command (see Figure 12.8).

CLOCK

- uduuvdudoudy

DATA

STOP

BIT 2

BIT 3

BIT 4

BIT 6 PARITY

BIT7

Figure 12.8: Keyboard-to-host communication waveform.

The protocol is a curious mix of synchronous and asynchronous communication protocols
we have seen in previous chapters. It is synchronous since a clock line is provided, but it
is similar to an asynchronous protocol because a start, a stop, and a parity bit are used to

290 Day12

bracket the actual 8-bit data packet. Unfortunately, the baud rate used is not a standard v
and can change from unit to unit over time, with temperature and the phase of the moon.
In fact, typical values range from 10 to 16 kbits per second. Data changes during the cloc
high state. Data is valid when the clock line is low. Whether data is flowing from the host t
the keyboard or vice versa, it is the keyboard that always generates the clock signal.

Note

The USB bus reverses the roles as it makes each peripheral a synchronous slave of the host. T
simplifies things enormously for a non real-time, nonpreemptive multitasking operating system like
Windows. The serial port and the parallel port were similarly asynchronous interfaces and, probabl
for the same reason, both became legacy with the introduction of the USB bus specification.

Interfacing the PIC32 to the PS/2

The unique peculiarities of the protocol make interfacing to a PS/2 keyboard an interesting
challenge, since neither the PIC32 SPI interface nor the UART interface can be used. In fe
the SPI interface does not accept 11-bit words (8-bit or 16-bit words are the closest option
whereas the PIC32 UART requires the periodic transmission of special break characters t
make use of the powerful auto baud-rate detection capabilities. Also notice that the PS/2
protocol is based on 5V level signals. This requires care in choosing which pins can be
directly connected to the PIC32. In fact, only the 5 V-tolerant digital input pins can be used
which excludes the 1/O pins that are multiplexed with the ADC input multiplexer.

Input Capture

The first idea that comes to mind is to implement in software a PS/2 serial interface
peripheral using the input capture peripheral (see Figure 12.9).

Five input capture modules are available on the PIC32MX360F512L, connected to the
IC1-IC5 pins multiplexed on PORTD pins 8, 9, 10, 11, and 12, respectively.

Each input capture module is controlled by a single corresponding control register
ICxCON and works in combination with one of two timers, either Timer2 or Timer3.

One of several possible events can trigger the input capture:
» Rising edge
» Falling edge

Capturing User Inputs 291

From 16-bit Timers
TMRy TMRx

Prescaler Edge Detection Logic
|E_, Counter J and —t
(1,4,16) Clock Synchronizer
ICx pin . ;
3 ICM<2:0> (ICXCON<2:0>)

Mode Select
ICOV ICBNE(ICXCON<4:3>)

[ICXBUF |
ICI<1:0>
3 Interrupt
ICXxCON | Logic
v |
System Bus Set Flag ICXIF
(in IFSn Register)

Figure 12.9: Input capture module block diagram.

+ Rising and falling edge
» Fourth rising edge
« Sixteenth rising edge

The current value of the selected timer is recorded and stored in a FIFO buffer to be
retrieved by reading the corresponding ICXBUF register. In addition to the capture event
an interrupt can be generated after a programmable number of events (each time, even
second, every third or every fourth).

To put the input capture peripheral to use and receive the data stream from a PS/2
keyboard, we can connect the IC1 ingRID§ to the clock line and configure the
peripheral to generate an interrupt on each and every falling edge of the clock (see
Figure 12.10).

After creating a new project that we will cB@ and following our usual template, we can
start adding the following initialization code to a new source file we’'llRa2 C.c:

#define PS2DAT _RG12 // PS2 Data input pin
#define PS2CLK _RD8 // PS2 Clock input pin (IC1)

292 Day12

Falling edge
input capture event

/

Clock line

Data line Valid data| === ----

1
< >
1
1

1
1
1
-—=Lp -

Figure 12.10: PS/2 interface bit timing and the input capture trigger event.

void initkBD(void)

{
/[init 1/0s
_TRISDS8 =1, // make RDS8, IC1 an input pin, PS2 clock
_TRISG12=1; /I make RG12 an input pin, PS2 data
/I clear the kbd flag
KBDReady = 0;
/I init input capture
IC1CON = 0x8082; /I TMR2, int every cap, fall'n edge
mIC1ClearIntFlag(); /I clear the interrupt flag
mIC1SetIntPriority(1);
mIC1lintEnable(1); I/l enable the IC1 interrupt
/[init Timer2
mT2ClearIntFlag(); /I clear the timer interrupt flag
mT2SetIntPriority(1);
mT2IntEnable(1); /l enable (TMR2 is not active yet)
}/1init KBD

We will also need to create an interrupt service routine for the IC1 interrupt vector. This
routine will have to operate as a state machine and perform in a sequence the following
steps:

1. \Verify the presence of a start bit (data line low).

2. Shiftin 8 bits of data and compute a parity.

Capturing User Inputs 293

3. Verify a valid parity bit.
4. Verify the presence of a stop bit (data line high).

If any of the above checks fails, the state machine must reset and return to the start
condition. When a valid byte of data is received, we will store it in a buffer—think of it as
a mailbox—and a flag will be raised so that the main program or any other “consumer”
routine will know a valid key code has been received and is ready to be retrieved. To
fetch the code, it will suffice to copy it from the mailbox first and then clear the flag (see

Figure 12.11).

Data = high Bitcount < 8

Data = low

Parity = even
Bitcount = 8

Parity = odd

Figure 12.11: The PS/2 receive state machine diagram.

The state machine requires only four states and a counter. All the transitions can be
summarized in Table 12.2.

Theoretically | suppose we should consider this an 11-state machine, counting each tinr
the bit state is entered with a different bitcount value as a distinct state. But the four-
state model works best for an efficient C language implementation. Let’s define a few
constants and variables that we will use to maintain the state machine:

/I definition of the keyboard PS/2 state machine

#define PS2START 0
#define PS2BIT 1
#define PS2PARITY 2
#define PS2STOP 3

294 Day 12

Table 12.2: PS/2 receive state machine transitions.

State Conditions Effect
Start Data = low Init bitcount
Init parity

Transition to bit state

Bit Bitcount < 8 Shift in key code, LSB first (shift right)
Update parity
Increment bitcount

Bitcount = 8 Transition to parity state
Parity Parity = even Error; transition back to start
Parity = odd Transition to stop
Stop Data = low Error; transition back to start
Data = high Save the key code in buffer
Set flag

Transition to start

#define TPS (FPB/1000000) /I timer ticks per uS
#define TMAX 500*TPS // 500uS time out limit

/I PS2 KBD state machine and buffer
int PS2State;

unsigned char KBDBuUf;

int KCount, KParity;

/I mailbox
volatile int KBDReady;
volatile unsigned char KBDCode;

The interrupt service routine for the input capture IC1 module can finally be implemente
using a simple switch statement:

void __ISR(_INPUT_CAPTURE_1_VECTOR, ipl1) IC1lInterrupt(void)
{// input capture interrupt service routine

int d;

/I 1. reset timer on every edge

TMR2 = 0;

Capturing User Inputs

295

switch(PS2State){
default:
case PS2START.:
if (! PS2DAT)
{
KCount = 8;
KParity = 0;
PR2 = TMAX;
T2CON = 0x8000;
PS2State = PS2BIT;
}

break;

case PS2BIT:
KBDBuUf >>=1;
if (PS2DAT)
KBDBuf += 0x80;
KParity ~= KBDBUf;
if (--KCount == 0)
PS2State = PS2PARITY;
break;

case PS2PARITY:
if (PS2DAT)
KParity ~= 0x80;
if (KParity & 0x80)
PS2State = PS2STOP;
else
PS2State = PS2START,;
break;

case PS2STOP:

if (PS2DAT)

{
KBDCode = KBDBUf;
KBDReady = 1;
T2CON =0;

}

PS2State = PS2START;

break;

} /I switch state machine

Il verify start bit
// init bit counter
/I init parity check

/I init timer period
/l enable TMR2, 1:1

[/ shift in data bit

/I update parity
/I if all bit read, move on

Il verify parity bit

/I if parity odd, continue

Il verify stop bit

/l save code in mail box
/I set flag, code available
/I stop the timer

296 Day 12

/I clear interrupt flag
d = IC1BUF; /I discard capture
mIC1ClearIntFlag();

}/1'1C1 Interrupt

Testing Using a Stimulus Scripts

The small perforated prototyping area can be used to attach a PS/2 mini-DIN connector to
the Explorer 16 demonstration board, the only alternative being the development of a cust
daughter board (PICTail) for the expansion connectors. Before committing to designing su
a board, though, we would like to make sure that the chosen pin-out and code is going to
work. The MPLAB SIM software simulator will once more be our tool of choice.

In previous chapters we have used the software simulator in conjunction with the Watch
window, the StopWatch, and the Logic Analyzer to verify that our programs were
generating the proper timings and outputs, but this time we will need to simulate inputs
well. To this end, MPLAB SIM offers a considerable number of options and resources—
so many in fact that the system might seem a bit intimidating. First, the simulator offers
two types of input stimuli:

» Asynchronous ones, typically triggered manually by the user

+ Synchronous ones, triggered automatically by the simulator after a scripted
amount of time (expressed in processor cycles or seconds)

The scripts containing the descriptions of the synchronous stimuli (which can be quite
complex) are prepared using the Stimulus window (see Figure 12.12). You must have tt
MPLAB SIM selected as your active debugging taadifugger | Select Tool | MPLAB

SIM) to open the Stimulus window by select®gmulus | New Workbook from the
Debugger menu. To prepare the simplest type of stimulus script, one that assigns value
to specific input pins (but also entire registers) at given points in time, you can select the
first tab,Pin/Register Actions.

After selecting the unit of measurement of choice, microseconds in our case, click the
first row of the table that occupies most of the dialog box window space (where it says
“click here to Add Signals”). This will allow you to add columns to the table.ohdd
column for every pin for which you want to simulate inputs. In our example, that would
beRG12for the PS/2 Data line and IC1 for the Input Capture pin that we want connectec
to the PS2 Clock line. At this point we can start typing in the stimulus timing table.

To simulate a generic PS/2 keyboard transmission, we need to produce a 10kHz clock

Capturing User Inputs 297

Stimulus - C:\..\IC P52 simulation.sbs =[Ol x|
Pin / Registes &ctions | Advanced Pin / Register | Clock Stimwius | Register Injection | Register Trace | Asynch |
[Tmeunas] w =] Repest [aftec[i (dec) 1e8t [57 7] fcec)
Time | AG1Z]| IC1 | Chick here to Add Signals |
(dec] | [bin) | [bin} | |
1 1
100 1 1
150 00
200 1 1
250 1 0
300 1 1
350 00
400 0o
450 D0
500 1 1
EEA 1 L] .ﬂ
Advanced. | Apob | FRemove | DelteRow | Save | Ew | Hew |

Figure 12.12: The Stimulus window.

signal for 11 cycles, as represented in the PS/2 keyboard waveform in Figure 12.6. This
requires an event to be inserted in the timing table each 50us. As an eXablald,2.3
illustrates the trigger events | recommend you add to the Stimulus window timing table t
simulate the transmission of key can&9 .

Once the timing table is filled, you can save the current content for future use véivéhe
button. The file generated will be an ASCII file with the .SBS extension. In theory you
could edit this file manually with an MPLAB IDE editor or any basic ASCII editor, but

you are strongly discouraged from doing so. The format is more rigid than meets the eye
and you might end up trashing it. If you were wondering why the term “workbook” is usec
for what looks like a simple table, you are invited to explore the other panes (accessible
by clicking the tabs at the top of the dialog box) of the Stimulus window. You will see that
what we are using in this example is just one of the many methods available, representin
a minuscule portion of the capabilities of the MPLAB SIM simulator. A workbook file can
contain a number of different types of stimuli produced by any (or multiple) of those pane

Segment of the Stimulus workbook file
SCL Builder Setup File: Do not edit!!

VERSION: 3.60.00.00
FORMAT: v2.00.01
DEVICE: PIC32MX360F512L

PINREGACTIONS
us

298 Day12

Table 12.3: SCL Generator timing example for basic.

Time (us) RG12 IC1 Comment
0 1 1 Idle state, both lines are pulled up
100 1 1
150 0 0 First falling edge, start bit (0)
200 1 1
250 1 0 Bit 0, k ey code LSb (1)
300 0 1
350 0 0 Bit 1 (0)
400 0 1
450 0 0 Bit 2 (0)
500 1 1
550 1 0 Bit 3 (1)
600 1 1
650 1 0 Bit4 (1)
700 1 1
750 1 0 Bit 5 (1)
800 1 1
850 1 0 Bit6 (1)
900 0 1
950 0 0 Bit 7, key code MSb (0)
1000 0 1
1050 0 0 Parity bit (0)
1100 1 1
1150 1 0 Stop bit (1)
1200 1 1 Idle

Capturing User Inputs 299

No Repeat
RG12
IC1

Before we get to use the generated stimulus file, we have to complete the project with
a few final touches. Let’s prepare an include file to publish the accessible function:
initKkBD() , the flagkBDReady, and the buffer for the received key c&@®DCode

/*

*%

** PS2IC.h

*%

** PS/2 keyboard input library using input capture
*

extern volatile int KBDReady;

extern volatile unsigned char KBDCode;

void initKBD(void);

Note that there is no reason to publish any other detail of the inner workings of the PS/Z
receiver implementation. This will give us freedom to try a few different methods later
without changing the interface. Save this fildP&I C.h and include it in the project.

Let’s also create a new filBS2I CTest.c, that will contain the usual template with the
main() routine and will use the PS2IC.c module to test its functionality:

/*

** PS2|CTest.c

*%

*/

300 Day12

/I configuration bit settings, Fcy=72MHz, Fpb=36MHz

#pragma config POSCMOD=XT, FNOSC=PRIPLL

#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=OFF, CP=OFF, BWP=OFF

#include <p32xxxx.h>
#include <explore.h>
#include "PS2IC.h"

main()
{
int Key;
iNitEX16(); // init and enable interrupts
initKBD(); [l initialization routin e
while (1)
{
if (KBDReady) /I wait for the fla g
{
Key = KBDCode; /I fetch the key code
KBDReady = 0; /I clear the flag
}
} /I main loop
} /Imain

TheinitEX16() function takes care of the fine tuning of the PIC32 for performance
but also enables the vectored interrupts mode. The call itk@D() function takes

care of the PS/2 state machine initialization, sets the chosen input pins, and configures
interrupts for the Input Capture module. The main loop will wait for the interrupt routine
to raise the&kBDready flag, indicating that a key code is available; it will fetch the key
code and copy it in the local varialdey. Finally, it will clear theKkBDReady flag, ready

to receive a new character.

Now remember to add the file to the project and build all. Instead of immediately
launching the simulation, select tBémulus window once more, and click tiAeply
button.

Note

Keep the Stimulus window open (in the background). Resist the temptation to click the Exit
button, as that would close the workbook and leave us without stimuli.

Capturing User Inputs 301

Click theReset button (or seleddebugger | Reset) and watch for the first stimulus to
arrive as the microsecond 0 trigger is fired. Remember, bothRi@ggandIC1 are
supposed to be set high according to our timetable. A message will confirm this in the
Output window (se€igure 12.13).

Buld | Version Conial | FindinFies MPLABSIM |
SIM-NO001 Mote: Stimulus actions after 0 us

Figure 12.13: In the Output window (MPLAB SIM pane), a stimulus
action has been triggered.

It is your choice now to proceed by single-stepping or animating through the program tc
verify its correct execution. My suggestion is that you plaoesak point inside the main
loop on the instruction copyingBDCodeto theKey variable. Open thé/atch window

and adKey from the Symbol list, theRUN.

After a few seconds, the execution should terminate at the breakpoint, and the content
Key should reflect the data we sent through the simulated PS/2 stimulusGsatgt:

The Simulator Profiler

If you were curious about how fast the simulation of a PIC32 could run on your
computer, there is an interesting feature available to you in the MPLAB SIM Debugger
menu: the profile. Select the Profile submebalugger | Profile) and clickReset

Profile (seeFigure 12.14).

This will clear the simulator profile counters and timers. Then cliclRéset button and
repeat the simulatiorDebugger | Run) until it encounters the breakpoint again. This
time selecDebugger | Profiler | Display Profile to display the latest statistics from
MPLAB SIM (see Figure 12.15).

A relatively long report will be available in the output window (MPLAB SIM pane)
detailing how many times each instruction was used by the processor during the
simulation and, at the very bottom, offering an assessment of the absolute “simulation”

302 Day12

Select Tool »
Clear Memory 3

Run F9
Animate
Halt F5
Step Into F7
Step Over F&
Step Out

Reset L

Breakpoints. .. F2

StopWatch
Stimulus >

Clear Code Coverage Display Profile

Settings...

Figure 12.14: The Simulator Profile submenu.

Buld | Version Contiol | Findin Files MPLAB SIM |

Ix

Sirmulation Execution time on this computer: 0.020 seconds (28801 instructions, 1.4400 MIPS).
Execution cycles: 28812
Instruction slips: 0

Figure 12.15: Simulator Profile output.

speed. In my case, that turned out to be 1.4 MIPS. A respectable result after all, althoug
nothing to write home about. Contrary to the simulation of othe? Riicrocontrollers,
where these numbers would have compared well with the actual processor real-time
performance, compared to the PIC32 the software simulation (on my laptop) ran at just
1/50th of the actual silicon speed!

Change Notification

Though the input capture technique worked all right, there are other options that we
might be curious to explore to interface efficiently with a PS/2 keyboard. In particular

Capturing User Inputs 303

there is another interesting peripheral available on the PIC32 that could offer an
alternative method to implement a PS/2 interface: the Change Notification (CN) module
There are as many as 22 1/0O pins connected with this module, and this can give us
some freedom in choosing the ideal input pins for the PS/2 interface while making sure
they don’t conflict with other functions required in our project or already in use on the
Explorer 16 board.

Only three control registers are associated with the CN modulecN@eNegister

contains the basic control bits to enable the module, antNBSregister contains the
enable bits for each of the CN input pins. Note that only one interrupt vector is available
for the entire CN module; therefore it will be the responsibility of the interrupt service
routine to determine which one has actually changed if more than one is enabled. Finall
the CNPUEregister controls the individual activation of internal pull-up resistors available
for each input pin (see Figure 12.16).

Virtual Name Bit Bit Bit Bit Bit Bit Bit Bit
Address 31/23/15/7|30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3(26/18/10/2| 25/17/9/1 | 24/16/8/0
BF88_61C0 CNCON 31:24 = = = = = = = =
23:16 = = = — — — — —
15:8 ON FRZ SIDL — — — — —
7:0 — — — — — — — —
BF88_61C4 | CNCONCLR | 31:0 Write clears selected bits in CNCON, Read yields undefined
BF88_61C8 | CNCONSET | 31.0 Write sets selected bits in CNCON, Read yields undefined
BF88_61CC | CNCONINV | 31:0 Write inverts selected bits in CNCON, Read yields undefined
BF88_61D0 CNEN 31:24 — — — — — — — —
23:16 — — CNEN CNEN | CNEN | CNEN | CNEN | CNEN
21t 20t 19t 18 17 16
15:8 CNEN[15:8]
7:0 CNEN[7:0]
BF88_61D4 CNENCLR 31:0 Write clears selected bits in CNEN, Read yields undefined
BF88_61D8 CNENSET 31.0 Write sets selected bits in CNEN, Read yields undefined
BF88_61DC CNENINV 31:.0 Write inverts selected bits in CNEN, Read yields undefined
BF88_61E0 CNPUE 31:24 — — — — — — — —
23:16 — — CNPUE CNPUE CNPUE CNPUE CNPUE | CNPUE
21t 20t 19t 18 17 16
15:8 CNEN[15:8]
7:0 CNEN([7:0]
BF88_61E4 | CNPUECLR | 31:.0 Write clears selected bits in CNPUE, Read yields undefined
BF88_61E8 | CNPUESET 31:0 Write sets selected bits in CNPUE, Read yields undefined
BF88_61EC | CNPUEINV 31:.0 Write inverts selected bits in CNPUE, Read yields undefined
Note 1: CNEN and CNPUE bit(s) are not implemented on 64-pin variants and read as ‘0’

Figure 12.16: The CN control registers table.

304 Day12

In practice, all we need to support the PS/2 interface is just one of the CN inputs
connected to the PS2 clock line. The PIC32 weak pull-up will not be necessary in this
case since it is already provided by the keyboard. There are 22 pins to choose from,
and we will find a CN input that is not shared with the ADC (remember, we need a5V
tolerant input) and is not overlapping with some other peripheral used on the Explorer 1
board. This takes a little studying between the device datasheet and the Explorer 16 us
guide. But once the input pin is chosen, €11 (multiplexed with pirRG9 theSS line

of the SPI2 module and the PMP module AddressHma2), a new initialization routine

can be written in just a couple of lines (see Figure 32.17

Clock line

Data line

—4/ =

Change natifications

Valid data

< >
< >

_——p—-—--
1
1
L

Figure 12.17: PS/2 interface bit timing Change Notification event detail.

#define PS2DAT _RG12
#define PS2CLK _RG9

void initKBD(void)
{
/l'init I/Os
_TRISG9 =1,
_TRISG12 = 1;

/I clear the flag
KBDReady = 0;

/[PS2 Data input pin
/I PS2 Clock input pin (CN11)

/l make RG9 an input pin
/l make RG12 an input pin

Capturing User Inputs

305

/I configure Change Notification system

CNENDbits.CNEN11 = 1;
CNCONDits.ON = 1;
MCNSetIntPriority(1);
MCNClearIntFlag();
mCNIntEnable(1);

}// init KBD

As per the interrupt service routine, we can use exactly the same state machine used ir
the previous example, adding only a couple of lines of code to make sure that we are

/l enable PS2CLK (CN11)

// turn on Change Noatification
I set interrupt priority >0

/I clear the interrupt flag

I/l enable interrupt

looking at a falling edge of the clock line.

In fact, using the input capture module, we could choose to receive an interrupt only on t
desired clock edge, whereas the change notification module will generate an interrupt bc
on falling and rising edges. A simple check of the status of the clock line immediately afte

entering the interrupt service routine will help us tell the two edges apart:

void __ISR(_CHANGE_NOTICE_VECTOR, ipl1) CNInterrupt(void)
{ /I change notification interrupt service routine

/I 1. make sure it was a falling edge

if (PS2CLK == 0)
{
switch(PS2State){
default:
case PS2START:
if (! PS2DAT)
{
KCount = 8§;
KParity = 0;

PS2State = PS2BIT;

}

break;

case PS2BIT:
KBDBuf >>=1;
if (PS2DAT)
KBDBuf += 0x80;
KParity ~= KBDBUT;
if (--KCount == 0)

Il verify start bit

// init bit counter
// init parity check

/I shift in data bit

[/l update parity
/I if all bit read, move on

PS2State = PS2PARITY;

break;

306 Day12

case PS2PARITY:

if (PS2DAT) Il verify parity
KParity ~= 0x80;

if (KParity & 0x80) /I if parity odd, continue
PS2State = PS2STOP;

else
PS2State = PS2START;

break;

case PS2STOP:

if (PS2DAT) /I verify stop bit
{
KBDCode = KBDBuf; /I save code in mail box
KBDReady = 1; Il set flag, code available
}
PS2State = PS2START;
break;

} /I switch state machine
} /1 if falling edge

/I clear interrupt flag
MCNClearIntFlag();
} /I CN Interrupt

Add the constants and variables declarations already used in the previous example:

/I definition of the keyboard PS/2 state machine

#define PS2START 0
#define PS2BIT 1
#define PS2PARITY 2
#define PS2STOP 3

/I PS2 KBD state machine and buffer
int PS2State;

unsigned char KBDBuUf;

int KCount, KParity;

/I mailbox
volatile int KBDReady;
volatile unsigned char KBDCode;

Package it all together in a file that we will daB2CN.c.

Capturing User Inputs 307

The include file PS2CN.h will be practically identical to the previous example, since we
are going to offer the same interface:
/*

** PS2CN.h
** PS/2 keyboard input module using Change Notification
*

extern volatile int KBDReady;
extern volatile unsigned char KBDCode;

void initKBD(void);

Create a new project call®b2CN and add both the .c and the .h files to the
project.

Finally, create a main module to test this new technique. One more time, it will be mostl
identical to the previous project:

/*
» PS2CNTest.c
*%
*/
/I configuration bit settings, Fcy=72MHz, Fpb=36MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=0OFF, CP=0OFF, BWP=OFF

#include <p32xxxx.h>
#include <explore.h>
#include "PS2CN.h"

main()
{
iNtEX16(); /l'init and enable interrupts
initKBD(); /l kbd initialization
while (1)
{
if (KBDReady) /I wait for the flag

{

308 Day12

PORTA = KBDCode; // fetch the key code
KBDReady = 0; /I clear the flag

}

} /I main loop
} //Imain

Save the project, then build the projdetdject | BuildAll) to compile and link all the
modules. To test the change notification technique, we will use once more MPLAB SIM
stimulus generation capabilities. Once more we will repeat most of the steps performed
in the previous project. Starting with the Stimulus wind®&hugger | Stimulus | New
Workbook), we will create a new workbook. Inside the window, créatecolumns,

one for the same PS2 Data line connecteridn2, but the PS2 Clock line will be
connected to theN11 Change Notification module input this time. Add the same
sequence of stimuli as presented in Table 12.3, replacingXhi@put column with

theCN11 column. Save the workbook BS2CN.sbs and then click thépply button to
activate the stimulus script.

We are ready now to execute the code and test the proper functioning of the new PS/2
interface. Open thé/atch window and addkey from the symbols list. Then set a
breakpoint inside the main loop on the line whé&®DCodeis copied to th&ey

variable. Finally, perform a reséd¢bugger | Reset) and verify that the first event is
triggered (setting both PS/2 input lines high at time 0 us). Run the Dedegger |

RUN) and, if all goes well, you will see the processor stop at the breakpoint after less
than a second, and you will see the contenksepfto be updated to reflect the key code
0x79 . Success again!

Evaluating Cost

Changing from the Input Capture to the Change Notification method was almost too eas
The two peripherals are extremely potent and, although designed for different purposes
when applied to the task at hand they performed almost identically. In the embedded
world, though, you should constantly ask yourself if you could solve the problem with
fewer resources even when, as in this case, there seems to be abundance.

Let’s evaluate the real cost of each solution by counting the resources used and their
relative scarcity. In using the Input Capture, we have in fact used one of five IC modules
available in the PIC32MX360F512L model. This peripheral is designed to operate in
conjunction with a timer (Timer2 or Timer3), although we are not using the timing
information in our application but only the interrupt mechanism associated with the

Capturing User Inputs 309

input edge trigger. When using the Change Notification, we are using only one of 22
possible inputs, but we are also taking control of the sole interrupt vector available to thi
peripheral. In other words, should we need any other input pin to be controlled by the
change natification peripheral, we will have to share the interrupt vector, adding latency
and complexity to the solution. | would call this a tie.

I/0O Polling

There is one more method that we could explore to interface to a PS/2 keyboard. It is
the most basic one and it implies the use of a timer, set for a periodic interrupt, and any
5V tolerant 1/O pin of the microcontroller. In a way, this method is the most flexible

from a configuration and layout point of view. It is also the most generic since any
microcontroller model, even the smallest and most inexpensive, will offer at least one
timer module suitable for our purpose. The theory of operation is pretty simple. At
regular intervals an interrupt will be generated, set by the value of the period register
associated with the chosen timer (see Figure 12.18

Sampling points

NN

Clock line

Data line

Valid data| = = = |~ = ="
o | |

_——d -

Figure 12.18: PS/2 interface bit timing 1/O polling sampling points.

We will use Timer4 this time, just because we never used it before, and its associated
period registePR4. The interrupt service routi@interrupt() will sample the status

of the PS/2 Clock line and it will determine whether a falling edge has occurred on the
PS/2 Clock line over the previous period. When a falling edge is detected, the PS/2 Dat

310 Day12

line status will be considered to receive the key code. To determine how frequently we
should perform the sampling and therefore identify the optimal value eR#heegister,

we should look at the shortest amount of time allowed between two edges on the PS/2
clock line. This is determined by the maximum bit rate specified for the PS/2 interface
that, according to the documentation in our possession, corresponds to about 16 k bit/s.
At that rate, the clock signal can be represented by a square wave with an approximate
50-percent duty cycle and a period of approximately 62.5us. In other words, the clock
line will stay low for little more than 30 us each time a data bit is presented on the PS/2
Data line, and it will stay high for approximately the same amount of time, during which
the next bit will be shifted out.

By settingPR4 to a value that will make the interrupt period shorter than 30 us (say
25us), we can guarantee that the clock line will always be sampled at least once betwe
two consecutive edges. The keyboard transmission bit rate, though, could be as slow
as 10k bit/s, giving a maximum distance between edges of about 50 us. In that case we
would be sampling the clock and data lines twice and possibly up to three times betwee
each clock edge. In other words, we will have to build a new state machine to detect the
actual occurrence of a falling edge and to properly keep track of the PS/2 clock signal
(see Figure 12.19).

Clock =0 Clock = 1 Clock = 1

Clock = 0, Falling Edge

Figure 12.19: Clock-polling state machine graph.

The state machine requires only two states, and all the transitions can be summarized i
the Table 12.4.

When a falling edge is detected, we can still use the same state machine developed
in the previous projects to read the data line. It is important to note that in this case

Capturing User Inputs 311

Table 12.4: Clock-polling state machine transitions.

State Conditions Effect
State0 Clock =0 Remain in State0
Clock =1 Rising Edge, Transition to State]
State1 Clock =1 Remain in Statel
Clock =0 Falling edge detected
Execute the Data state machine
Transition to StateQ

the value of the data line is not guaranteed to be sampled right after the actual falling
edge of the clock line has occurred but instead could be considerably delayed. To
avoid the possibility of reading the data line outside the valid period, it is imperative
to simultaneously sample both the clock and the data line. This will be performed by
copying the value of the two inputs in two local variabtearidk) at the very beginning
of the interrupt service routine. In our example, we will choose t&®G4¢e (again) for

the data line anBG13for the clock line. Here is the skeleton implementation of the

Clock-polling state machine illustrated previously:

#define PS2CLK _RG13 / PS2 Clock output
#define PS2DAT _RG12 // PS2 Data input pin

/I PS2 KBD state machine and buffer
int PS2State;
unsigned char KBDBuf;

/l mailbox
volatile int KBDReady;
volatile unsigned char KBDCode;

void _ ISR(_TIMER_4_ VECTOR, ipll) T4Interrupt(void)

{
int d, k;

/I sample the inputs clock and data at the same time
d = PS2DAT,;
k = PS2CLK;

312 Day12

/I keyboard state machine

if (KState)
{ /I previous time clock was high KState 1
if ('k) I/ PS2CLK ==
{ /I falling edge detected,
KState = 0; // transition to State0

<<<< insert data state machine here >>>>

} /Il falling edge
else
{ /I clock still high, remain in Statel

} /I clock still high
}// state 1

else
{ /Il state O
if (k) //PS2CLK==1
{ /I rising edge, transition to Statel
KState = 1;

} /I rising edge
else
{ /I clocl still low, remain in StateO

} /I clock still low
} /I state O

/I clear the interrupt flag
mT4ClearIntFlag();
} /1 T4 Interrupt

Thanks to the periodic nature of the polling mechanism we just developed, we can add
a new feature to the PS2 interface to make it more robust with minimal effort. First, we
can add a counter to idle loops of both states of the clock state machine. This way we v
be able to create a timeout to be able to detect and correct error conditions, should the
PS/2 keyboard be disconnected during a transmission or if the receive routine should lo
synchronization for any reason.

The new transition table (Table 12.5) is quickly updated to include the timeout counter
KTimer.

Capturing User Inputs 313

Table 12.5: Clock-polling (with timeout) state machine transition table.

State Conditions Effect

State0 Clock =0 Remain in State0

Decrement KTimer

If KTimer = 0, error

Reset the data state machine

Clock =1 Rising Edge, Transition to State

State1 Clock =1 Remain in Statel

Decrement KTimer

If KTimer = 0, error

Reset the data state machine

Clock =0 Falling edge detected

Execute the Data state machine
Transition to State0Q

Restart KTimer

The new transition table adds only a few instructions to our interrupt service routine:

void __ISR(_TIMER_4_VECTOR, ipl1) T4Interrupt(void)

{
intd, k;

/I sample the inputs clock and data at the same time
d = PS2DAT,;
k = PS2CLK;

/I keyboard state machine
if (KState)
{ /I previous time clock was high KState 1
if ('k) /I PS2CLK =0
{ /I falling edge detected,
KState = 0; [/ transition to State0
KTimer = KMAX; /I restart the counter

<<<< insert data state machine here >>>>

} /l falling edge
else
{ /I clock still high, remain in Statel

314 Day12

KTimer--;
if (KTimer == 0)
PS2State = PS2START;
} /I clock still high
} /] Kstate 1
else
{ /I Kstate O
if (k)
{ /I rising edge, transition to Statel
KState = 1;
} /I rising edge
else
{ /I clocl still low, remain in StateO
KTimer--;
if (KTimer = 0)
PS2State = PS2START,
} /I clock still low
} /I Kstate O

/I clear the interrupt flag
mT4ClearIntFlag();
} /1 T4 Interrupt

Testing the I/O Polling Method

/l Timeout
/I Reset data SM

I PS2CLK == 1

/I Timeout
/I Reset data SM

Let’s now insert the Data state machine from the previous projects, modified to operate
on the value sampled thandk at the interrupt service routine entry. It fits entirely in a

singleswitch statement:

switch(PS2State){
default:
case PS2START:
if (1d) /I PS2DAT ==
{
KCount = 8;
KParity = 0;
PS2State = PS2BIT;
}

break;

// init bit counter
/I init parity check

Capturing User Inputs

315

case PS2BIT:
KBDBuf >>=1;
if (d)
KBDBuf += 0x80;
KParity "= KBDBUf;
if (--KCount == 0)
PS2State = PS2PARITY;
break;

case PS2PARITY:
if (d)
KParity = 0x80;
if (KParity & 0x80)
PS2State = PS2STOP;
else
PS2State = PS2START;
break;

case PS2STOP:

if (d)

{
KBDCode = KBDBUf;
KBDReady = 1;

}

PS2State = PS2START;

break;

} /I switch

/I shift in data bit
/| PS2DAT ==

/I calculate parity
// all bit read

I PS2DAT ==

[/ parity odd, continue

/I PS2DAT ==

/I write in the buffer

Let’s complete this third module with a proper initialization routine:

void initKBD(void)

{
/l'init 1/Os
ODCGhbhits.ODCG13 =1;
_TRISG13 =1;
_TRISG12=1;

/I clear the kbd flag
KBDReady = 0;

/l make RG13 open drain (PS2clk)
/I make RG13 an input pin (for now)
/I make RG12 an input pin

316 Day12

/I configure Timer4

PR4 = 25*TPS - 1; Il 25 us

T4CON = 0x8000; /l T4 on, prescaler 1:1

mT4SetIntPriority(1); Il lower priority

mT4ClearIntFlag(); /I clear interrupt flag

mT4IntEnable(1); I/l enable interrupt
}/1init KBD

This is quite straightforward.

Let's save it all in a module we can da82T4.c. Let’s create a new include file, too:
/~k

%
** PS2T4.h

** PS/2 keyboard input library using T4 polling
*/

extern volatile int KBDReady;
extern volatile unsigned char KBDCode;

void initKBD(void);

It is practically identical to all previous modules include files, and the main test module
will not be much different either:

/~k
** PS2T4 Test
*%
*/
/I configuration bit settings, Fcy=72MHz, Fpb=36MHz
#pragma config POSCMOD=XT, FNOSC=PRIPLL
#pragma config FPLLIDIV=DIV_2, FPLLMUL=MUL_18, FPLLODIV=DIV_1
#pragma config FPBDIV=DIV_2, FWDTEN=0OFF, CP=OFF, BWP=OFF

#include <p32xxxx.h>
#include <explore.h>
#include "PS2T4.h"

main()

{
iNItEX16(); / init and configure interrupts
initKBD(); /I initialization routine

Capturing User Inputs 317

while (1)
{
if (KBDReady) [/l wait for the flag
{
PORTA = KBDCode; /I fetch the key code
KBDReady = 0; /I clear the flag
}
} /I main loop
} /Imain

Create a new projedi4 and add all three files to it. Build all and follow the same series
of steps used in the previous two examples to generate a stimulus script. Remember th
this time the stimulus for the Clock line must be provided omRtaEs pin. Open the

Watch window and ad&ORTA and KBDCode. Finally set dreakpoint to the line after

the assignment tBORTAand execut®ebug | Run. If all goes well, even this time you
should be able to sé®RTAupdated in the Watch window and showing a new value of
0x79 . Success again!

Cost and Efficiency Considerations

Comparing the cost of this solution to the previous two, we realize that the 1/O polling
approach is the one that gives us the most freedom in choosing the input pins and uses o
one resource, a timer, and one interrupt vector. The periodic interrupt can also be seamle
shared with other tasks to form a common time base if they all can be reduced to multiple
of the polling period. The time-out feature is an extra bonus; to implement it in the previou
techniques, we would have had to use a separate timer and another interrupt service rou
in addition to the Input Capture or Change Notification modules and interrupts.

Looking at the efficiency, the Input Capture and the Change Notification methods appea
to have an advantage because an interrupt is generated only when an edge is detected
Actually, as we have seen, the Input Capture is the best method from this point of view,
since we can select precisely the one type of edge we are interested in—that is, the fall
edge of the PS/2 Clock line.

The 1/0 polling method appears to require the longest interrupt routine, but the number

of lines does not reflect the actwaightof the interrupt service routine. In fact, when

we look closer, of the two nested state machines that compose the 1/O polling interrupt

service routine, only a few instructions are executed at every call, resulting in a very shc
execution time and minimal overhead.

318 Day12

To verify the actual software overhead imposed by the interrupt service routines, we car
perform one simple test on each one of the three implementations of the PS/2 interface
I will use only the last one as an example. We can allocate one of the 1/0O pins (one of tf
LED outputs on PORTA not used by the JTAG port would be a logical choice) to help us
visualize when the microcontroller is inside an interrupt service routine. We can set the
pin on entry and reset it right before exit:

void __ISR(..) T4Interrupt(void)

{

_RA2=1; I/l flag up, inside the ISR

<<< Interrupt service routine here >>

_RA2=0; /I flag down, back to the main
}

Using MPLAB SIM simulator Logic Analyzer view, we can visualize it on our computer
screen. Follow the Logic Analyzer checklist so you will remember to enable dce

buffer, and set the corregtmulation speed. Select ti0 channel and rebuild the
project.

To test the first two methods (IC and CN), you will need to opeSBtihaulus window

and apply thecripts to simulate the inputs. Without them there will be no interrupts

at all. When testing the 1/O polling routine, you won't necessarily need it; the Timer4
interrupt keeps coming anyway and, after all, we are interested in seeing how much timi
is wasted by the continuous polling when no keyboard input is provided.

Let MPLAB SIM run for a few seconds, then stop the simulation and switch back to the
Logic Analyzer window. You will have to zoom in quite a bit to get an accurate picture
(see Figure 12.20).

Activate thecursorsl’—|: and drag them to measure the number of cycles between two
consecutive rising edges RA2, marking two successive entries in the interrupt service
routine. Since we selected a 25 us period, you should read 900 cycles between calls (251
36 cycles/us @72 MHz).

Measuring the number of cycles between a rising edge and a falling erlg2inktead

will tell us, with good approximation, how much time we are spending inside the
interrupt service routine; 36 cycles is what | found. The ratio between the two quantities
will give us an indication of the computing power absorbed by the PS/2 interface. In our
case that turns out to be just 4 percent.

Capturing User Inputs

319

i~ Trigger Position 11 Trigger PC =-

Ra2

T T T T T T 17

503800.0 5040000

T T T T

—
504200.0 5044000 5046000

T T - r

N

—
504800.0 505000.0 505200.0

T T T T T T T

Figure 12.20: Logic Analyzer view, measuring the 1/O polling period.

Keyboard Buffering

Independently from the solution you will choose of the three we have explored
so far, there are a few more details we need to take care of before we can claim to

have completed the interface to the PS/2 keyboard. First, we need to add a buffering

mechanism between the PS/2 interface routines ariddhsumer” or the main

application. So far, in fact, we have provided a simple mailbox mechanism that can stor
only the last key code received. If you investigate further how the PS/2 keyboard protoc:

works, you will discover that when a single key is pressed and released, a minimum

of three (and a maximum of five) key codes are sent to the host. If you consider Shift,

Ctrl, and Alt key combinations, things get a little more complicated and you realize

immediately that the single-byte mailbox is not going to be sufficient. My suggestion is ti
use at least a 16-byte first-in/first-out (FIFO) buffer. The input to the buffer can be easily
integrated with the receiver interrupt service routines so that when a new key code is

received it is immediately inserted in the FIFO.

The buffer can be declared as an array of characters, and two pointers will keep track o

the headandtail of the buffer in a circular scheme (d&gure 12.21).

320 Day12

—
C =T 2

KCB[16] T T
|:| Filled

KBR KBW

Figure 12.21: Circular buffer (FIFO).

/I circular buffer
unsigned char KCB[KB_SIZE];

/l head and tail or write and read pointers
volatile int KBR, KBW;

Following a few simple rules, we can keep track of the buffer content:

« The write pointekBW(or head) marks the first empty location that will receive

the next key code.

« The read point&¢BR (or tail) marks the first filled location.

« When the buffer is emptgBRandKBWare pointing at the same location.

« When the buffer is fulkBWpoints to the location befokBR

« After reading or writing a character to/from the buffer, the corresponding pointer

is incremented.

« Upon reaching the end of the array, each pointer will wrap around to the first

element of the array.
Insert the following snippet of code into the initialization routine:
/I init the circular buffer pointers

KBR = 0;
KBW = 0;

Capturing User Inputs 321

Then update the state machine STOP state:

case PS2STOP:
if (PS2IN & DATMASK) // verify stop bit

{
KCB[KBW] = KBDBuUf; [/ write in the buffer

/I check if buffer full
if ((KBW+1)%KB_SIZE != KBR)

KBW++; /I else increment ptr
KBW %= KB_SIZE; /I wrap around

}
PS2State = PS2START;

break;

Notice the use of thioperator to obtain the reminder of the division by the buffer size.
This allows us to keep the pointers wrapping around the circular buffer.

A few considerations are required for fetching key codes from the FIFO buffer.

In particular, if we choose the input capture or the change notification methods, we will
need to make a new function availabtget{KeyCode()) to replace the mailbox/flag
mechanism. The function will retuFALSE if there are no key codes available in the
buffer andTRUEIf there is at least one key code in the buffer, and the code is returned

via a pointer:

int getKeyCode(char *c)

{
if (KBR == KBW) Il buffer empty
return FALSE;
/I else buffer contains at least one key code
*c = KCB[KBR++]; Il extract the first key code
KBR %= KB_SIZE; /l wrap around the pointer
return TRUE;
} /I getKeyCode

Notice that the extraction routine modifies only the read pointer; therefore it is safe to
perform this operation when the interrupts are enabled. Should an interrupt occur during
the extraction, there are two possible scenarios:

« The buffer was empty, a new key code will be added, bgetkeyCode()
function will “notice” the available character only at the next call.

322 Day12

« The buffer was not empty, and the interrupt routine will add a new character to tt
buffer tail, if there is enough room.

In both cases there are no particular concerns of conflicts or dangerous consequences.

But if we choose the polling technique, the timer interrupt is constantly active and we ce
use it to perform one more task for us. The idea is to maintain the simple mailbox and
flag mechanism for delivering key codes as the interface to the receive routine and have
the interrupt constantly checking the mailbox, ready to replenish it with the content from
the FIFO. This way we can confine the entire FIFO management to the interrupt service
routine, making the buffering completely transparent and maintaining the simplicity of
the mailbox delivery interface. The new and complete interrupt service routine for the
polling I/0O mechanism is presented here:

void _ ISR(_TIMER_4_VECTOR, ipll) T4Interrupt(void)

{
intd, k;

/l_RA2 =1;

/I 1. check if buffer available
if ('KBDReady & (KBR!=KBW))
{

KBDCode = KCB[KBR++];

KBR %= KB_SIZE;

KBDReady = 1; /I flag code available
}
/I 2. sample the inputs clock and data at the same time
d = PS2DAT;
k = PS2CLK;

/I 3. Keyboard state machine

if (KState)
{ /I previous time clock was high KState 1
if ('k) /I PS2CLK ==
{ /I falling edge detected,
KState = 0; /I transition to State0

KTimer = KMAX; /I restart the counter

Capturing User Inputs 323
switch(PS2State){
default:
case PS2START:
if (!d) /Il PS2DAT ==
{
KCount = 8; // init bit counter
KParity = 0; /I init parity check
PS2State = PS2BIT;
}
break;
case PS2BIT:
KBDBuUf >>=1; /I shift in data bit
if (d) /Il PS2DAT ==
KBDBuf += 0x80;
KParity ~= KBDBUf; /I calculate parity
if (--KCount == 0) /I all bit read
PS2State = PS2PARITY;
break;
case PS2PARITY:
if (d) [PS2DAT ==
KParity ~= 0x80;
if (KParity & 0x80) /I parity odd, continue
PS2State = PS2STOP;
else
PS2State = PS2START,
break;
case PS2STOP:
if (d) /I PS2DAT ==
{
KCB[KBW] = KBDBuf; // write in the buffer
/I check if buffer full
if ((KBW+1)%KB_SIZE |= KBR)
KBW++; /I else increment ptr

KBW %= KB_SIZE; /I wrap around

}
PS2State = PS2START;

break;

324 Day12

} /I switch
} /Il falling edge
else
{ /I clock still high, remain in Statel
KTimer--;
if (KTimer == 0) Il timeout
PS2State = PS2START,; // reset data SM
} /I clock still high
} Il Kstate 1

else
{ /I Kstate O
if (k) /Il PS2CLK ==
{ /I rising edge, transition to Statel
KState = 1;
} /l rising edge
else
{ /I clocl still low, remain in StateO
KTimer--;

if (KTimer ==0) /l timeout
PS2State = PS2START,; // reset data SM
} /I clock still low
} /] Kstate O

/I 4. clear the interrupt flag
mT4ClearIntFlag();

Il RA2 =0;
} /1 T4 Interrupt

Key Code Decoding

So far we have been talking exclusively about key codes, and you might have assumed
that they match the ASCII codes for each key—say, if you press the A key on the keyboe
you would expect the corresponding ASCII code (0x41) to be sent. But things are not the
simple. To maintain a level of layout neutrality, all PC keyboardsecese codeswhere

each key is assigned a numerical value that is related to the original implementation of
the keyboard scanning firmware of the first IBM PC, circa 1980. The translation from
scan codes to actual ASCII characters happens at a higher level according to specific
(international) keyboard layouts and, nowadays, is performed by Windows drivers. Keep
in mind also that for historical reasons there are at least three different and partially

Capturing User Inputs 325

compatible “scan code sets.” Fortunately, by default, all keyboards support the scan cod
set #2, which is the one we will focus on in the following discussion.

Each time a key is pressed (any key, including a Shift or Ctrl key), the scan code
associated with it is sent to the host; this is calledrtakecode. As soon as the same key
is released, a new (sequence of) codes is sent to the host; this is cdiledkicede.

The break code is typically composed of the same make code but prefixéctfaith
Some keys have a 2-byte-long make code (typically the Ctrl, Alt, and arrow keys) and
consequently the break code is 3 bytes long (see Tablg 12.6

Table 12.6: Example of make and break codes used in Scan Code Set 2 (default).

Key Make Code Break Code
A 1C FO, 1C

5 2E FO, 2E

F10 09 FO, 09
Right Arrow EO, 74 EO, FO, 74
Right Ctrl EO, 14 EO, FO, 14

To process this information and translate the scan codes intro proper ASCII, we will neec
table that will help us map the basic scan codes for a given keyboard layout. The followir
code will illustrate the translation table for a common U.S. English keyboard layout:

/[PS2 keyboard codes (standard set #2)
const char keyCodes[128]={

0, F9, 0, F5, F3, F1, F2, F12, //00
0, F10, F8, F6, F4,TAB, B 0, 1108
0, O,L_SHFT,O0,L_CTRL, q, " 1', 0, /10

0, O, 'z','s, ! a','w, ' 2, 0, 1118
0o, " c, X' d, e’ 4, '3, 0, 1120
o, " ', "wv',f" t, 5 0, 1128
0, "n, b h', 'g, y', '6, 0, 1130
0, O, m, u', 7, 8', 0, 1138
o, " .,", 'k, i', o, o, "9 0, 1140
o, ' , (IR p', -, 0, 1148
o, O "\, o0 [, 0, 0, 1150

326 Day12

CAPS,R_SHFT,ENTER, '], 00x5c, 0, O, /58
0, o0 0, 0, 0, 0, BKSP, O, 1160
o0 "1, o0 "4, "7, 0, 0, O, 1168
o, '.','2, ' 5.,'%, '8 ,6 ESC,NUM, 1170
F11, '+, '3, ' -', ™ 9 0, 0 1178
k

Notice that the array has been declarecbast so that it will be allocated in program
memory space to save precious RAM space.

It will also be convenient to have available a similar table for the Shift function of
each key:

const char keySCodes[128] = {

0, F9, 0, F5 F3, F1, F2,F12, 1100
0, F10, F8, F6, F4,TAB, '~ 0, /108

0, OLSHFT, OLCTRL, 'Q,'!', 0, /110

o0 0 'Z,'S,' A,W, ' @, o0, /18

o0 'C, X, ' D,E, " $,% 0 /120

o ' ', "V, F ' T,R,' %, 0 1128

00 "N, B, ' H,'G, ' Y, 0 1130

00 0 'M, 7 u,'&,"*, o0, 1138

0, '<, K, ' 1','0,"),'(, o, 1140

o, ">, 2, ' L,w' P, 0 1148

o0 0 '\"', 0 ‘{',w o0 O, 150
CAPS,R_SHFTENTER, '}, O, ‘|, 0, O, /58
o0 0 0 0 0 O BKSP, 0, 1160

oo '1, o0 '4,'7, 0 0 O, 168

o '.', 2, " 5,'%, ' 8,6 ESC, NUM, 1170

F11, '+, '3, ' ', ' 9, 0 0 178

For all the ASCII characters, the translation is straightforward, but we will have to
assign special values to the function, Shift, and Ctrl keys. Only a few of them will find a
corresponding code in the ASCII set:

/I special function characters
#define TAB 0x9
#define BKSP 0x8
#define ENTER 0Oxd
#define ESC 0x1b

Capturing User Inputs 327

For all the others we will have to create our own conventions or, until we have a use for
them, we might just ignore them and assign them a common code (0):

#define L_SHFT 0x12
#define R_SHFT 0x12
#define CAPS 0x58
#define L_CTRL 0x0O

#define NUM 0x0
#define F1 0x0
#define F2 0x0
#define F3 0x0
#define F4 0x0
#define F5 0x0
#define F6 0x0
#define F7 0x0
#define F8 0x0
#define F9 0x0

#define F10 0x0
#define F11 0x0
#define F12 0x0

ThegetC() function will perform the basic translations for the most common keys and i
will keep track of the Shift keys status as well as the Caps key toggling:

int CapsFlag=0;
char getC(void)
{

unsigned char c;

while(1)
{

while('\KBDReady); [/l wait for a key to be pressed
/I check if it is a break code
while (KBDCode == 0xf0)
{ /I consume the break code

KBDReady = 0;

/[wait for a new key code

while ('KBDReady);

/I check if the shift button is released

if (KBDCode == L_SHFT)

CapsFlag = 0;

328 Day12

/I and discard it
KBDReady = 0;
Il wait for the next key
while ('KBDReady);

}

/I check for special keys
if (KBDCode == L_SHFT)
{
CapsFlag = 1;
KBDReady = 0;

}
else if (KBDCode == CAPS)

{
CapsFlag = !CapsFlag;
KBDReady = 0;

}

else // translate into an ASCII code

{
if (CapsFlag)
¢ = keySCodes[KBDCode%128];
else
¢ = keyCodes[KBDCode%128];
break;

}

/I consume the current character
KBDReady = 0;
return (c);

} /I getC

Debriefing

Today we explored several popular mechanisms used in embedded control to obtain us
input. Starting from basic buttons and mechanical switch debouncing, we explored rotar
encoders and analyzed the challenges of interfacing to (PS/2) computer keyboards. Thi
gave us the perfect opportunity to exercise two new peripheral modules: Input Capture
and Change Notification. We discussed methods to implement a FIFO circular buffer,
and we polished our interrupt management skills a little. We managed to learn somethir

Capturing User Inputs 329

new about the MPLAB SIM simulator as well, using for the first time asynchronous
input stimuli to test our code. Throughout the entire day our focus has been constantly «
balancing the use of resources and the performance offered by each solution.

Notes for the PIC24 Experts

The IC module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differenc
that will affect your code while porting an application to the PIC32:

1. ThdCxCON register now follows the standard peripheral module layout and
offers anONcontrol bit that allows us to disable the module when not used, for
reduced power consumption.

2. ThdCxC32 control bit allows 32-bit capture resolution when the module is used
in conjunction with a timer pair (forming a 32-bit timer).

3. ThdCxFEDGE control bit allows the selection of the first edge (rising or falling)
when the IC module operates in the new mod€xav=110).

The CN module of the PIC32 is mostly identical to the PIC24 peripheral, yet some
important enhancements have been included in its design. Here are the major differenc
that will affect your code while porting an application to the PIC32:

1. A newCNCONegister has been added to offer a standard set of control bit,
includingON FRZ andIDL to better manage the module behavior in low-power
consumption modes.

2. TheCNEN(32-bit) control register now groups all the input pin enable bits previously
contained in two separate (16-bit) registers of the PICRUEII1andCNEN2.

3. Similarly, theCNPUE32-bit) control register groups all the pull-up enable bits
previously contained in two separate (16-bit) registers of the PICNAUE1and
CNPUE2.

Tips & Tricks

Each PS/2 keyboard has an internal FIFO buffer 16 key codes deep. This allows the
keyboard to accumulate the user input, even when the host is not ready to receive.
The host, as we mentioned at the beginning of this chapter, has the option to stall the

330 Day12

communication by pulling low the Clock line at any given point in time (for at least
100us) and can hold it low for the desired period of time. When the Clock line is release
the keyboard resumes transmissions. It will retransmit the last key code, if it had been
interrupted, and will offload its FIFO buffer.

To exercise our right to stall the keyboard transmissions as a host, we have to control th
Clock line with an output using an open drain driver. Fortunately, this is easy with the
PIC32, thanks to its configurable I/O port modules. In fact, each I/O port has an associat
control register@DC» that can individually configure each pin output driver to operate in
open-drain mode.

Note that this feature is extremely useful in general to interface PIC32 outputs to any
5V device. In our example, turning the PS/2 Clock line into an open-drain output would
require only a few lines of code:

_0ODG13=1; /I cfg PORTG pin 13 output in open-drain mode
_LATG13=1; [/ initially let the output in pull up
_TRISG13 =0; // enable the output driver

Note that, as usual for all PIC microcontrollers, even if a pin is configured as an output,
its current status can still be read as an input. So there is no reason to switch continuou
between input and output when we alternate sending commands and receiving characte
from the keyboard.

Exercises

1. Add a function to send commands to the keyboard to control the status LEDs ar
set the key repeat rate.

2. Replace the stdio.h library input helper functimon_getc() to redirect the
keyboard input as thetdin stream input.

3. Add support for a PS/2 mouse interface.

Books

Nisley, EdThe Embedded PCs ISA By®nnabooks/Rtc Books , 1997) . Speaking of
legacy interfaces, the ISA bus, the heart of every IBM PC for almost two decades,
is today interestingly surviving in some industrial contobicles” (like the PC104
platform) and embedded applications.

Capturing User Inputs 331

Links

www.computer-engineering.arghis is an excellent Web site where you will find a lot of
useful documentation on the PS/2 keyboard and mouse interface.

www.pcl04.com/whatis.htmThe PC104 platform, one of the first attempts at bringing
the IBM PC architecture to single-board computers for embedded control.

This page intentionally left blank

UTube

The Plan

Thanks to the recent advancements in the so-aalipdon-glasCOG) technology

and the mass adoption of LCD displays in cell phones and many consumer applications
small displays with integrated controllers are becoming more and more common and
inexpensive. The integrated controller takes care of the image buffering and performs
simple text and graphics commands for us, offloading our applications from the hard
work of maintaining the display. But what about those cases when we want to have full
control of the screen to produce animations and or simply bypass any limitation of the
integrated controller?

In today’s exploration we will consider techniques to interface directly to a TV screen or
for that matter, any display that can accept a standard composite video signal. It will be
good excuse to use new features of several peripheral modules of the PIC32 and reviev
new programming techniques. Our first project objective will be to get a nice dark screel
(a well-synchronized video frame), but we will soon see to fill it up with several useful
and (why not?) entertaining graphical applications.

Preparation

In addition to the usual software tools, including the MPEABE, the MPLAB C32
compiler, and the MPLAB SIM simulator, this lesson will require the use of the Explorer
16 demonstration board and In-Circuit Debugger of your choice). You will also need a
soldering iron and a few components at hand to expand the board capabilities using the
prototyping area or a small expansion board. You can check on the companion Web site
(www.exploringPIC32.com) for the availability of expansion boards that will help you
with the experiments.

334 Day13

The Exploration

There are many different formats and standards in use in the wo