
I

Programming
Embedded
Systems II

A 10-week course, using C
40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3.0

P
1.7

R
S

T

P
1.6

P
1.5

P
1.4

P
1.2

P
1.3

P
1.1

P
1.0

V
S

S

X
T

L2

X
T

L1

P
3.7

P
3.6

P
3.5

P
3.3

P
3.4

P
3

.2

P
3.1

/ E
A

P
0.6

P
0.7

P
0.5

P
0.4

P
0.3

P
0.1

P
0.2

P
0.0

V
C

C

P
2.0

P
2.2

P
2.1

P
2.3

P
2.4

P
2.5

P
2.7

P
2.6

/ P
S

E
N

A
LE

Michael J. Pont
University of Leicester

 [v1.1]

II

Copyright © Michael J. Pont, 2002-2003

This document may be freely distributed and copied, provided that copyright notice at
the foot of each OHP page is clearly visible in all copies.

III

Seminar 1: A flexible scheduler for single-processor embedded systems 1
Overview of this seminar 2
Overview of this course 3
By the end of the course you’ll be able to … 4
Main course text 5
IMPORTANT: Course prerequisites 6
Review: Why use C? 7
Review: The 8051 microcontroller 8
Review: The “super loop” software architecture 9
Review: An introduction to schedulers 10
Review: Building a scheduler 11
Overview of this seminar 12
The Co-operative Scheduler 13
Overview 14
The scheduler data structure and task array 15
The size of the task array 16
One possible initialisation function: 17
IMPORTANT: The ‘one interrupt per microcontroller’ rule! 18
The ‘Update’ function 19
The ‘Add Task’ function 20
The ‘Dispatcher’ 22
Function arguments 24
Function pointers and Keil linker options 25
The ‘Start’ function 28
The ‘Delete Task’ function 29
Reducing power consumption 30
Reporting errors 31
Displaying error codes 34
Hardware resource implications 35
What is the CPU load of the scheduler? 36
Determining the required tick interval 38
Guidelines for predictable and reliable scheduling 40
Overall strengths and weaknesses of the scheduler 41
Preparations for the next seminar 42

IV

Seminar 2: A closer look at co-operative task scheduling (and some alternatives) 43
Overview of this seminar 44
Review: Co-operative scheduling 45
The pre-emptive scheduler 46
Why do we avoid pre-emptive schedulers in this course? 47
Why is a co-operative scheduler (generally) more reliable? 48
Critical sections of code 49
How do we deal with critical sections in a pre-emptive system? 50
Building a “lock” mechanism 51
The “best of both worlds” - a hybrid scheduler 55
Creating a hybrid scheduler 56
The ‘Update’ function for a hybrid scheduler. 58
Reliability and safety issues 61
The safest way to use the hybrid scheduler 63
Other forms of co-operative scheduler 65
PATTERN: 255-TICK SCHEDULER 66
PATTERN: ONE-TASK SCHEDULER 67
PATTERN: ONE-YEAR SCHEDULER 68
PATTERN: STABLE SCHEDULER 69
Mix and match … 70
Preparations for the next seminar 71

V

Seminar 3: Shared-clock schedulers for multi-processor systems 73
Overview of this seminar 74
Why use more than one processor? 75
Additional CPU performance and hardware facilities 76
The benefits of modular design 78
The benefits of modular design 79
So - how do we link more than one processor? 80
Synchronising the clocks 81
Synchronising the clocks 82
Synchronising the clocks - Slave nodes 83
Transferring data 84
Transferring data (Master to Slave) 85
Transferring data (Slave to Master) 86
Transferring data (Slave to Master) 87
Detecting network and node errors 88
Detecting errors in the Slave(s) 89
Detecting errors in the Master 90
Handling errors detected by the Slave 91
Handling errors detected by the Master 92
Enter a safe state and shut down the network 93
Reset the network 94
Engage a backup Slave 95
Why additional processors may not improve reliability 96
Redundant networks do not guarantee increased reliability 97
Replacing the human operator - implications 98
Are multi-processor designs ever safe? 99
Preparations for the next seminar 100

VI

Seminar 4: Linking processors using RS-232 and RS-485 protocols 101
Review: Shared-clock scheduling 102
Overview of this seminar 103
Review: What is ‘RS-232’? 104
Review: Basic RS-232 Protocol 105
Review: Transferring data to a PC using RS-232 106
PATTERN: SCU SCHEDULER (LOCAL) 107
The message structure 108
Determining the required baud rate 111
Node Hardware 113
Network wiring 114
Overall strengths and weaknesses 115
PATTERN: SCU Scheduler (RS-232) 116
PATTERN: SCU Scheduler (RS-485) 117
RS-232 vs RS-485 [number of nodes] 118
RS-232 vs RS-485 [range and baud rates] 119
RS-232 vs RS-485 [cabling] 120
RS-232 vs RS-485 [transceivers] 121
Software considerations: enable inputs 122
Overall strengths and weaknesses 123
Example: Network with Max489 transceivers 124
Preparations for the next seminar 125

VII

Seminar 5: Linking processors using the Controller Area Network (CAN) bus 127
Overview of this seminar 128
PATTERN: SCC Scheduler 129
What is CAN? 130
CAN 1.0 vs. CAN 2.0 132
Basic CAN vs. Full CAN 133
Which microcontrollers have support for CAN? 134
S-C scheduling over CAN 135
The message structure - Tick messages 136
The message structure - Ack messages 137
Determining the required baud rate 138
Transceivers for distributed networks 140
Node wiring for distributed networks 141
Hardware and wiring for local networks 142
Software for the shared-clock CAN scheduler 143
Overall strengths and weaknesses 144
Example: Creating a CAN-based scheduler using the Infineon C515c 145
Master Software 146
Slave Software 159
What about CAN without on-chip hardware support? 166
Preparations for the next seminar 168

VIII

Seminar 6: Case study: Intruder alarm system using CAN 169
Overview of this seminar 170
Overview of the required system 171
System Operation 172
How many processors? 173
The Controller node 174
Patterns for the Controller node 175
The Sensor / Sounder node 176
Patterns for the Sensor / Sounder node 177
Meeting legal requirements 178
Processor decisions 179
Hardware foundation 181
Summary 182
The code: Controller node (List of files) 183
The code: Controller node (Main.c) 184
The code: Controller node (Intruder.c) 185
The code: Controller node (Sounder.c) 197
The code: Controller node (SCC_m89S53.c) 198
The code: Sensor / Sounder node (List of files) 212
The code: Sensor / Sounder node (Main.c) 213
The code: Sensor / Sounder node (Intruder.c) 214
The code: Sensor / Sounder node (Sounder.c) 216
The code: Sensor / Sounder node (SCC_s89S53.c) 218
Preparations for the next seminar 228

IX

Seminar 7: Processing sequences of analogue values 229
Overview of this seminar 230
PATTERN: One-Shot ADC 231
Using a microcontroller with on-chip ADC 232
Using an external parallel ADC 233
Example: Using a Max150 ADC 234
Using an external serial ADC 235
Example: Using an external SPI ADC 236
Example: Using an external I2C ADC 237
Using a current-mode ADC? 238
PATTERN: SEQUENTIAL ADC 239
Key design stages 241
Sample rate (monitoring and signal proc. apps) 242
Sample rate (control systems) 243
Determining the required bit rate 244
Impact on the software architecture 245
Example: Using the c515c internal ADC 247
PATTERN: ADC PRE-AMP 248
PATTERN: A-A FILTER 249
Example: Speech-recognition system 250
Alternative: “Over sampling” 251
PATTERN: CURRENT SENSOR 252
PWM revisited 253
Software PWM 254
Using Digital-to-Analogue Converters (DACs) 255
Decisions … 256
General implications for the software architecture 257
Example: Speech playback using a 12-bit parallel DAC 258
Example: Digital telephone system 260
Preparations for the next seminar 261

X

Seminar 8: Applying “Proportional Integral Differential” (PID) control 263
Overview of this seminar 264
Why do we need closed-loop control? 265
Closed-loop control 269
What closed-loop algorithm should you use? 270
What is PID control? 271
A complete PID control implementation 272
Another version 273
Dealing with ‘windup’ 274
Choosing the controller parameters 275
What sample rate? 276
Hardware resource implications 277
PID: Overall strengths and weaknesses 278
Why open-loop controllers are still (sometimes) useful 279
Limitations of PID control 280
Example: Tuning the parameters of a cruise-control system 281
Open-loop test 283
Tuning the PID parameters: methodology 284
First test 285
Example: DC Motor Speed Control 287
Alternative: Fuzzy control 290
Preparations for the next seminar 291

XI

Seminar 9: Case study: Automotive cruise control using PID and CAN 293
Overview of this seminar 294
Single-processor system: Overview 295
Single-processor system: Code 296
Multi-processor design: Overview 297
Multi-processor design: Code (PID node) 298
Multi-processor design: Code (Speed node) 299
Multi-processor design: Code (Throttle node) 300
Exploring the impact of network delays 301
Example: Impact of network delays on the CCS system 302
Preparations for the next seminar 303

XII

Seminar 10: Improving system reliability using watchdog timers 305
Overview of this seminar 306
The watchdog analogy 307
PATTERN: Watchdog Recovery 308
Choice of hardware 309
Time-based error detection 310
Other uses for watchdog-induced resets 311
Recovery behaviour 312
Risk assessment 313
The limitations of single-processor designs 314
Time, time, time … 315
Watchdogs: Overall strengths and weaknesses 316
PATTERN: Scheduler Watchdog 317
Selecting the overflow period - “hard” constraints 318
Selecting the overflow period - “soft” constraints 319
PATTERN: Program-Flow Watchdog 320
Dealing with errors 322
Hardware resource implications 323
Speeding up the response 324
PATTERN: Reset Recovery 326
PATTERN: Fail-Silent Recovery 327
Example: Fail-Silent behaviour in the Airbus A310 328
Example: Fail-Silent behaviour in a steer-by-wire application 329
PATTERN: Limp-Home Recovery 330
Example: Limp-home behaviour in a steer-by-wire application 331
PATTERN: Oscillator Watchdog 334
Conclusions 336
Acknowledgements 337

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 1

Seminar 1:
A flexible scheduler
for single-processor

embedded systems

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3.0

P
1.7

R
S

T

P
1.6

P
1.5

P
1.4

P
1.2

P
1.3

P
1.1

P
1.0

V
S

S

X
T

L2

X
T

L1

P
3.7

P
3.6

P
3.5

P
3.3

P
3.4

P
3

.2

P
3.1

/ E
A

P
0.6

P
0.7

P
0.5

P
0.4

P
0.3

P
0.1

P
0.2

P
0.0

V
C

C

P
2.0

P
2.2

P
2.1

P
2.3

P
2.4

P
2.5

P
2.7

P
2.6

/ P
S

E
N

A
LE

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 2

Overview of this seminar

This introductory seminar will:

• Provide an overview of this course

• Describe the design and implementation of a flexible
scheduler

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 3

Overview of this course

This course is primarily concerned with the implementation of
software (and a small amount of hardware) for embedded systems
constructed using more than one microcontroller.

The processors examined in detail will be from the 8051 family.

All programming will be in the ‘C’ language
(using the Keil C51 compiler)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 4

By the end of the course you’ll be able to …

By the end of the course, you will be able to:

1. Design software for multi-processor embedded applications
based on small, industry standard, microcontrollers;

2. Implement the above designs using a modern, high-level
programming language (‘C’), and

3. Understand more about the effect that software design and
programming designs can have on the reliability and safety
of multi-processor embedded systems.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 5

Main course text

Throughout this course, we will be making heavy use of this book:

Patterns for time-triggered embedded
systems: Building reliable applications with
the 8051 family of microcontrollers,

by Michael J. Pont (2001)

Addison-Wesley / ACM Press.
[ISBN: 0-201-331381]

For further details, please see:

http://www.engg.le.ac.uk/books/Pont/pttes.htm

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 6

IMPORTANT: Course prerequisites

• It is assumed that - before taking this course - you have
previously completed “Programming Embedded Systems I”
(or a similar course).

See:

www.le.ac.uk/engineering/mjp9/pttesguide.htm

B

E

C

5.5V, 0.3A lamp

ZTX751

4V - 6V (battery)

10 KΩ

10 µF

4 MHz

20

19

18

17

16

15

14

1

2

3

4

5

6

7

A
tm

el
 2

05
1

8

9

10

13

12

11GND

P3.4

P3.5

P3.3

P3.2

XTL1

P3.1

XTL2

P3.0

RST

P3.7

P1.1

P1.0

P1.2

P1.3

P1.4

P1.6

P1.5

P1.7

VCC

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3.0

P
1.7

R
S

T

P
1.6

P
1.5

P
1.4

P
1.2

P
1.3

P
1.1

P
1.0

V
S

S

X
T

L2

X
T

L1

P
3.7

P
3.6

P
3.5

P
3.3

P
3.4

P
3.2

P
3.1

/ E
A

P
0.6

P
0.7

P
0.5

P
0.4

P
0.3

P
0.1

P
0.2

P
0.0

V
C

C

P
2.0

P
2.2

P
2.1

P
2.3

P
2.4

P
2.5

P
2.7

P
2.6

/ P
S

E
N

A
LE

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 7

Review: Why use C?

• It is a ‘mid-level’ language, with ‘high-level’ features (such
as support for functions and modules), and ‘low-level’
features (such as good access to hardware via pointers);

• It is very efficient;

• It is popular and well understood;

• Even desktop developers who have used only Java or C++
can soon understand C syntax;

• Good, well-proven compilers are available for every
embedded processor (8-bit to 32-bit or more);

• Experienced staff are available;

• Books, training courses, code samples and WWW sites
discussing the use of the language are all widely available.

Overall, C may not be an ideal language for developing embedded
systems, but it is a good choice (and is unlikely that a ‘perfect’ language
will ever be created).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 8

Review: The 8051 microcontroller

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3.0

P
1.7

R
S

T

P
1.6

P
1.5

P
1.4

P
1.2

P
1.3

P
1.1

P
1.0

V
S

S

X
T

L2

X
T

L1

P
3.7

P
3.6

P
3.5

P
3.3

P
3.4

P
3.2

P
3.1

/ E
A

P
0.6

P
0.7

P
0.5

P
0.4

P
0.3

P
0.1

P
0.2

P
0.0

V
C

C

P
2.0

P
2.2

P
2.1

P
2.3

P
2.4

P
2.5

P
2.7

P
2.6

/ P
S

E
N

A
LE

Typical features of a modern 8051:

• Thirty-two input / output lines.

• Internal data (RAM) memory - 256 bytes.

• Up to 64 kbytes of ROM memory (usually flash)

• Three 16-bit timers / counters

• Nine interrupts (two external) with two priority levels.

• Low-power Idle and Power-down modes.

The different members of the 8051 family are suitable for a huge range
of projects - from automotive and aerospace systems to TV “remotes”.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 9

Review: The “super loop” software architecture

Problem

What is the minimum software environment you need to create an
embedded C program?

Solution

void main(void)
 {
 /* Prepare for Task X */
 X_Init();

 while(1) /* 'for ever' (Super Loop) */
 {
 X(); /* Perform the task */
 }
 }

Crucially, the ‘super loop’, or ‘endless loop’, is required because we
have no operating system to return to: our application will keep looping
until the system power is removed.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 10

Review: An introduction to schedulers

Operating System

BIOS

Hardware

Word Processor

OS provides ‘common code’ for:
• Graphics
• Printing
• File storage
• Sound
• ...

Many embedded systems must carry out tasks at particular instants
of time. More specifically, we have two kinds of activity to
perform:

• Repeated tasks, to be performed (say) once every 100 ms,
and - less commonly -

• One-shot tasks, to be performed once after a delay of (say)
50 ms.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 11

Review: Building a scheduler

void main(void)
 {
 Timer_2_Init(); /* Set up Timer 2 */

 EA = 1; /* Globally enable interrupts */

 while(1); /* An empty Super Loop */
 }

void Timer_2_Init(void)
 {
 /* Timer 2 is configured as a 16-bit timer,
 which is automatically reloaded when it overflows
 With these setting, timer will overflow every 1 ms */
 T2CON = 0x04; /* Load T2 control register */
 T2MOD = 0x00; /* Load T2 mode register */

 TH2 = 0xFC; /* Load T2 high byte */
 RCAP2H = 0xFC; /* Load T2 reload capt. reg. high byte */
 TL2 = 0x18; /* Load T2 low byte */
 RCAP2L = 0x18; /* Load T2 reload capt. reg. low byte */

 /* Timer 2 interrupt is enabled, and ISR will be called
 whenever the timer overflows - see below. */
 ET2 = 1;

 /* Start Timer 2 running */
 TR2 = 1;
 }

void X(void) interrupt INTERRUPT_Timer_2_Overflow
 {
 /* This ISR is called every 1 ms */
 /* Place required code here... */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 12

Overview of this seminar

This seminar will consider the design of a very flexible scheduler.

THE CO-OPERATIVE SCHEDULER

• A co-operative scheduler provides a single-tasking system architecture
Operation:

• Tasks are scheduled to run at specific times (either on a one-shot or regular basis)
• When a task is scheduled to run it is added to the waiting list
• When the CPU is free, the next waiting task (if any) is executed
• The task runs to completion, then returns control to the scheduler
Implementation:

• The scheduler is simple, and can be implemented in a small amount of code.
• The scheduler must allocate memory for only a single task at a time.
• The scheduler will generally be written entirely in a high-level language (such as ‘C’).
• The scheduler is not a separate application; it becomes part of the developer’s code
Performance:

• Obtain rapid responses to external events requires care at the design stage.
Reliability and safety:

• Co-operate scheduling is simple, predictable, reliable and safe.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 13

The Co-operative Scheduler

A scheduler has the following key components:

• The scheduler data structure.

• An initialisation function.

• A single interrupt service routine (ISR), used to update the
scheduler at regular time intervals.

• A function for adding tasks to the scheduler.

• A dispatcher function that causes tasks to be executed when
they are due to run.

• A function for removing tasks from the scheduler (not
required in all applications).

We will consider each of the required components in turn.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 14

Overview

/*--*/
void main(void)
 {
 /* Set up the scheduler */
 SCH_Init_T2();

 /* Prepare for the 'Flash_LED' task */
 LED_Flash_Init();

 /* Add the 'Flash LED' task (on for ~1000 ms, off for ~1000 ms)
 Timings are in ticks (1 ms tick interval)
 (Max interval / delay is 65535 ticks) */
 SCH_Add_Task(LED_Flash_Update, 0, 1000);

 /* Start the scheduler */
 SCH_Start();

 while(1)
 {
 SCH_Dispatch_Tasks();
 }
 }

/*--*/
void SCH_Update(void) interrupt INTERRUPT_Timer_2_Overflow
 {
 /* Update the task list */
 ...
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 15

The scheduler data structure and task array

/* Store in DATA area, if possible, for rapid access
 Total memory per task is 7 bytes */
typedef data struct
 {
 /* Pointer to the task (must be a 'void (void)' function) */
 void (code * pTask)(void);

 /* Delay (ticks) until the function will (next) be run
 - see SCH_Add_Task() for further details */
 tWord Delay;

 /* Interval (ticks) between subsequent runs.
 - see SCH_Add_Task() for further details */
 tWord Repeat;

 /* Set to 1 (by scheduler) when task is due to execute */
 tByte RunMe;
 } sTask;

File Sch51.H also includes the constant SCH_MAX_TASKS:
/* The maximum number of tasks required at any one time
 during the execution of the program

 MUST BE ADJUSTED FOR EACH NEW PROJECT */
#define SCH_MAX_TASKS (1)

Both the sTask data type and the SCH_MAX_TASKS constant are
used to create - in the file Sch51.C - the array of tasks that is
referred to throughout the scheduler:
/* The array of tasks */
sTask SCH_tasks_G[SCH_MAX_TASKS];

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 16

The size of the task array

You must ensure that the task array is sufficiently large to store the
tasks required in your application, by adjusting the value of
SCH_MAX_TASKS.

For example, if you schedule three tasks as follows:

 SCH_Add_Task(Function_A, 0, 2);
 SCH_Add_Task(Function_B, 1, 10);
 SCH_Add_Task(Function_C, 3, 15);

…then SCH_MAX_TASKS must have a value of 3 (or more) for
correct operation of the scheduler.

Note also that - if this condition is not satisfied, the scheduler will
generate an error code (more on this later).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 17

One possible initialisation function:

/*--*/

void SCH_Init_T2(void)
 {
 tByte i;

 for (i = 0; i < SCH_MAX_TASKS; i++)
 {
 SCH_Delete_Task(i);
 }

 /* SCH_Delete_Task() will generate an error code,
 because the task array is empty.
 -> reset the global error variable. */
 Error_code_G = 0;

 /* Now set up Timer 2
 16-bit timer function with automatic reload

 Crystal is assumed to be 12 MHz
 The Timer 2 resolution is 0.000001 seconds (1 µs)
 The required Timer 2 overflow is 0.001 seconds (1 ms)
 - this takes 1000 timer ticks
 Reload value is 65536 - 1000 = 64536 (dec) = 0xFC18 */

 T2CON = 0x04; /* Load Timer 2 control register */
 T2MOD = 0x00; /* Load Timer 2 mode register */

 TH2 = 0xFC; /* Load Timer 2 high byte */
 RCAP2H = 0xFC; /* Load Timer 2 reload capture reg, high byte */
 TL2 = 0x18; /* Load Timer 2 low byte */
 RCAP2L = 0x18; /* Load Timer 2 reload capture reg, low byte */

 ET2 = 1; /* Timer 2 interrupt is enabled */

 TR2 = 1; /* Start Timer 2 */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 18

IMPORTANT:
The ‘one interrupt per microcontroller’ rule!

The scheduler initialisation function enables the generation of interrupts
associated with the overflow of one of the microcontroller timers.

For reasons discussed in Chapter 1 of PTTES, it is assumed
throughout this course that only the ‘tick’ interrupt source is
active: specifically, it is assumed that no other interrupts are
enabled.

If you attempt to use the scheduler code with additional interrupts
enabled, the system cannot be guaranteed to operate at all: at best,
you will generally obtain very unpredictable - and unreliable - system
behaviour.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 19

The ‘Update’ function

/*--*/
void SCH_Update(void) interrupt INTERRUPT_Timer_2_Overflow
 {
 tByte Index;

 TF2 = 0; /* Have to manually clear this. */

 /* NOTE: calculations are in *TICKS* (not milliseconds) */
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 /* Check if there is a task at this location */
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 /* The task is due to run */
 SCH_tasks_G[Index].RunMe += 1; /* Inc. 'RunMe' flag */

 if (SCH_tasks_G[Index].Period)
 {
 /* Schedule regular tasks to run again */
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 }
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 20

The ‘Add Task’ function

Sch_Add_Task(Task_Name, Initial_Delay, Task_Interval);

Task_Name
the name of the function
(task) that you wish to
schedule

Task_Interval
the interval (in ticks)
between repeated
executions of the task.
If set to 0, the task is
executed only once.

Initial_Delay
the delay (in ticks)
before task is first
executed. If set to 0,
the task is executed
immediately.

Examples:
SCH_Add_Task(Do_X,1000,0);

Task_ID = SCH_Add_Task(Do_X,1000,0);

SCH_Add_Task(Do_X,0,1000);

This causes the function Do_X() to be executed regularly, every
1000 scheduler ticks; task will be first executed at T = 300 ticks,
then 1300, 2300, etc:
SCH_Add_Task(Do_X,300,1000);

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 21

/*--*-

 SCH_Add_Task()

 Causes a task (function) to be executed at regular
 intervals, or after a user-defined delay.

-*--*/
tByte SCH_Add_Task(void (code * pFunction)(),
 const tWord DELAY,
 const tWord PERIOD)
 {
 tByte Index = 0;

 /* First find a gap in the array (if there is one) */
 while ((SCH_tasks_G[Index].pTask != 0) && (Index < SCH_MAX_TASKS))
 {
 Index++;
 }

 /* Have we reached the end of the list? */
 if (Index == SCH_MAX_TASKS)
 {
 /* Task list is full
 -> set the global error variable */
 Error_code_G = ERROR_SCH_TOO_MANY_TASKS;

 /* Also return an error code */
 return SCH_MAX_TASKS;
 }

 /* If we're here, there is a space in the task array */
 SCH_tasks_G[Index].pTask = pFunction;

 SCH_tasks_G[Index].Delay = DELAY + 1;
 SCH_tasks_G[Index].Period = PERIOD;

 SCH_tasks_G[Index].RunMe = 0;

 return Index; /* return pos. of task (to allow deletion) */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 22

The ‘Dispatcher’

/*--*-

 SCH_Dispatch_Tasks()

 This is the 'dispatcher' function. When a task (function)
 is due to run, SCH_Dispatch_Tasks() will run it.
 This function must be called (repeatedly) from the main loop.

-*--*/
void SCH_Dispatch_Tasks(void)
 {
 tByte Index;

 /* Dispatches (runs) the next task (if one is ready) */
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 if (SCH_tasks_G[Index].RunMe > 0)
 {
 (*SCH_tasks_G[Index].pTask)(); /* Run the task */

 SCH_tasks_G[Index].RunMe -= 1; /* Reduce RunMe count */

 /* Periodic tasks will automatically run again
 - if this is a 'one shot' task, delete it */
 if (SCH_tasks_G[Index].Period == 0)
 {
 SCH_Delete_Task(Index);
 }
 }
 }

 /* Report system status */
 SCH_Report_Status();

 /* The scheduler enters idle mode at this point */
 SCH_Go_To_Sleep();
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 23

The dispatcher is the only component in the Super Loop:

/* --- */
void main(void)
 {

 ...

 while(1)
 {
 SCH_Dispatch_Tasks();
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 24

Function arguments

• On desktop systems, function arguments are generally
passed on the stack using the push and pop assembly
instructions.

• Since the 8051 has a size limited stack (only 128 bytes at
best and as low as 64 bytes on some devices), function
arguments must be passed using a different technique.

• In the case of Keil C51, these arguments are stored in fixed
memory locations.

• When the linker is invoked, it builds a call tree of the
program, decides which function arguments are mutually
exclusive (that is, which functions cannot be called at the
same time), and overlays these arguments.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 25

Function pointers and Keil linker options

When we write:
SCH_Add_Task(Do_X,1000,0);

…the first parameter of the ‘Add Task’ function is a pointer to the
function Do_X().

This function pointer is then passed to the Dispatch function and it
is through this function that the task is executed:
if (SCH_tasks_G[Index].RunMe > 0)
 {
 (*SCH_tasks_G[Index].pTask)(); /* Run the task */

BUT
The linker has difficulty determining the correct call tree when function
pointers are used as arguments.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 26

To deal with this situation, you have two realistic options:

1. You can prevent the compiler from using the OVERLAY
directive by disabling overlays as part of the linker options
for your project.

Note that, compared to applications using overlays, you will
generally require more RAM to run your program.

2. You can tell the linker how to create the correct call tree for
your application by explicitly providing this information in
the linker ‘Additional Options’ dialogue box.

This approach is used in most of the examples in the
“PTTES” book.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 27

void main(void)
 {
 ...

 /* Read the ADC regularly */
 SCH_Add_Task(AD_Get_Sample, 10, 1000);

 /* Simply display the count here (bargraph display) */
 SCH_Add_Task(BARGRAPH_Update, 12, 1000);

 /* All tasks added: start running the scheduler */
 SCH_Start();

The corresponding OVERLAY directive would take this form:

OVERLAY (main ~ (AD_Get_Sample,Bargraph_Update),
sch_dispatch_tasks ! (AD_Get_Sample,Bargraph_Update))

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 28

The ‘Start’ function

/*--*/

void SCH_Start(void)
 {
 EA = 1;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 29

The ‘Delete Task’ function

When tasks are added to the task array, SCH_Add_Task() returns
the position in the task array at which the task has been added:
Task_ID = SCH_Add_Task(Do_X,1000,0);

Sometimes it can be necessary to delete tasks from the array.

You can do so as follows: SCH_Delete_Task(Task_ID);

bit SCH_Delete_Task(const tByte TASK_INDEX)
 {
 bit Return_code;

 if (SCH_tasks_G[TASK_INDEX].pTask == 0)
 {
 /* No task at this location...
 -> set the global error variable */
 Error_code_G = ERROR_SCH_CANNOT_DELETE_TASK;

 /* ...also return an error code */
 Return_code = RETURN_ERROR;
 }
 else
 {
 Return_code = RETURN_NORMAL;
 }

 SCH_tasks_G[TASK_INDEX].pTask = 0x0000;
 SCH_tasks_G[TASK_INDEX].Delay = 0;
 SCH_tasks_G[TASK_INDEX].Period = 0;

 SCH_tasks_G[TASK_INDEX].RunMe = 0;

 return Return_code; /* return status */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 30

Reducing power consumption

/*--*/
void SCH_Go_To_Sleep()
 {
 PCON |= 0x01; /* Enter idle mode (generic 8051 version) */

 /* Entering idle mode requires TWO consecutive instructions
 on 80c515 / 80c505 - to avoid accidental triggering.
 E.g:
 PCON |= 0x01;
 PCON |= 0x20; */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 31

Reporting errors

/* Used to display the error code */
tByte Error_code_G = 0;

To record an error we include lines such as:
Error_code_G = ERROR_SCH_TOO_MANY_TASKS;
Error_code_G = ERROR_SCH_WAITING_FOR_SLAVE_TO_ACK;
Error_code_G = ERROR_SCH_WAITING_FOR_START_COMMAND_FROM_MASTER;
Error_code_G = ERROR_SCH_ONE_OR_MORE_SLAVES_DID_NOT_START;
Error_code_G = ERROR_SCH_LOST_SLAVE;
Error_code_G = ERROR_SCH_CAN_BUS_ERROR;
Error_code_G = ERROR_I2C_WRITE_BYTE_AT24C64;

To report these error code, the scheduler has a function
SCH_Report_Status(), which is called from the Update function.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 32

/*--*/

void SCH_Report_Status(void)
 {
#ifdef SCH_REPORT_ERRORS
 /* ONLY APPLIES IF WE ARE REPORTING ERRORS */

 /* Check for a new error code */
 if (Error_code_G != Last_error_code_G)
 {
 /* Negative logic on LEDs assumed */
 Error_port = 255 - Error_code_G;

 Last_error_code_G = Error_code_G;

 if (Error_code_G != 0)
 {
 Error_tick_count_G = 60000;
 }
 else
 {
 Error_tick_count_G = 0;
 }
 }
 else
 {
 if (Error_tick_count_G != 0)
 {
 if (--Error_tick_count_G == 0)
 {
 Error_code_G = 0; /* Reset error code */
 }
 }
 }
#endif
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 33

Note that error reporting may be disabled via the Port.H header
file:

/* Comment next line out if error reporting is NOT required */
/* #define SCH_REPORT_ERRORS */

Where error reporting is required, the port on which error codes will
be displayed is also determined via Port.H:
#ifdef SCH_REPORT_ERRORS
/* The port on which error codes will be displayed
 (ONLY USED IF ERRORS ARE REPORTED) */
#define Error_port P1

#endif

Note that, in this implementation, error codes are reported for
60,000 ticks (1 minute at a 1 ms tick rate).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 34

Displaying error codes

Rled Rled Rled Rled Rled Rled Rled Rled

LED 7 LED 6 LED 5 LED 4 LED 3 LED 2 LED 1 LED 0

8051 Device
Port 2

Vcc

U
LN

28
03

A

9

P2.0 - Pin 8
P2.1 - Pin 7
P2.2 - Pin 6
P2.3 - Pin 5
P2.4 - Pin 4
P2.5 - Pin 3
P2.6 - Pin 2
P2.7 - Pin 1

Pin 11 - LED 0
Pin 12 - LED 1
Pin 13 - LED 2
Pin 14 - LED 3
Pin 15 - LED 4
Pin 16 - LED 5
Pin 17 - LED 6
Pin 18 - LED 7

For 25mA LEDs, Rled = 120 Ohms

The forms of error reporting discussed here are low-level in nature and
are primarily intended to assist the developer of the application, or a
qualified service engineer performing system maintenance.

An additional user interface may also be required in your application to
notify the user of errors, in a more user-friendly manner.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 35

Hardware resource implications

Timer

The scheduler requires one hardware timer. If possible, this should
be a 16-bit timer, with auto-reload capabilities (usually Timer 2).

Memory

This main scheduler memory requirement is 7 bytes of memory per
task.

Most applications require around six tasks or less. Even in a
standard 8051/8052 with 256 bytes of internal memory the total
memory overhead is small.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 36

What is the CPU load of the scheduler?

• A scheduler with 1ms ticks

• 12 Mhz, 12 osc / instruction 8051

• One task is being executed.

• The test reveals that the CPU is 86% idle and that the
maximum possible task duration is therefore approximately
0.86 ms.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 37

A scheduler with 1ms ticks,
running on a 32 Mhz (4 oscillations per instruction) 8051.

• One task is being executed.

• The CPU is 97% idle and that the maximum possible task
duration is therefore approximately 0.97 ms.

• Twelve tasks are being executed.

• The CPU is 85% idle and that the maximum possible task
duration is therefore approximately 0.85 ms.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 38

Determining the required tick interval

In most instances, the simplest way of meeting the needs of the
various task intervals is to allocate a scheduler tick interval of 1 ms.

To keep the scheduler load as low as possible (and to reduce the
power consumption), it can help to use a long tick interval.

If you want to reduce overheads and power consumption to a
minimum, the scheduler tick interval should be set to match the
‘greatest common factor’ of all the task (and offset intervals).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 39

Suppose we have three tasks (X,Y,Z), and Task X is to be run every
10 ms, Task Y every 30 ms and Task Z every 25 ms. The scheduler
tick interval needs to be set by determining the relevant factors, as
follows:

• The factors of the Task X interval (10 ms) are: 1 ms, 2ms, 5
ms, 10 ms.

• Similarly, the factors of the Task Y interval (30 ms) are as
follows: 1 ms, 2 ms, 3 ms, 5 ms, 6 ms, 10 ms, 15 ms and 30
ms.

• Finally, the factors of the Task Z interval (25 ms) are as
follows: 1 ms, 5 ms and 25 ms.

In this case, therefore, the greatest common factor is 5 ms: this is
the required tick interval.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 40

Guidelines for predictable and reliable scheduling

1. For precise scheduling, the scheduler tick interval should be
set to match the ‘greatest common factor’ of all the task
intervals.

2. All tasks should have a duration less than the schedule tick
interval, to ensure that the dispatcher is always free to call
any task that is due to execute. Software simulation can
often be used to measure the task duration.

3. In order to meet Condition 2, all tasks must ‘timeout’ so
that they cannot block the scheduler under any
circumstances.

4. The total time required to execute all of the scheduled tasks
must be less than the available processor time. Of course,
the total processor time must include both this ‘task time’
and the ‘scheduler time’ required to execute the scheduler
update and dispatcher operations.

5. Tasks should be scheduled so that they are never required to
execute simultaneously: that is, task overlaps should be
minimised. Note that where all tasks are of a duration much
less than the scheduler tick interval, and that some task jitter
can be tolerated, this problem may not be significant.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 41

Overall strengths and weaknesses of the scheduler

☺ The scheduler is simple, and can be implemented in a small amount of
code.

☺ The scheduler is written entirely in ‘C’: it is not a separate application,
but becomes part of the developer’s code

☺ The applications based on the scheduler are inherently predictable,
safe and reliable.

☺ The scheduler supports team working, since individual tasks can
often be developed largely independently and then assembled into the
final system.

 Obtain rapid responses to external events requires care at the design
stage.

 The tasks cannot safely use interrupts: the only interrupt that should be
used in the application is the timer-related interrupt that drives the
scheduler itself.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 42

Preparations for the next seminar

Please read “PTTES” Chapter 13 and Chapter 14 before the next
seminar.

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3

.0

P
1

.7

R
S

T

P
1

.6

P
1

.5

P
1

.4

P
1

.2

P
1

.3

P
1

.1

P
1

.0

V
S

S

X
T

L
2

X
T

L
1

P
3

.7

P
3

.6

P
3

.5

P
3

.3

P
3

.4

P
3

.2

P
3

.1

/ E
A

P
0

.6

P
0

.7

P
0

.5

P
0

.4

P
0

.3

P
0

.1

P
0

.2

P
0

.0

V
C

C

P
2

.0

P
2

.2

P
2

.1

P
2

.3

P
2

.4

P
2

.5

P
2

.7

P
2

.6

/ P
S

E
N

A
L

E

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 43

Seminar 2:
A closer look at co-

operative task
scheduling (and some

alternatives)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 44

Overview of this seminar

• In this seminar, we’ll review some of the features of the co-
operative scheduler discussed in Seminar 1.

• We’ll then consider the features of a pre-emptive scheduler

• We’ll go on to develop a hybrid scheduler, which has
many of the useful features of both co-operative and pre-
emptive schedulers (but is simpler to build - and generally
more reliable - than a fully pre-emptive design)

• Finally, we’ll look at a range of different designs for other
forms of (co-operative) scheduler.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 45

Review: Co-operative scheduling

THE CO-OPERATIVE SCHEDULER

• A co-operative scheduler provides a single-tasking system architecture
Operation:

• Tasks are scheduled to run at specific times (either on a one-shot or regular basis)
• When a task is scheduled to run it is added to the waiting list
• When the CPU is free, the next waiting task (if any) is executed
• The task runs to completion, then returns control to the scheduler
Implementation:

• The scheduler is simple, and can be implemented in a small amount of code.
• The scheduler must allocate memory for only a single task at a time.
• The scheduler will generally be written entirely in a high-level language (such as ‘C’).
• The scheduler is not a separate application; it becomes part of the developer’s code
Performance:

• Obtain rapid responses to external events requires care at the design stage.
Reliability and safety:

• Co-operate scheduling is simple, predictable, reliable and safe.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 46

The pre-emptive scheduler

Overview:

THE PRE-EMPTIVE SCHEDULER

• A pre-emptive scheduler provides a multi-tasking system architecture
Operation:

• Tasks are scheduled to run at specific times (either on a one-shot or regular basis)
• When a task is scheduled to run it is added to the waiting list
• Waiting tasks (if any) are run for a fixed period then - if not completed - are paused and placed back in

the waiting list. The next waiting task is then run for a fixed period, and so on.
Implementation:

• The scheduler is comparatively complicated, not least because features such as semaphores must be
implemented to avoid conflicts when ‘concurrent’ tasks attempt to access shared resources.

• The scheduler must allocate memory is to hold all the intermediate states of pre-empted tasks.
• The scheduler will generally be written (at least in part) in assembly language.
• The scheduler is generally created as a separate application.
Performance:

• Rapid responses to external events can be obtained.
Reliability and safety:

• Generally considered to be less predictable, and less reliable, than co-operative approaches.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 47

Why do we avoid pre-emptive schedulers in this course?

Various research studies have demonstrated that, compared to pre-
emptive schedulers, co-operative schedulers have a number of
desirable features, particularly for use in safety-related systems.

“[Pre-emptive] schedules carry greater runtime overheads
because of the need for context switching - storage and retrieval
of partially computed results. [Co-operative] algorithms do not
incur such overheads. Other advantages of [co-operative]
algorithms include their better understandability, greater
predictability, ease of testing and their inherent capability for
guaranteeing exclusive access to any shared resource or data.”.
Nissanke (1997, p.237)

“Significant advantages are obtained when using this [co-
operative] technique. Since the processes are not interruptable,
poor synchronisation does not give rise to the problem of
shared data. Shared subroutines can be implemented without
producing re-entrant code or implementing lock and unlock
mechanisms”.
Allworth (1981, p.53-54)

Compared to pre-emptive alternatives, co-operative schedulers
have the following advantages: [1] The scheduler is simpler; [2]
The overheads are reduced; [3] Testing is easier; [4]
Certification authorities tend to support this form of scheduling.
Bate (2000)

[See PTTES, Chapter 13]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 48

Why is a co-operative scheduler (generally) more reliable?

• The key reason why the co-operative schedulers are both
reliable and predictable is that only one task is active at any
point in time: this task runs to completion, and then returns
control to the scheduler.

• Contrast this with the situation in a fully pre-emptive system
with more than one active task.

• Suppose one task in such a system which is reading from a
port, and the scheduler performs a ‘context switch’, causing
a different task to access the same port: under these
circumstances, unless we take action to prevent it, data may
be lost or corrupted.

This problem arises frequently in multi-tasking environments where
we have what are known as ‘critical sections’ of code.

Such critical sections are code areas that - once started - must be
allowed to run to completion without interruption.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 49

Critical sections of code

Examples of critical sections include:

• Code which modifies or reads variables, particularly global
variables used for inter-task communication. In general, this
is the most common form of critical section, since inter-task
communication is often a key requirement.

• Code which interfaces to hardware, such as ports, analogue-
to-digital converters (ADCs), and so on. What happens, for
example, if the same ADC is used simultaneously by more
than one task?

• Code which calls common functions. What happens, for
example, if the same function is called simultaneously by
more than one task?

In a co-operative system, problems with critical sections do not arise,
since only one task is ever active at the same time.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 50

How do we deal with critical sections in a pre-emptive
system?

To deal with such critical sections of code in a pre-emptive system,
we have two main possibilities:

• ‘Pause’ the scheduling by disabling the scheduler interrupt
before beginning the critical section; re-enable the scheduler
interrupt when we leave the critical section, or;

• Use a ‘lock’ (or some other form of ‘semaphore
mechanism’) to achieve a similar result.

The first solution can be implemented as follows:

• When Task A (say) starts accessing the shared resource (say
Port X), we disable the scheduler.

• This solves the immediate problem since Task A will be
allowed to run without interruption until it has finished with
Port X.

• However, this ‘solution’ is less than perfect. For one thing,
by disabling the scheduler, we will no longer be keeping
track of the elapsed time and all timing functions will begin
to drift - in this case by a period up to the duration of Task A
every time we access Port X. This is not acceptable in most
applications.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 51

Building a “lock” mechanism

The use of locks is a better solution.

Before entering the critical section of code, we ‘lock’ the associated
resource; when we have finished with the resource we ‘unlock’ it.
While locked, no other process may enter the critical section.

This is one way we might try to achieve this:

1. Task A checks the ‘lock’ for Port X it wishes to access.
2. If the section is locked, Task A waits.
3. When the port is unlocked, Task A sets the lock and then uses

the port.
4. When Task A has finished with the port, it leaves the critical

section and unlocks the port.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 52

Implementing this algorithm in code also seems straightforward:
#define UNLOCKED 0
#define LOCKED 1

bit Lock; // Global lock flag

// ...

// Ready to enter critical section
// - Wait for lock to become clear
// (FOR SIMPLICITY, NO TIMEOUT CAPABILITY IS SHOWN)
while(Lock == LOCKED);

// Lock is clear
// Enter critical section

// Set the lock
Lock = LOCKED;

// CRITICAL CODE HERE //

// Ready to leave critical section
// Release the lock
Lock = UNLOCKED;

// ...

A

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 53

However, the above code cannot be guaranteed to work correctly
under all circumstances.

Consider the part of the code labelled ‘A’. If our system is fully
pre-emptive, then our task can reach this point at the same time as
the scheduler performs a context switch and allows (say) Task B
access to the CPU. If Task Y also wants to access the Port X, we
can then have a situation as follows:

• Task A has checked the lock for Port X and found that the
port is available; Task A has, however, not yet changed the
lock flag.

• Task B is then ‘switched in’. Task B checks the lock flag
and it is still clear. Task B sets the lock flag and begins to
use Port X.

• Task A is ‘switched in’ again. As far as Task A is
concerned, the port is not locked; this task therefore sets the
flag, and starts to use the port, unaware that Task B is
already doing so.

• …

As we can see, this simple lock code violates the principal of
mutual exclusion: that is, it allows more than one task to access a
critical code section. The problem arises because it is possible for
the context switch to occur after a task has checked the lock flag but
before the task changes the lock flag. In other words, the lock
‘check and set code’ (designed to control access to a critical
section of code), is itself a critical section.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 54

• This problem can be solved.

• For example, because it takes little time to ‘check and set’
the lock code, we can disable interrupts for this period.

• However, this is not in itself a complete solution: because
there is a chance that an interrupt may have occurred even in
the short period of ‘check and set’, we then need to check
the relevant interrupt flag(s) and - if necessary - call the
relevant ISR(s). This can be done, but it adds substantially
to the complexity of the operating environment.

Even if we build a working lock mechanism, this is only a partial solution
to the problems caused by multi-tasking. If the purpose of Task A is to
read from an ADC, and Task B has locked the ADC when the Task A is
invoked, then Task A cannot carry out its required activity. Use of locks
(or any other mechanism), can prevent the system from crashing, but
cannot allow two tasks to have access to the ADC simultaneously.

When using a co-operative scheduler, such problems do not arise.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 55

The “best of both worlds” - a hybrid scheduler

THE HYBRID SCHEDULER

• A hybrid scheduler provides limited multi-tasking capabilities
Operation:

• Supports any number of co-operatively-scheduled tasks
• Supports a single pre-emptive task (which can interrupt the co-operative tasks)
Implementation:

• The scheduler is simple, and can be implemented in a small amount of code.
• The scheduler must allocate memory for - at most - two tasks at a time.
• The scheduler will generally be written entirely in a high-level language (such as ‘C’).
• The scheduler is not a separate application; it becomes part of the developer’s code
Performance:

• Rapid responses to external events can be obtained.
Reliability and safety:

• With careful design, can be as reliable as a (pure) co-operative scheduler.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 56

Creating a hybrid scheduler

The ‘update’ function from a co-operative scheduler:

void SCH_Update(void) interrupt INTERRUPT_Timer_2_Overflow
 {
 tByte Index;

 TF2 = 0; /* Have to manually clear this. */

 /* NOTE: calculations are in *TICKS* (not milliseconds) */
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 /* Check if there is a task at this location */
 if (SCH_tasks_G[Index].Task_p)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 /* The task is due to run */
 SCH_tasks_G[Index].RunMe += 1; /* Inc. RunMe */

 if (SCH_tasks_G[Index].Period)
 {
 /* Schedule periodic tasks to run again */
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 }
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 57

The co-operative version assumes a scheduler data type as follows:

/* Store in DATA area, if possible, for rapid access
 [Total memory per task is 7 bytes] */
typedef data struct
 {
 /* Pointer to the task (must be a 'void (void)' function) */
 void (code * Task_p)(void);

 /* Delay (ticks) until the function will (next) be run
 - see SCH_Add_Task() for further details */
 tWord Delay;

 /* Interval (ticks) between subsequent runs.
 - see SCH_Add_Task() for further details */
 tWord Period;

 /* Set to 1 (by scheduler) when task is due to execute */
 tByte RunMe;
 } sTask;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 58

The ‘Update’ function for a hybrid scheduler.

void hSCH_Update(void) interrupt INTERRUPT_Timer_2_Overflow
 {
 tByte Index;

 TF2 = 0; /* Have to manually clear this. */

 /* NOTE: calculations are in *TICKS* (not milliseconds) */
 for (Index = 0; Index < hSCH_MAX_TASKS; Index++)
 {
 /* Check if there is a task at this location */
 if (hSCH_tasks_G[Index].pTask)
 {
 if (--hSCH_tasks_G[Index].Delay == 0)
 {
 /* The task is due to run */
 if (hSCH_tasks_G[Index].Co_op)
 {
 /* If it is co-op, inc. RunMe */
 hSCH_tasks_G[Index].RunMe += 1;
 }
 else
 {
 /* If it is a pre-emp, run it IMMEDIATELY */
 (*hSCH_tasks_G[Index].pTask)();

 hSCH_tasks_G[Index].RunMe -= 1; /* Dec RunMe */

 /* Periodic tasks will automatically run again
 - if this is a 'one shot' task, delete it. */
 if (hSCH_tasks_G[Index].Period == 0)
 {
 hSCH_tasks_G[Index].pTask = 0;
 }
 }

 if (hSCH_tasks_G[Index].Period)
 {
 /* Schedule regular tasks to run again */
 hSCH_tasks_G[Index].Delay = hSCH_tasks_G[Index].Period;
 }
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 59

The hybrid version assumes a scheduler data type as follows:

/* Store in DATA area, if possible, for rapid access
 [Total memory per task is 8 bytes] */
typedef data struct
 {
 /* Pointer to the task (must be a 'void (void)' function) */
 void (code * Task_p)(void);

 /* Delay (ticks) until the function will (next) be run
 - see SCH_Add_Task() for further details. */
 tWord Delay;

 /* Interval (ticks) between subsequent runs.
 - see SCH_Add_Task() for further details. */
 tWord Period;

 /* Set to 1 (by scheduler) when task is due to execute */
 tByte RunMe;

 /* Set to 1 if task is co-operative;
 Set to 0 if task is pre-emptive. */
 tByte Co_op;
 } sTask;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 60

Sch_Add_Task(Task_Name, Initial_Delay, Period);

Task_Name
the name of the function
(task) that you wish to
schedule

Period
the interval (in ticks)
between repeated
executions of the task.
If set to 0, the task is
executed only once.

Initial_Delay
the delay (in ticks)
before task is first
executed. If set to 0,
the task is executed
immediately.

hSCH_Add_Task(Task_Name, Initial_Delay, Period, Co_op);

Task_Name
the name of the function
(task) that you wish to
schedule

Period
the interval (ticks)
between repeated
executions of the task.
If set to 0, the task is
executed only once.

Initial_Delay
the delay (in ticks)
before task is first
executed. If set to 0,
the task is executed
immediately.

Co_op

set to ‘1’ if the task is
co-operative;

set to ‘0’ if the task is
pre-emptive

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 61

Reliability and safety issues

As we have seen, in order to deal with critical sections of code in a
fully pre-emptive system, we have two main possibilities:

• ‘Pause’ the scheduling by disabling the scheduler interrupt
before beginning the critical section; re-enable the scheduler
interrupt when we leave the critical section, or;

• Use a ‘lock’ (or some other form of ‘semaphore
mechanism’) to achieve a similar result.

Problems occur with the second solution if a task is interrupted after
it reads the lock flag (and finds it unlocked) and before it sets the
flag (to indicate that the resource is in use).

// ...

// Ready to enter critical section
// - Check lock is clear

if (Lock == LOCKED)
 {
 return;
 }

// Lock is clear
// Enter critical section

// Set the lock
Lock = LOCKED;

// CRITICAL CODE HERE //

Problems arise if we have a context switch here
(between ‘check and ‘set’)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 62

The problem does not occur in a hybrid scheduler, for the following
reasons:

• In the case of pre-emptive tasks - because they cannot be
interrupted - the ‘interrupt between check and lock’ situation
cannot arise.

• In the case of co-operative tasks (which can be interrupted),
the problem again cannot occur, for slightly different
reasons.

Co-operative tasks can be interrupted ‘between check and
lock’, but only by a pre-emptive task. If the pre-emptive
task interrupts and finds that a critical section is unlocked, it
will set the lock1, use the resource, then clear the lock: that
is, it will run to completion. The co-operative task will then
resume and will find the system in the same state that it
was in before the pre-emptive task interrupted: as a
result, there can be no breach of the mutual exclusion rule.

Note that the hybrid scheduler solves the problem of access to
critical sections of code in a simple way: unlike the complete pre-
emptive scheduler, we do not require the creation of complex code
‘lock’ or ‘semaphore’ structures.

1 Strictly, setting the lock flag is not necessary, as no interruption is possible.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 63

The safest way to use the hybrid scheduler

The most reliable way to use the hybrid scheduler is as follows

• Create as many co-operative tasks as you require. It is
likely that you will be using a hybrid scheduler because one
or more of these tasks may have a duration greater than the
tick interval; this can be done safely with a hybrid
scheduler, but you must ensure that the tasks do not overlap.

• Implement one pre-emptive task; typically (but not
necessarily) this will be called at every tick interval. A good
use of this task is, for example, to check for errors or
emergency conditions: this task can thereby be used to
ensure that your system is able to respond within (say) 10ms
to an external event, even if its main purpose is to run (say)
a 1000 ms co-operative task.

• Remember that the pre-emptive task(s) can interrupt the co-
operative tasks. If there are critical code sections, you need
to implement a simple lock mechanism

• The pre-emptive task must be short (with a maximum
duration of around 50% of the tick interval - preferably
much less), otherwise overall system performance will be
greatly impaired.

• Test the application carefully, under a full range of
operating conditions, and monitor for errors.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 64

Overall strengths and weaknesses

The overall strengths and weaknesses of Hybrid Scheduler may be
summarised as follows:

☺ Has the ability to deal with both ‘long infrequent tasks’ and (a single)
‘short frequent task’ that cannot be provided by a pure Co-operative
Scheduler.

☺ Is safe and predictable, if used according to the guidelines.
 It must be handled with caution.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 65

Other forms of co-operative scheduler

• 255-TICK SCHEDULER [PTTES, p.747]
A scheduler designed to run multiple tasks, but with reduced
memory (and CPU) overheads. This scheduler operates in
the same way as the standard co-operative schedulers, but
all information is stored in byte-sized (rather than word-
sized) variables: this reduces the required memory for each
task by around 30%.

• ONE-TASK SCHEDULER [PTTES, p.749]
A stripped-down, co-operative scheduler able to manage a
single task. This very simple scheduler makes very efficient
use of hardware resources, with the bare minimum of CPU
and memory overheads.

• ONE-YEAR SCHEDULER [PTTES, p.755]
A scheduler designed for very low-power operation:
specifically, it is designed to form the basis of battery-
powered applications capable of operating for a year or
more from a small, low-cost, battery supply.

• STABLE SCHEDULER [PTTES, p.932]
is a temperature-compensated scheduler that adjusts its
behaviour to take into account changes in ambient
temperature.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 66

PATTERN: 255-TICK SCHEDULER

• A scheduler designed to run multiple tasks, but with reduced
memory (and CPU) overheads. This scheduler operates in
the same way as the standard co-operative schedulers, but
all information is stored in byte-sized (rather than word-
sized) variables: this reduces the required memory for each
task by around 30%.

/* Store in DATA area, if possible, for rapid access
 [Total memory per task is 5 bytes)] */
typedef data struct
 {
 /* Pointer to the task (must be a 'void (void)' function) */
 void (code * pTask)(void);

 /* Delay (ticks) until the function will (next) be run
 - see SCH_Add_Task() for further details. */
 tByte Delay;

 /* Interval (ticks) between subsequent runs.
 - see SCH_Add_Task() for further details. */
 tByte Period;

 /* Incremented (by scheduler) when task is due to execute */
 tByte RunMe;
 } sTask;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 67

PATTERN: ONE-TASK SCHEDULER

• A stripped-down, co-operative scheduler able to manage a
single task. This very simple scheduler makes very efficient
use of hardware resources, with the bare minimum of CPU
and memory overheads.

• Very similar in structure (and use) to “sEOS” (in PES I).

• The scheduler will consume no significant CPU resources:
short of implementing the application as a SUPER LOOP
(with all the disadvantages of this rudimentary architecture),
there is generally no more efficient way of implementing
your application in a high-level language.

• Allows 0.1 ms tick intervals - even on the most basic
8051.

This approach can be both safe and reliable, provided that you do not
attempt to ‘shoe-horn’ a multi-task design into this single-task
framework.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 68

PATTERN: ONE-YEAR SCHEDULER

• A scheduler designed for very low-power operation:
specifically, it is designed to form the basis of battery-
powered applications capable of operating for a year or
more from a small, low-cost, battery supply.

• AA cells are particularly popular, are widely available
throughout the world, and are appropriate for many
applications. The ubiquitous Duracell MN1500, for
example, has a rating of 1850 mAh. At low currents (an
average of around 0.3 mA), you can expect to get at least a
year of life from such cells.

• To obtain such current consumption, choose a LOW
operating frequency (e.g. watch crystal, 32 kHz)

• NOTE: Performance will be limited!

B

E

C

5.5V, 0.3A lamp

ZTX751

Vcc

10 K

10 µF

4 MHz

20

19

18

17

16

15

14

1

2

3

4

5

6

7

At
m

el
 1

05
1

8

9

10

13

12

11GND

P3.4

P3.5

P3.3

P3.2

XTL1

P3.1

XTL2

P3.0

RST

P3.7

P1.1

P1.0

P1.2

P1.3

P1.4

P1.6

P1.5

P1.7

VCC

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 69

PATTERN: STABLE SCHEDULER

• A temperature-compensated scheduler that adjusts its
behaviour to take into account changes in ambient
temperature.

/* The temperature compensation data

 The Timer 2 reload values (low and high bytes) are varied depending
 on the current average temperature.

 NOTE (1):
 Only temperature values from 10 - 30 celsius are considered
 in this version

 NOTE (2):
 Adjust these values to match your hardware! */
tByte code T2_reload_L[21] =
 /* 10 11 12 13 14 15 16 17 18 19 */
 {0xBA,0xB9,0xB8,0xB7,0xB6,0xB5,0xB4,0xB3,0xB2,0xB1,
 /* 20 21 22 23 24 25 26 27 28 29 30 */
 0xB0,0xAF,0xAE,0xAD,0xAC,0xAB,0xAA,0xA9,0xA8,0xA7,0xA6};

tByte code T2_reload_H[21] =
 /* 10 11 12 13 14 15 16 17 18 19 */
 {0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,
 /* 20 21 22 23 24 25 26 27 28 29 30 */
 0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C,0x3C};

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 70

Mix and match …

• Many of these different techniques can be combined

• For example, using the one-year and one-task schedulers
together will further reduce current consumption.

• For example, using the “stable scheduler” as the Master
node in a multi-processor system will improve the time-
keeping in the whole network

[More on this in the next seminar …]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 71

Preparations for the next seminar

Please read “PTTES” Chapter 25 before the next seminar.

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3

.0

P
1

.7

R
S

T

P
1

.6

P
1

.5

P
1

.4

P
1

.2

P
1

.3

P
1

.1

P
1

.0

V
S

S

X
T

L
2

X
T

L
1

P
3

.7

P
3

.6

P
3

.5

P
3

.3

P
3

.4

P
3

.2

P
3

.1

/ E
A

P
0

.6

P
0

.7

P
0

.5

P
0

.4

P
0

.3

P
0

.1

P
0

.2

P
0

.0

V
C

C

P
2

.0

P
2

.2

P
2

.1

P
2

.3

P
2

.4

P
2

.5

P
2

.7

P
2

.6

/ P
S

E
N

A
L

E

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 72

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 73

Seminar 3:
Shared-clock

schedulers for multi-
processor systems

Master Slave 2Slave 1 Slave N

Tick messages (from master to slaves)

Acknowledgement
message

Acknowledgement
message

Acknowledgement
message

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 74

Overview of this seminar

We now turn our attention to multi-processor applications. As we
will see, an important advantage of the time-triggered (co-
operative) scheduling architecture is that it is inherently scaleable,
and that its use extends naturally to multi-processor environments.

In this seminar:

• We consider some of the advantages - and disadvantages -
that can result from the use of multiple processors.

• We introduce the shared-clock scheduler.

• We consider the implementation of shared-clock designs
schedulers that are kept synchronised through the use of
external interrupts on the Slave microcontrollers.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 75

Why use more than one processor?

Many modern embedded systems contain more than one processor.

For example, a modern passenger car might contain some forty such
devices, controlling brakes, door windows and mirrors, steering, air
bags, and so forth.

Similarly, an industrial fire detection system might typically have
200 or more processors, associated - for example - with a range of
different sensors and actuators.

Two main reasons:

• Additional CPU performance and hardware facilities

• Benefits of modular design

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 76

Additional CPU performance and hardware facilities

Suppose we require a microcontroller with the following
specification:

• 60+ port pins

• Six timers

• Two USARTS

• 128 kbytes of ROM

• 512 bytes of RAM

• A cost of around $1.00 (US)

… how can we achieve this???

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 77

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

ALE (/PROG)

/ EA

/PSEN

31

30

29

19 XTL1

XTL218

RST9

40

VCC

20

VSS

“8
05

1”

P 1.7

1
2
3
4
5

P 1.56
7

P 1.0 [T2]
P 1.1 [T2EX]
P 1.2
P 1.3
P 1.4

P 1.6
8

P 3.0 (RXD)
P 3.1 (TXD)
P 3.2 (/INT0)
P 3.3 (/INT1)
P 3.4 (T0)
P 3.5 (T1)
P 3.6 (/WR)
P 3.7 (/RD)

10
11
12
13
14
15
16
17

P 0.0 (AD0) 39

P 0.1 (AD1) 38

P 0.2 (AD2) 37

P 0.3 (AD3) 36

P 0.4 (AD4) 35

P 0.5 (AD5) 34

P 0.6 (AD6) 33

P 0.7 (AD7) 32

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

ALE (/PROG)

/ EA

/PSEN

31

30

29

19 XTL1

XTL218

RST9

40

VCC

20

VSS

“8
05

1”

P 1.7

1
2
3
4
5

P 1.56
7

P 1.0 [T2]
P 1.1 [T2EX]
P 1.2
P 1.3
P 1.4

P 1.6
8

P 3.0 (RXD)
P 3.1 (TXD)
P 3.2 (/INT0)
P 3.3 (/INT1)
P 3.4 (T0)
P 3.5 (T1)
P 3.6 (/WR)
P 3.7 (/RD)

10
11
12
13
14
15
16
17

P 0.0 (AD0) 39

P 0.1 (AD1) 38

P 0.2 (AD2) 37

P 0.3 (AD3) 36

P 0.4 (AD4) 35

P 0.5 (AD5) 34

P 0.6 (AD6) 33

P 0.7 (AD7) 32

• A flexible environment with 62 free port pins, 5 free timers,
two UARTs, etc.

• Further microcontrollers may be added without difficulty,

• The communication over a single wire (plus ground) will
ensure that the tasks on all processors are synchronised.

• The two-microcontroller design also has two CPUs:
true multi-tasking is possibly.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 78

The benefits of modular design

Suppose we want to build a range of clocks…

AT MH

Current Time : 01.44

Alarm Time : --:--

We can split the design into ‘display’ and ‘time-keeping’ modules.

This type of modular approach is very common in the automotive
industry where increasing numbers of microcontroller-based
modules are used in new vehicle designs.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 79

The benefits of modular design

Acquisition
system

1

Sensor
1

Sensor
2

Sensor
3

PC

An alternative solution:

Acquisition
system

1

Sensor
1

Sensor
2

Sensor
3

PC

MCU
A

2

MCU
B

3

MCU
C

4

In the A310 Airbus, the slat and flap control computers form an
‘intelligent’ actuator sub-system. If an error is detected during
landing, the wings are set to a safe state and then the actuator sub-
system shuts itself down.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 80

So - how do we link more than one processor?

Some important questions:

• How do we keep the clocks on the various nodes
synchronised?

• How do we transfer data between the various nodes?

• How does one node check for errors on the other nodes?

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 81

Synchronising the clocks

Why do we need to synchronise the tasks running on different parts
of a multi-processor system?

Portable Traffic
Light Controller

Portable Traffic
Light Controller

• We will assume that there will be a microcontroller at each
end of the traffic light application to control the two sets of
lights.

• We will also assume that each microcontroller is running a
scheduler, and that each is driven by an independent crystal
oscillator circuit.

BUT!

Each microcontroller will operate at a different temperature…

The lights will get “out of sync”…

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 82

Synchronising the clocks

The S-C scheduler tackles this problem by sharing a single clock
between the various processor board:

Master Slave 2Slave 1 Slave N

Tick messages (from Master to Slaves)

Here we have one, accurate, clock on the Master node in the
network.

This clock is used to drive the scheduler in the Master node in
exactly the manner discussed in Seminar 1 and Seminar 2.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 83

Synchronising the clocks - Slave nodes

The Slave nodes also have schedulers: however, the interrupts used
to drive these schedulers are derived from ‘tick messages’ generated
by the Master.

Time

Tick
Message

Tick
Message

Tick
Message ...

Master tick (from timer)

Slave tick (from CAN hardware)

This keeps all the nodes running “in phase”

For example:

In the case of the traffic lights considered earlier, changes in
temperature will, at worst, cause the lights to cycle more quickly or
more slowly: the two sets of lights will not, however, get out of
sync.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 84

Transferring data

In many applications, we will also need to transfer data between
the tasks running on different processor nodes.

To illustrate this, consider again the traffic-light controller.
Suppose that a bulb blows in one of the light units.

• When a bulb is missing, the traffic control signals are
ambiguous: we therefore need to detect bulb failures on each
node and, having detected a failure, notify the other node
that a failure has occurred.

• This will allow us - for example - to extinguish all the
(available) bulbs on both nodes, or to flash all the bulbs on
both nodes: in either case, this will inform the road user that
something is amiss, and that the road must be negotiated
with caution.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 85

Transferring data (Master to Slave)

As we discussed above, the Master sends regular tick messages to
the Slave, typically once per millisecond.

These tick messages can - in most S-C schedulers - include data
transfers: it is therefore straightforward to send an appropriate tick
message to the Slave to alert it to the bulb failure.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 86

Transferring data (Slave to Master)

To deal with the transfer of data from the Slave to the Master, we
need an additional mechanism: this is provided through the use of
‘Acknowledgement’ messages:

Master Slave 2Slave 1 Slave N

Tick messages (from master to slaves)

Acknowledgement
message

Acknowledgement
message

Acknowledgement
message

This is a ‘time division multiple access’ (TDMA) protocol, in which
the acknowledgement messages are interleaved with the Tick
messages.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 87

Transferring data (Slave to Master)

This figure shows the mix of Tick and Acknowledgement messages
that will typically be transferred in a two-Slave (CAN) network.

Time

Tick
Message
(Data for S1)

Ack
Message

(from S1)

Tick
Message
(Data for S2)

Ack
Message

(from S2)

Tick
Message
(Data for S1)

Ack
Message

(from S1)

...

Master tick (from timer)

Slave tick (from CAN hardware)

Note that, in a shared-clock scheduler, all data transfers are carried out
using the interleaved Tick and Acknowledgement messages: no
additional messages are permitted on the bus. As a result, we are able
to determine precisely the network bandwidth required to ensure that all
messages are delivered precisely on time.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 88

Detecting network and node errors

How do we detect this (and other errors)?

What should we do?

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 89

Detecting errors in the Slave(s)

• We know from the design specification that the Slave should
receive ticks at precise intervals of time (e.g. every 10 ms)

• Because of this, we simply need to measure the time interval
between ticks; if a period greater than the specified tick
interval elapses between ticks, we can safely conclude that
an error has occurred.

• In many circumstances an effective way of achieving this is
to set a watchdog timer in the Slave to overflow at a period
slightly longer than the tick interval
(we’ll discuss watchdog timers in detail in Seminar 10).

• If a tick is not received, then the timer will overflow, and we
can invoke an appropriate error-handling routine.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 90

Detecting errors in the Master

Detecting errors in the Master node requires that each Slave sends
appropriate acknowledgement messages to the Master at regular
intervals.

Considering the operation of a particular 1-Master, 10-Slave
network:

• The Master node sends tick messages to all nodes,
simultaneously, every millisecond; these messages are used
to invoke the Update function in all Slaves (every
millisecond).

• Each tick message may include data for a particular node. In
this case, we will assume that the Master sends tick
messages to each of the Slaves in turn; thus, each Slave
receives data in every tenth tick message (every 10
milliseconds in this case).

• Each Slave sends an acknowledgement message to the
Master only when it receives a tick message with its ID; it
does not send an acknowledgement to any other tick
messages.

This arrangement provides the predictable bus loading that we require,
and a means of communicating with each Slave individually.

It also means that the Master is able to detect whether or not a
particular Slave has responded to its tick message.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 91

Handling errors detected by the Slave

We will assume that errors in the Slave are detected with a
watchdog timer. To deal with such errors, the shared-clock
schedulers considered on this course all operate as follows:

• Whenever the Slave node is reset (either having been
powered up, or reset as a result of a watchdog overflow), the
node enters a ‘safe state’.

• The node remains in this state until it receives an
appropriate series of ‘start’ commands from the Master.

This form of error handling is easily produced, and is effective in
most circumstances.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 92

Handling errors detected by the Master

Handling errors detected by the Master is more complicated.

We will consider and illustrate three main options in this course:

• The ‘Enter safe state then shut down’ option, and,

• The ‘Restart the network’ option, and

• The ‘Engage replacement Slave’ option.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 93

Enter a safe state and shut down the network

Shutting down the network following the detection of errors by the
Master node is easily achieved: we simply stop the transmission of
tick messages by the Master.

By stopping the tick messages, we cause the Slave(s) to be reset
too; the Slaves will then wait (in a safe state). The whole network
will therefore stop, until the Master is reset.

This behaviour is the most appropriate behaviour in many systems
in the event of a network error, if a ‘safe state’ can be identified.
This will, of course, be highly application-dependent.

☺ It is very easy to implement.
☺ It is effective in many systems.
☺ It can often be a ‘last line of defence’ if more advanced recovery

schemes have failed.
 It does not attempt to recover normal network operation, or to engage

backup nodes.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 94

Reset the network

Another simple way of dealing with errors is to reset the Master and
- hence - the whole network.

When it is reset, the Master will attempt to re-establish
communication with each Slave in turn; if it fails to establish
contact with a particular Slave, it will attempt to connect to the
backup device for that Slave.

This approach is easy to implement and can be effective. For
example, many designs use ‘N-version’ programming to create
backup versions of key components. By performing a reset, we
keep all the nodes in the network synchronised, and we engage a
backup Slave (if one is available).

☺ It allows full use to be made of backup nodes.
 It may take time (possibly half a second or more) to restart the network;

even if the network becomes fully operational, the delay involved may be
too long (for example, in automotive braking or aerospace flight-control
applications).

 With poor design or implementation, errors can cause the network to be
continually reset. This may be rather less safe than the simple ‘enter safe
state and shut down’ option.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 95

Engage a backup Slave

The third and final recovery technique we discuss in this course is
as follows.

If a Slave fails, then - rather than restarting the whole network - we
start the corresponding backup unit.

The strengths and weaknesses of this approach are as follows:

☺ It allows full use to be made of backup nodes.
☺ In most circumstances it takes comparatively little time to engage the

backup unit.
 The underlying coding is more complicated than the other alternatives

discussed in this course.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 96

Why additional processors may not improve reliability

Suppose that a network has 100 microcontrollers and that each of
these devices is 99.99% reliable.

If the multi-processor application relies on the correct,
simultaneous, operation of all 100 nodes, it will have an overall
reliability of 99.99% x 99.99% x 99.99% ….

This is 0.9999100, or approximately 37%.

A 99.99% reliable device might be assumed to fail once in 10,000
years, while the corresponding 37% reliable device would then be
expected to fail approximately every 18 months.

It is only where the increase in reliability resulting from the shared-
clock design outweighs the reduction in reliability known to arise

from the increased system complexity that an overall increase in system
reliability will be obtained.

Unfortunately, making predictions about the costs and benefits (in
reliability terms) of any complex design feature remains - in most non-

trivial systems - something of a black art.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 97

Redundant networks do not guarantee increased reliability

• In 1974, in a Turkish Airlines DC-10 aircraft, the cargo door
opened at high altitude.

• This event caused the cargo hold to depressurise, which in
turn caused the cabin floor to collapse.

• The aircraft contained two (redundant) control lines, in
addition to the main control system - but all three lines
were under the cabin floor.

• Control of the aircraft was therefore lost and it crashed
outside Paris, killing 346 people.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 98

Replacing the human operator - implications

• In many embedded applications, there is either no human
operator in attendance, or the time available to switch over
to a backup node (or network) is too small to make human
intervention possible.

• In these circumstances, if the component required to detect
the failure of the main node and switch in the backup node is
complicated (as often proves to be the case), then this
‘switch’ component may itself be the source of severe
reliability problems (see Leveson, 1995).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 99

Are multi-processor designs ever safe?

These observations should not be taken to mean that multi-
processor designs are inappropriate for use in high-reliability
applications. Multiple processors can be (and are) safely used in
such circumstances.

However, all multi-processor developments must be approached with
caution, and must be subject to particularly rigorous design, review and
testing.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 100

Preparations for the next seminar

Please read “PTTES” Chapter 27 before the next seminar.

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3

.0

P
1

.7

R
S

T

P
1

.6

P
1

.5

P
1

.4

P
1

.2

P
1

.3

P
1

.1

P
1

.0

V
S

S

X
T

L
2

X
T

L
1

P
3

.7

P
3

.6

P
3

.5

P
3

.3

P
3

.4

P
3

.2

P
3

.1

/ E
A

P
0

.6

P
0

.7

P
0

.5

P
0

.4

P
0

.3

P
0

.1

P
0

.2

P
0

.0

V
C

C

P
2

.0

P
2

.2

P
2

.1

P
2

.3

P
2

.4

P
2

.5

P
2

.7

P
2

.6

/ P
S

E
N

A
L

E

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 101

Seminar 4:
Linking processors
using RS-232 and RS-

485 protocols

A

B

C

Main control
& user interface

(Master)

Main control
& user interface

(Master)

Actuator C
(Slave)

Actuator C
(Slave)

Actuator B
(Slave)

Actuator B
(Slave)

Actuator A
(Slave)

Actuator A
(Slave)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 102

Review: Shared-clock scheduling

Master Slave 2Slave 1 Slave N

Tick messages (from master to slaves)

Acknowledgement
message

Acknowledgement
message

Acknowledgement
message

Most S-C schedulers support both ‘Tick’ messages (sent from the Master
to the Slaves), and ‘Acknowledgement’ messages (sent by the Slaves to
the Master).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 103

Overview of this seminar

In this seminar, we will discuss techniques for linking together two
(or more) embedded processors, using the RS-232 and RS-485
protocols.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 104

Review: What is ‘RS-232’?

In 1997 the Telecommunications Industry Association released
what is formally known as TIA-232 Version F, a serial
communication protocol which has been universally referred to as
‘RS-232’ since its first ‘Recommended Standard’ appeared in the
1960s. Similar standards (V.28) are published by the International
Telecommunications Union (ITU) and by CCITT (The Consultative
Committee International Telegraph and Telephone).

The ‘RS-232’ standard includes details of:

• The protocol to be used for data transmission.

• The voltages to be used on the signal lines.

• The connectors to be used to link equipment together.

Overall, the standard is comprehensive and widely used, at data
transfer rates of up to around 115 or 330 kbits / second (115 / 330 k
baud). Data transfer can be over distances of 15 metres or more.

Note that RS-232 is a peer-to-peer communication standard.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 105

Review: Basic RS-232 Protocol

RS-232 is a character-oriented protocol. That is, it is intended to be
used to send single 8-bit blocks of data. To transmit a byte of data
over an RS-232 link, we generally encode the information as
follows:

• We send a ‘Start’ bit.

• We send the data (8 bits).

• We send a ‘Stop’ bit (or bits).

REMEMBER: The UART takes care of these details!

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 106

Review: Transferring data to a PC using RS-232

Current core temperature
is 36.678 degrees

Buffer

All characters
written immediately
to buffer
(very fast operation)

Scheduler sends one
character to PC
every 10 ms
(for example)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 107

PATTERN: SCU SCHEDULER (LOCAL)

Problem

How do you schedule tasks on (and transfer data over) a local
network of two (or more) 8051 microcontrollers connected together
via their UARTs?

Solution

1. Timer overflow in the Master causes the scheduler ‘Update’
function to be invoked. This, in turn, causes a byte of data
is sent (via the UART) to all Slaves:

void MASTER_Update_T2(void) interrupt INTERRUPT_Timer_2_Overflow
 {
 ...

 MASTER_Send_Tick_Message(...);
 ...
 }

2. When these data have been received all Slaves generate an
interrupt; this invokes the ‘Update’ function in the Slave
schedulers. This, in turn, causes one Slave to send an
‘Acknowledge’ message back to the Master (again via the
UART).

void SLAVE_Update(void) interrupt INTERRUPT_UART_Rx_Tx
 {

 ...
 SLAVE_Send_Ack_Message_To_Master();
 ...

 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 108

The message structure

Here we will assume that we wish to control and monitor three
hydraulic actuators to control the operation of a mechanical
excavator.

A

B

C

Main control
& user interface

(Master)

Main control
& user interface

(Master)

Actuator C
(Slave)

Actuator C
(Slave)

Actuator B
(Slave)

Actuator B
(Slave)

Actuator A
(Slave)

Actuator A
(Slave)

Suppose we wish to adjust the angle of Actuator A to 90 degrees;
how do we do this?

Immediately the 8-bit nature of the UART becomes a limitation,
because we need to send a message that identifies both the node to
be adjusted, and the angle itself.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 109

There is no ideal way of addressing this problem. Here, we adopt
the following solution:

• Each Slave is given a unique ID (0x01 to 0xFF).

• Each Tick Message from the Master is two bytes long; these
two bytes are sent one tick interval apart. The first byte is
an ‘Address Byte’, containing the ID of the Slave to which
the message is addressed. The second byte is the ‘Message
Byte’ and contains the message data.

• All Slaves generate interrupts in response to each byte of
every Tick Message.

• Only the Slave to which a Tick Message is addressed will
reply to the Master; this reply takes the form of an
Acknowledge Message.

• Each Acknowledge Message from a Slave is two bytes long;
the two bytes are, again, sent one tick interval apart. The
first byte is an ‘Address Byte’, containing the ID of the
Slave from which the message is sent. The second byte is
the ‘Message Byte’ and contains the message data.

• For data transfers requiring more than a single byte of data,
multiple messages must be sent.

Time

Tick
Message

(Address - S1)

Ack
Message
(Address - S1)

Tick
Message
(Data for S1)

Ack
Message
(Data from S1)

Tick
Message
(Address - S2)

Ack
Message
(Address - S2)

...

Master tick (from timer)

Slave tick (from UART)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 110

We want to be able to distinguish between ‘Address Bytes’
and ‘Data Bytes’.

We make use of the fact that the 8051 allows transmission of 9-bit
serial data:

Description Size (bits)
Data 9 bits
Start bit 1 bit
Stop bit 1 bit
TOTAL 11 bits / message

• In this configuration (typically, the UART used in Mode 3),
11 bits are transmitted / received. Note that the 9th bit is
transmitted via bit TB8 in the register SCON, and is
received as bit RB8 in the same register. In this mode, the
baud rate is controlled as discussed in PTTES, Chapter 18.

• In the code examples presented here, Address Bytes are
identified by setting the ‘command bit’ (TB8) to 1; Data
Bytes set this bit to 0.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 111

Determining the required baud rate

• The timing of timer ticks in the Master is set to a duration
such that one byte of a Tick Message can be sent (and one
byte of an Acknowledge Message received) between ticks.

• Clearly, this duration depends on the network baud rate.

• As we discussed above, we will use a 9-bit protocol. Taking
into account Start and Stop bits, we require 22 bits (11 for
Tick message, 11 for Acknowledge message) per scheduler
tick; that is, the required baud rate is: (Scheduler Ticks per
second) x 22.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 112

There is a delay between the timer on the Master and the UART-
based interrupt on the Slave:

Time

Tick
Message
(Data for S1)

Ack
Message

(from S1)

...

Tick latency
(varies with baud rate)

As discussed above, most shared-clock applications employ a baud
rate of at least 28,800 baud: this gives a tick latency of
approximately 0.4 ms. At 375,000 baud, this latency becomes
approximately 0.03 ms.

Note that this latency is fixed, and can be accurately predicted on
paper, and then confirmed in simulation and testing. If precise
synchronisation of Master and Slave processing is required, then
please note that:

• All the Slaves operate - within the limits of measurement -
precisely in step.

• To bring the Master in step with the Slaves, it is necessary
only to add a short delay in the Master ‘Update’ function.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 113

Node Hardware

Rx

Tx

GND

300Ω

Vcc

10mA
LED

300Ω

Vcc

10mA
LED

Vcc

P 0.7 (AD7) 32

P 0.6 (AD6) 33

P 0.5 (AD5) 34

P 0.4 (AD4) 35

P 0.3 (AD3) 36

P 0.2 (AD2) 37

P 0.1 (AD1) 38

P 0.0 (AD0) 39

8
7
6
5
4
3
2
1

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

/ PSEN

ALE (/ PROG)

29

30

31

XTL119

XTL218

RST

40

VCC

VSS

‘8
05

2’

Vcc (+5V)

Cxtal

Cxtal

20

P 3.7 (/ RD)
P 3.6 (/ WR)
P 3.5 (T1)
P 3.4 (T0)
P 3.3 (/ INT1)
P 3.2 (/ INT 0)
P 3.1 (TXD)
P 3.0 (RXD)

/ EA

17
16
15
14
13
12
11
10

9

P 1.7
P 1.6

P 1.5
P 1.4)
P 1.3
P 1.2

P 1.1 (T2EX)
P 1.0 (T2)

5

8

RSTGND

TD

TOL

Vcc

/STO

/PBRST

1232

Flash
LED

Error
LED

Rx

Tx

GND

Vcc (+5V)

300Ω

Vcc

10mA
LED

300Ω

Vcc

10mA
LED

Vcc

P 0.7 (AD7) 32

P 0.6 (AD6) 33

P 0.5 (AD5) 34

P 0.4 (AD4) 35

P 0.3 (AD3) 36

P 0.2 (AD2) 37

P 0.1 (AD1) 38

P 0.0 (AD0) 39

8
7
6
5
4
3
2
1

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

/ PSEN

ALE (/ PROG)

29

30

31

XTL119

XTL218

RST

40

VCC

VSS

‘8
05

2’

Cxtal

Cxtal

20

P 3.7 (/ RD)
P 3.6 (/ WR)
P 3.5 (T1)
P 3.4 (T0)
P 3.3 (/ INT1)
P 3.2 (/ INT 0)
P 3.1 (TXD)
P 3.0 (RXD)

/ EA

17
16
15
14
13
12
11
10

9

P 1.7
P 1.6

P 1.5
P 1.4)
P 1.3
P 1.2

P 1.1 (T2EX)
P 1.0 (T2)

RSTGND

Vcc

1812

Flash
LED

Error
LED

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 114

Network wiring

Keep the cables short!

P3.0 (Rx)

P3.1 (Tx)

P3.0 (Rx)

P3.1 (Tx)

8051
family
micro

SlaveMaster
8051
family
micro

P3.1 (Tx)

P3.0 (Rx)

8051
family
micro

P3.0 (Rx)

P3.1 (Tx)

8051
family
micro

P3.0 (Rx)

P3.1 (Tx)

8051
family
micro

P3.0 (Rx)

P3.1 (Tx)

Master

Slave 1

Slave ...

Slave N

8051
family
micro

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 115

Overall strengths and weaknesses

☺ A simple scheduler for local systems with two or more 8051
microcontrollers.

☺ All necessary hardware is part of the 8051 core: as a result, the
technique is very portable within this family.

☺ Easy to implement with minimal CPU and memory overheads.
 The UART supports byte-based communications only: data transfer

between Master and Slaves (and vice versa) is limited to 0.5 bytes per
clock tick.

 Uses an important hardware resource (the UART)

 Most error detection / correction must be carried out in software

 This pattern is not suitable for distributed systems

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 116

PATTERN: SCU Scheduler (RS-232)

Context

• You are developing an embedded application using more
than one member of the 8051 family of microcontrollers.

• The application has a time-triggered architecture, based on a
scheduler.

Problem

How do you schedule tasks on (and transfer data over) a distributed
network of two 8051 microcontrollers communicating using the RS-
232 protocol?

Solution

10mA
LED

300Ω

Vcc

300Ω

Vcc

10mA
LED

Flash
LED

Error
LED

Vcc

1
5

9
6

Vcc

Max
233 1

20

7

18

6,9Connect together:
 Pins 12 & 17
 Pins 11 & 15
 Pins 16 & 10

1.0 µF

19

Rx
Tx

P 0.7 (AD7) 32

P 0.6 (AD6) 33

P 0.5 (AD5) 34

P 0.4 (AD4) 35

P 0.3 (AD3) 36

P 0.2 (AD2) 37

P 0.1 (AD1) 38

P 0.0 (AD0) 39

8
7
6
5
4
3
2
1

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

/ PSEN

ALE (/ PROG)

29

30

31

XTL119

XTL218

RST

40

VCC

VSS

‘8
05

2’

Vcc (+5V)

Cxtal

Cxtal

20

P 3.7 (/ RD)
P 3.6 (/ WR)
P 3.5 (T1)
P 3.4 (T0)
P 3.3 (/ INT1)
P 3.2 (/ INT 0)
P 3.1 (TXD)
P 3.0 (RXD)

/ EA

17
16
15
14
13
12
11
10

9

P 1.7
P 1.6

P 1.5
P 1.4)
P 1.3
P 1.2

P 1.1 (T2EX)
P 1.0 (T2)

5

8

RSTGND

TD

TOL

Vcc

/STO

/PBRST

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 117

PATTERN: SCU Scheduler (RS-485)

The communications standard generally referred to as ‘RS-485’ is
an electrical specification for what are often referred to as ‘multi-
point’ or ‘multi-drop’ communication systems; for our purposes,
this means applications that involve at least three nodes, each
containing a microcontroller.

Please note that the specification document (EIA/TIA-485-A)
defines the electrical characteristics of the line and its drivers and
receivers: this is limit of the standard. Thus, unlike ‘RS-232’, there
is no discussion of software protocols or of connectors.

There are many similarities between RS-232 and RS-485
communication protocols:

• Both are serial standards.

• Both are in widespread use.

• Both involve - for our purposes - the use of an appropriate
transceiver chip connected to a UART.

• Both involve very similar software libraries.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 118

RS-232 vs RS-485 [number of nodes]

• RS-232 is a peer-to-peer communications standard. For our
purposes, this means that it is suitable for applications that
involve two nodes, each containing a microcontroller (or, as
we saw in PTTES, Chapter 18, for applications where one
node is a desktop, or similar, PC).

• RS-485 is a ‘multi-point’ or ‘multi-drop’ communications
standard. For our purposes, this means applications that
involve at least three nodes, each containing a
microcontroller. Larger RS-485 networks can have up to 32
‘unit loads’: by using high-impedance receivers, you can
have as many as 256 nodes on the network.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 119

RS-232 vs RS-485 [range and baud rates]

• RS-232 is a single-wire standard (one signal line, per
channel, plus ground). Electrical noise in the environment
can lead to data corruption. This restricts the
communication range to a maximum of around 30 metres,
and the data rate to around 115 kbaud (with recent drivers).

• RS-485 is a two-wire or differential communication
standard. This means that, for each channel, two lines carry
(1) the required signal and (2) the inverse of the signal. The
receiver then detects the voltage difference between the two
lines. Electrical noise will impact on both lines, and will
cancel out when the difference is calculated at the receiver.
As a result, an RS-485 network can extend as far as 1 km, at
a data rate of 90 kbaud. Faster data rates (up to 10 Mbaud)
are possible at shorter distances (up to 15 metres).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 120

RS-232 vs RS-485 [cabling]

• RS-232 requires low-cost ‘straight’ cables, with three wires
for fully duplex communications (Tx, Rx, Ground).

• For full performance, RS-485 requires twisted-pair cables,
with two twisted pairs, plus ground (and usually a screen).
This cabling is more bulky and more expensive than the RS-
232 equivalent.

• RS-232 cables do not require terminating resistors.

• RS-485 cables are usually used with 120Ω terminating
resistors (assuming 24-AWG twisted pair cables) connected
in parallel, at or just beyond the final node at both ends of
the network. The terminations reduce voltage reflections
that can otherwise cause the receiver to misread logic levels.

120 Ω120 Ω

Slave 1Slave 1MASTERMASTER Slave 2Slave 2

120 Ω120 Ω

RS-485 Gnd
100 Ω 100 Ω 100 Ω

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 121

RS-232 vs RS-485 [transceivers]

• RS-232 transceivers are simple and standard.

• Choice of RS-485 transceivers depends on the application.
A common choice for basic systems is the Maxim Max489
family. For increased reliability, the Linear Technology
LTC1482, National Semiconductors DS36276 and the
Maxim MAX3080–89 series all have internal circuitry to
protect against cable short circuits. Also, the Maxim Max
MAX1480 contains its own transformer-isolated supply and
opto-isolated signal path: this can help avoid interaction
between power lines and network cables destroying your
microcontroller.

P 0.7 (AD7) 32

P 0.6 (AD6) 33

P 0.5 (AD5) 34

P 0.4 (AD4) 35

P 0.3 (AD3) 36

P 0.2 (AD2) 37

P 0.1 (AD1) 38

P 0.0 (AD0) 39

8
7
6
5
4
3
2
1

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

/ PSEN

ALE (/ PROG)

29

30

31

XTL119

XTL218

RST

40

VCC

VSS

A
T

89
S5

3
Vcc (+5V)

Vcc

Cxtal

Cxtal

Creset

Rreset

20

P 3.7 (/ RD)
P 3.6 (/ WR)
P 3.5 (T1)
P 3.4 (T0)
P 3.3 (/ INT1)
P 3.2 (/ INT 0)
P 3.1 (TXD)
P 3.0 (RXD)

/ EA

17
16
15
14
13
12
11
10

9

Vcc

Max
489 5

2

485-IA

485-IB

485-OA

485-OB

14
12

11

9

10

3

6,7

485-GND
100 R

4

P 1.7 (SCK)
P 1.6 (MISO)
P 1.5 (MOSI)

P 1.4(/SS)
P 1.3
P 1.2

P 1.1 (T2EX)
P 1.0 (T2)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 122

Software considerations: enable inputs

The software required in this pattern is, in almost all respects,
identical to that presented in SCU SCHEDULER (LOCAL).

The only exception is the need, in this multi-node system, to control the
‘enable’ inputs on the RS-485 transceivers; this is done because only
one such device can be active on the network at any time.

The time-triggered nature of the shared-clock scheduler makes the
controlled activation of the various transceivers straightforward.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 123

Overall strengths and weaknesses

☺ A simple scheduler for distributed systems consisting of multiple 8051
microcontrollers.

☺ Easy to implement with low CPU and memory overheads.
☺ Twisted-pair cabling and differential signals make this more robust

than RS-232-based alternatives.
 UART supports byte-based communications only: data transfer between

Master and Slaves (and vice versa) is limited to 0.5 bytes per clock tick

 Uses an important hardware resource (the UART)

 The hardware still has a very limited ability to detect errors: most error
detection / correction must be carried out in software

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 124

Example: Network with Max489 transceivers

300Ω

Vcc

10mA
LED

300Ω

Vcc

10mA
LED

Vcc

Max
489

5
2

485-IA

485-IB

485-OA

485-OB

14
12

11

9

10

3

6,7

485-GND
100 R

4

Vcc

P 0.7 (AD7) 32

P 0.6 (AD6) 33

P 0.5 (AD5) 34

P 0.4 (AD4) 35

P 0.3 (AD3) 36

P 0.2 (AD2) 37

P 0.1 (AD1) 38

P 0.0 (AD0) 39

8
7
6
5
4
3
2
1

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

/ PSEN

ALE (/ PROG)

29

30

31

XTL119

XTL218

RST

40

VCC

VSS

‘8
05

2’

Vcc (+5V)

Cxtal

Cxtal

20

P 3.7 (/ RD)
P 3.6 (/ WR)
P 3.5 (T1)
P 3.4 (T0)
P 3.3 (/ INT1)
P 3.2 (/ INT 0)
P 3.1 (TXD)
P 3.0 (RXD)

/ EA

17
16
15
14
13
12
11
10

9

P 1.7
P 1.6
P 1.5
P 1.4)
P 1.3
P 1.2

P 1.1 (T2EX)
P 1.0 (T2)

5

8

RSTGND

TD

TOL

Vcc

/STO

/PBRST

1232

Flash
LED

Error
LED

See PTTES, Chapter 27, for code

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 125

Preparations for the next seminar

Please read “PTTES” Chapter 28 before the next seminar.

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3

.0

P
1

.7

R
S

T

P
1

.6

P
1

.5

P
1

.4

P
1

.2

P
1

.3

P
1

.1

P
1

.0

V
S

S

X
T

L
2

X
T

L
1

P
3

.7

P
3

.6

P
3

.5

P
3

.3

P
3

.4

P
3

.2

P
3

.1

/ E
A

P
0

.6

P
0

.7

P
0

.5

P
0

.4

P
0

.3

P
0

.1

P
0

.2

P
0

.0

V
C

C

P
2

.0

P
2

.2

P
2

.1

P
2

.3

P
2

.4

P
2

.5

P
2

.7

P
2

.6

/ P
S

E
N

A
L

E

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 126

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 127

Seminar 5:
Linking processors
using the Controller
Area Network (CAN) bus

Node 1 Node 2

120 Ω120 Ω

Can High

Can Low

Node 3

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 128

Overview of this seminar

In this seminar, we will explain how you can schedule tasks on (and
transfer data over) a network of two (or more) 8051
microcontrollers communicating using the CAN protocol.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 129

PATTERN: SCC Scheduler

We can summarise some of the features of CAN as follows:

☺ CAN is message-based, and messages can be up to eight bytes in
length. Used in a shared-clock scheduler, the data transfer between
Master and Slaves (and vice versa) is up to 7 bytes per clock tick.
This is adequate for most applications.

☺ The hardware has advanced error detection (and correction) facilities
built in, further reducing the software load.

☺ CAN may be used for both ‘local’ and ‘distributed’ systems.

☺ A number of 8051 devices have on-chip support for CAN, allowing the
protocol to be used with minimal overheads.

☺ Off-chip CAN transceivers can be used to allow use of this protocol
with a huge range of devices.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 130

What is CAN?

We begin our discussion of the Controller Area Network (CAN)
protocol by highlighting some important features of this standard:

• CAN supports high-speed (1 Mbits/s) data transmission over
short distances (40m) and low-speed (5 kbits/s)
transmissions at lengths of up to 10,000m.

• CAN is message based. The data in each message may vary
in length between 0 and 8 bytes. This data length is ideal
for many embedded applications.

• The receipt of a message can be used to generate an
interrupt. The interrupt will be generated only when a
complete message (up to 8 bytes of data) has been received:
this is unlike a UART (for example) which will respond to
every character.

• CAN is a shared broadcast bus: all messages are sent to all
nodes. However, each message has an identifier: this can be
used to ‘filter’ messages. This means that - by using a ‘Full
CAN’ controller (see below) - we can ensure that a
particular node will only respond to ‘relevant’ messages:
that is, messages with a particular ID.

This is very powerful. What this means in practice is, for
example, that a Slave node can be set to ignore all messages
directed from a different Slave to the Master.

• CAN is usually implemented on a simple, low-cost, two-
wire differential serial bus system. Other physical media
may be used, such as fibre optics (but this is comparatively
rare).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 131

• The maximum number of nodes on a CAN bus is 32.

• Messages can be given an individual priority. This means,
for example, that ‘Tick messages’ can be given a higher
priority than ‘Acknowledge messages’.

• CAN is highly fault-tolerant, with powerful error detection
and handling mechanisms built in to the controller.

• Last but not least, microcontrollers with built-in CAN
controllers are available from a range of companies. For
example, 8051 devices with CAN controllers are available
from Infineon (c505c, c515c), Philips (8xC592, 8xC598)
and Dallas (80C390).

Overall, the CAN bus provides an excellent foundation for reliable
distributed scheduled applications.

We’ll now take a closer look at CAN…

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 132

CAN 1.0 vs. CAN 2.0

The CAN protocol comes in two versions: CAN 1.0 and CAN 2.0.
CAN 2.0 is backwardly compatible with CAN 1.0, and most new
controllers are CAN 2.0.

In addition, there are two parts to the CAN 2.0 standard: Part A and
Part B. With CAN 1.0 and CAN 2.0A, identifiers must be 11-bits
long. With CAN 2.0B identifiers can be 11-bits (a ‘standard’
identifier) or 29-bits (an ‘extended’ identifier).

The following basic compatibility rules apply:

• CAN 2.0B active controllers are able to send and receive
both standard and extended messages.

• CAN 2.0B passive controllers are able to send and receive
standard messages. In addition, they will discard (and
ignore) extended frames. They will not generate an error
when they ‘see’ extended messages.

• CAN 1.0 controllers generate bus errors when they see
extended frames: they cannot be used on networks where
extended identifiers are used.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 133

Basic CAN vs. Full CAN

There are two main classes of CAN controller available.

(Note that these classes are not covered by the standard, so there is
some variation.)

The difference is that Full CAN controllers provide an acceptance
filter that allows a node to ignore irrelevant messages.

This can be very useful.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 134

Which microcontrollers have support for CAN?

Available devices include:

• Dallas 80c390. Two on-chip CAN modules, each
supporting CAN 2.0B.

• Infineon C505C. Supports CAN2.0B.

• Infineon C515C. Supports CAN2.0B.

• Philips 8xC591. Supports CAN2.0B.

• Philips 8x592. Supports CAN2.0A.

• Philips 8x598. Supports CAN2.0A.

• Temic T89C51CC01. Supports CAN2.0B.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 135

S-C scheduling over CAN

Master Slave 2Slave 1 Slave N

Tick messages (from master to slaves)

Acknowledgement
message

Acknowledgement
message

Acknowledgement
message

1. Timer overflow in the Master causes the scheduler ‘Update’
function to be invoked. This, in turn, causes a byte of data
is sent (via the CAN bus) to all Slaves:

void MASTER_Update_T2(void) interrupt INTERRUPT_Timer_2_Overflow
...

2. When these data have been received all Slaves generate an
interrupt; this invokes the ‘Update’ function in the Slave
schedulers. This, in turn, causes one Slave to send an
‘Acknowledge’ message back to the Master (again via the
CAN bus).

void SLAVE_Update(void) interrupt INTERRUPT_CAN
 ...

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 136

The message structure - Tick messages

• Up to 31 Slave nodes (and one Master node) may be used in
a CAN network. Each Slave is given a unique ID (0x01 to
0xFF).

• Each Tick Message from the Master is between one and
eight bytes long; all of the bytes are sent in a single tick
interval.

• In all messages, the first byte is the ID of the Slave to which
the message is addressed; the remaining bytes (if any) are
the message data.

• All Slaves generate interrupts in response to every Tick
Message.

Time

Tick
Message
(Data for S1)

Ack
Message

(from S1)

Tick
Message
(Data for S2)

Ack
Message

(from S2)

Tick
Message
(Data for S1)

Ack
Message

(from S1)

...

Master tick (from timer)

Slave tick (from CAN hardware)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 137

The message structure - Ack messages

• Only the Slave to which a Tick Message is addressed will
reply to the Master; this reply takes the form of an
Acknowledge Message.

• Each Acknowledge Message from a Slave is between one
and eight bytes long; all of the bytes are sent in the tick
interval in which the Tick Message was received.

• The first byte of the Acknowledge Message is the ID of the
Slave from which the message was sent; the remaining bytes
(if any) are the message data.

Time

Tick
Message
(Data for S1)

Ack
Message

(from S1)

Tick
Message
(Data for S2)

Ack
Message

(from S2)

Tick
Message
(Data for S1)

Ack
Message

(from S1)

...

Master tick (from timer)

Slave tick (from CAN hardware)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 138

Determining the required baud rate

Description Size (bits)
Data 64
Start bit 1
Identifier bits 11
SRR bit 1
IDE bit 1
Identifier bits 18
RTR bit 1
Control bits 6
CRC bits 15
Stuff bits (maximum) 23
CRC delimiter 1
ACK slot 1
ACK delimiter 1
EOF bits 7
IFS bits 3
TOTAL 154 bits / message

We require two messages per tick: with 1 ms ticks, we require at
least 308000 baud: allowing 350 000 baud gives a good margin for
error. This is achievable with CAN, at distances up to around 100
metres. Should you require larger distances, the tick interval must
either be lengthened, or repeater nodes should be added in the
network at 100-metre intervals.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 139

There is a delay between the timer on the Master and the CAN-
based interrupt on the Slave:

Time

Tick
Message
(Data for S1)

Ack
Message

(from S1)

...

Tick latency
(varies with baud rate)

In the absence of network errors, this delay is fixed, and derives
largely from the time taken to transmit a message via the CAN bus;
that is, it varies with the baud rate.

At a baud rate of 350 kbits/second, the tick is approx. 0.5 ms.

If precise synchronisation of Master and Slave processing is
required, then please note that:

• All the Slaves are - within the limits of measurement -
precisely in step.

• To bring the Master in step with the Slaves, it is necessary
only to add a short delay in the Master ‘Update’ function.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 140

Transceivers for distributed networks

The Philips PCA82c250 is a popular tranceiver.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 141

Node wiring for distributed networks

The most common means of linking together CAN nodes is through
the use of a two-wire, twisted pair (like RS-485).

In the CAN bus, the two signal lines are termed ‘CAN High’ and
‘CAN Low’. In the quiescent state, both lines sit at 2.5V. A ‘1’ is
transmitted by raising the voltage of the High line above that of
Low line: this is termed a ‘dominant’ bit. A ‘0’ is represented by
raising the voltage of the Low line above that of the High line: this
is termed a ‘recessive’ bit.

Using twisted-pair wiring, the differential CAN inputs successfully
cancel out noise. In addition, the CAN networks connected in this
way continue to function even when one of the lines is severed.

Note that, as with the RS-485 cabling, a 120Ω terminating resistor
is connected at each end of the bus:

Node 1 Node 2

120 Ω120 Ω

Can High

Can Low

Node 3

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 142

Hardware and wiring for local networks

Use of a ‘local’ CAN network does not require the use of
transceiver chips.

In most cases, simply connecting together the Tx and Rx lines from
a number of CAN-based microcontrollers will allow you to link the
devices.

A better solution (proposed by Barrenscheen, 1996) is based on a
wired-OR structure.

As no CAN transceiver is used, the maximum wire length is limited
to a maximum of one metre, and disturbances due to noise can
occur.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 143

Software for the shared-clock CAN scheduler

One important difference between the CAN-based scheduler
presented here and those that were discussed previously chapters is
the error-handling mechanism.

Here, if a Slave fails, then - rather than restarting the whole network
- we attempt to start the corresponding backup unit.

The strengths and weaknesses of this approach are as follows:

☺ It allows full use to be made of backup nodes.
☺ In most circumstances it takes comparatively little time to engage the

backup unit.
 The underlying coding is more complicated than the other alternatives

discussed in this course.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 144

Overall strengths and weaknesses

☺ CAN is message-based, and messages can be up to eight bytes in
length. Used in a shared-clock scheduler, the data transfer between
Master and Slaves (and vice versa) is up to 7 bytes per clock tick.
This is more than adequate for the great majority of applications.

☺ A number of 8051 devices have on-chip support for CAN, allowing the
protocol to be used with minimal overheads.

☺ The hardware has advanced error detection (and correction) facilities
built in, further reducing the software load

☺ CAN may be used for both ‘local’ and ‘distributed’ systems.
 8051 devices with CAN support tend to be more expensive than ‘standard’

8051s.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 145

Example: Creating a CAN-based scheduler using the
Infineon C515c

This example illustrates the use of the Infineon c515C
microcontroller. This popular device has on-chip CAN hardware.

The code may be used in either a distributed or local network, with
the hardware discussed above.

See PTTES, Chapter 28 for complete code listings

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 146

Master Software

void SCC_A_MASTER_Init_T2_CAN(void)
 {
 tByte i;
 tByte Message;
 tByte Slave_index;

 EA = 0; /* No interrupts (yet) */

 SCC_A_MASTER_Watchdog_Init(); /* Start the watchdog */

 Network_error_pin = NO_NETWORK_ERROR;

 for (i = 0; i < SCH_MAX_TASKS; i++)
 {
 SCH_Delete_Task(i); /* Clear the task array */
 }

 /* SCH_Delete_Task() will generate an error code,
 because the task array is empty.
 -> reset the global error variable. */
 Error_code_G = 0;

 /* We allow any combination of ID numbers in slaves */
 for (Slave_index =0; Slave_index < NUMBER_OF_SLAVES; Slave_index++)
 {
 Slave_reset_attempts_G[Slave_index] = 0;
 Current_Slave_IDs_G[Slave_index] = MAIN_SLAVE_IDs[Slave_index];
 }

 /* Get ready to send first tick message */
 First_ack_G = 1;
 Slave_index_G = 0;

 /* ------ Set up the CAN link (begin) ------------------------ */

 /* ---------------- SYSCON Register --------------
 The access to XRAM and CAN controller is enabled.
 The signals !RD and !WR are not activated during accesses
 to the XRAM/CAN controller.
 ALE generation is enabled. */
 SYSCON = 0x20;

 /* ------------ CAN Control/Status Register --------------
 Start to init the CAN module. */
 CAN_cr = 0x41; /* INIT and CCE */

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 147

 /* ------------ Bit Timing Register ---------------------
 Baudrate = 333.333 kbaud
 - Need 308+ kbaud plus for 1ms ticks, 8 data bytes
 - See text for details

 There are 5 time quanta before sample point
 There are 4 time quanta after sample point
 The (re)synchronization jump width is 2 time quanta. */
 CAN_btr1 = 0x34; /* Bit Timing Register */
 CAN_btr0 = 0x42;

 CAN_gms1 = 0xFF; /* Global Mask Short Register 1 */
 CAN_gms0 = 0xFF; /* Global Mask Short Register 0 */

 CAN_ugml1 = 0xFF; /* Upper Global Mask Long Register 1 */
 CAN_ugml0 = 0xFF; /* Upper Global Mask Long Register 0 */

 CAN_lgml1 = 0xF8; /* Lower Global Mask Long Register 1 */
 CAN_lgml0 = 0xFF; /* Lower Global Mask Long Register 0 */

 /* --- Configure the 'Tick' Message Object --- */
 /* 'Message Object 1' is valid */
 CAN_messages[0].MCR1 = 0x55; /* Message Control Register 1 */
 CAN_messages[0].MCR0 = 0x95; /* Message Control Register 0 */

 /* Message direction is transmit
 Extended 29-bit identifier
 These have ID 0x000000 and 5 valid data bytes. */
 CAN_messages[0].MCFG = 0x5C; /* Message Config Reg */

 CAN_messages[0].UAR1 = 0x00; /* Upper Arbit. Reg. 1 */
 CAN_messages[0].UAR0 = 0x00; /* Upper Arbit. Reg. 0 */
 CAN_messages[0].LAR1 = 0x00; /* Lower Arbit. Reg. 1 */
 CAN_messages[0].LAR0 = 0x00; /* Lower Arbit. Reg. 0 */

 CAN_messages[0].Data[0] = 0x00; /* Data byte 0 */
 CAN_messages[0].Data[1] = 0x00; /* Data byte 1 */
 CAN_messages[0].Data[2] = 0x00; /* Data byte 2 */
 CAN_messages[0].Data[3] = 0x00; /* Data byte 3 */
 CAN_messages[0].Data[4] = 0x00; /* Data byte 4 */

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 148

 /* --- Configure the 'Ack' Message Object --- */

 /* 'Message Object 2' is valid
 NOTE: Object 2 receives *ALL* ack messages. */
 CAN_messages[1].MCR1 = 0x55; /* Message Control Register 1 */
 CAN_messages[1].MCR0 = 0x95; /* Message Control Register 0 */

 /* Message direction is receive
 Extended 29-bit identifier
 These all have ID: 0x000000FF (5 valid data bytes) */
 CAN_messages[1].MCFG = 0x04; /* Message Config Reg */

 CAN_messages[1].UAR1 = 0x00; /* Upper Arbit. Reg. 1 */
 CAN_messages[1].UAR0 = 0x00; /* Upper Arbit. Reg. 0 */
 CAN_messages[1].LAR1 = 0xF8; /* Lower Arbit. Reg. 1 */
 CAN_messages[1].LAR0 = 0x07; /* Lower Arbit. Reg. 0 */

 /* Configure remaining message objects - none is valid */
 for (Message = 2; Message <= 14; ++Message)
 {
 CAN_messages[Message].MCR1 = 0x55; /* Message Control Reg 1 */
 CAN_messages[Message].MCR0 = 0x55; /* Message Control Reg 0 */
 }

 /* ------------ CAN Control Register --------------------- */
 /* Reset CCE and INIT */
 CAN_cr = 0x00;

 /* ------ Set up the CAN link (end) ---------------------- */

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 149

 /* ------ Set up Timer 2 (begin) ------------------------- */
 /* 80c515c, 10 MHz
 Timer 2 is set to overflow every 6 ms - see text
 Mode 1 = Timerfunction */
 /* Prescaler: Fcpu/12 */
 T2PS = 1;

 /* Mode 0 = auto-reload upon timer overflow
 Preset the timer register with autoreload value
 NOTE: Timing is same as standard (8052) T2 timing
 - if T2PS = 1 (otherwise twice as fast as 8052) */
 TL2 = 0x78;
 TH2 = 0xEC;

 /* Mode 0 for all channels */
 T2CON |= 0x11;

 /* Timer 2 overflow interrupt is enabled */
 ET2 = 1;
 /* Timer 2 external reload interrupt is disabled */
 EXEN2 = 0;

 /* Compare/capture Channel 0 */
 /* Disabled */
 /* Compare Register CRC on: 0x0000; */
 CRCL = 0x78;
 CRCH = 0xEC;

 /* CC0/ext3 interrupt is disabled */
 EX3 = 0;

 /* Compare/capture Channel 1-3 */
 /* Disabled */
 CCL1 = 0x00;
 CCH1 = 0x00;
 CCL2 = 0x00;
 CCH2 = 0x00;
 CCL3 = 0x00;
 CCH3 = 0x00;

 /* Interrupts Channel 1-3 are disabled */
 EX4 = 0;
 EX5 = 0;
 EX6 = 0;

 /* All above mentioned modes for Channel 0 to Channel 3 */
 CCEN = 0x00;
 /* ------ Set up Timer 2 (end) ------------------------------- */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 150

void SCC_A_MASTER_Start(void)
 {
 tByte Num_active_slaves;
 tByte i;
 bit Slave_replied_correctly;
 tByte Slave_index, Slave_ID;

 /* Refresh the watchdog */
 SCC_A_MASTER_Watchdog_Refresh();

 /* Place system in 'safe state' */
 SCC_A_MASTER_Enter_Safe_State();

 /* Report error as we wait to start */
 Network_error_pin = NETWORK_ERROR;

 Error_code_G = ERROR_SCH_WAITING_FOR_SLAVE_TO_ACK;
 SCH_Report_Status(); /* Sch not yet running - do this manually */

 /* Pause here (300 ms), to time-out all the slaves
 (This is the means by which we sync the network) */
 for (i = 0; i < 10; i++)
 {
 Hardware_Delay_T0(30);
 SCC_A_MASTER_Watchdog_Refresh();
 }

 /* Currently disconnected from all slaves */
 Num_active_slaves = 0;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 151

 /* After the initial (long) delay, all slaves will have timed out.
 All operational slaves will now be in the 'READY TO START' state
 Send them a 'slave id' message to get them started. */
 Slave_index = 0;
 do {
 /* Refresh the watchdog */
 SCC_A_MASTER_Watchdog_Refresh();

 /* Find the slave ID for this slave */
 Slave_ID = (tByte) Current_Slave_IDs_G[Slave_index];

 Slave_replied_correctly = SCC_A_MASTER_Start_Slave(Slave_ID);

 if (Slave_replied_correctly)
 {
 Num_active_slaves++;
 Slave_index++;
 }
 else
 {
 /* Slave did not reply correctly
 - try to switch to backup device (if available) */
 if (Current_Slave_IDs_G[Slave_index] !=
 BACKUP_SLAVE_IDs[Slave_index])
 {
 /* A backup is available: switch to it and re-try */
 Current_Slave_IDs_G[Slave_index]
 = BACKUP_SLAVE_IDs[Slave_index];
 }
 else
 {
 /* No backup available (or backup failed too)
 - have to continue */
 Slave_index++;
 }
 }
 } while (Slave_index < NUMBER_OF_SLAVES);

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 152

 /* DEAL WITH CASE OF MISSING SLAVE(S) HERE ... */
 if (Num_active_slaves < NUMBER_OF_SLAVES)
 {
 /* 1 or more slaves have not replied.
 In some circumstances you may wish to abort here,
 or try to reconfigure the network.

 Simplest solution is to display an error and carry on
 (that is what we do here). */
 Error_code_G = ERROR_SCH_ONE_OR_MORE_SLAVES_DID_NOT_START;
 Network_error_pin = NETWORK_ERROR;
 }
 else
 {
 Error_code_G = 0;
 Network_error_pin = NO_NETWORK_ERROR;
 }

 /* Start the scheduler */
 IRCON = 0;
 EA = 1;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 153

void SCC_A_MASTER_Update_T2(void) interrupt INTERRUPT_Timer_2_Overflow
 {
 tByte Index;
 tByte Previous_slave_index;
 bit Slave_replied_correctly;

 TF2 = 0; /* Must clear this. */

 /* Refresh the watchdog */
 SCC_A_MASTER_Watchdog_Refresh();

 /* Default */
 Network_error_pin = NO_NETWORK_ERROR;

 /* Keep track of the current slave
 (First value of "prev slave" is 0) */
 Previous_slave_index = Slave_index_G

 if (++Slave_index_G >= NUMBER_OF_SLAVES)
 {
 Slave_index_G = 0;
 }

 /* Check that the approp slave replied to the last message.
 (If it did, store the data sent by this slave) */
 if (SCC_A_MASTER_Process_Ack(Previous_slave_index) == RETURN_ERROR)
 {
 Error_code_G = ERROR_SCH_LOST_SLAVE;
 Network_error_pin = NETWORK_ERROR;

 /* If we have lost contact with a slave, we attempt to
 switch to a backup device (if one is available) */
 if (Current_Slave_IDs_G[Slave_index_G] !=
 BACKUP_SLAVE_IDs[Slave_index_G])
 {
 /* A backup is available: switch to it and re-try */
 Current_Slave_IDs_G[Slave_index_G] =
 BACKUP_SLAVE_IDs[Slave_index_G];
 }
 else
 {
 /* There is no backup available (or we are already using it).
 Try main device again. */
 Current_Slave_IDs_G[Slave_index_G] =
 MAIN_SLAVE_IDs[Slave_index_G];
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 154

 /* Try to connect to the slave */
 Slave_replied_correctly =
 SCC_A_MASTER_Start_Slave(Current_Slave_IDs_G[Slave_index_G]);

 if (!Slave_replied_correctly)
 {
 /* No backup available (or it failed too) - we shut down
 (OTHER ACTIONS MAY BE MORE APPROPRIATE IN YOUR SYSTEM!) */
 SCC_A_MASTER_Shut_Down_the_Network();
 }
 }

 /* Send 'tick' message to all connected slaves
 (sends one data byte to the current slave). */
 SCC_A_MASTER_Send_Tick_Message(Slave_index_G);

 /* Check the last error codes on the CAN bus */
 if ((CAN_sr & 0x07) != 0)
 {
 Error_code_G = ERROR_SCH_CAN_BUS_ERROR;
 Network_error_pin = NETWORK_ERROR;

 /* See Infineon C515C manual for error code details */
 CAN_error_pin0 = ((CAN_sr & 0x01) == 0);
 CAN_error_pin1 = ((CAN_sr & 0x02) == 0);
 CAN_error_pin2 = ((CAN_sr & 0x04) == 0);
 }
 else
 {
 CAN_error_pin0 = 1;
 CAN_error_pin1 = 1;
 CAN_error_pin2 = 1;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 155

 /* NOTE: calculations are in *TICKS* (not milliseconds) */
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 /* Check if there is a task at this location */
 if (SCH_tasks_G[Index].pTask)
 {
 if (SCH_tasks_G[Index].Delay == 0)
 {
 /* The task is due to run */
 SCH_tasks_G[Index].RunMe += 1; /* Inc RunMe */

 if (SCH_tasks_G[Index].Period)
 {
 /* Schedule periodic tasks to run again */
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 }
 else
 {
 /* Not yet ready to run: just decrement the delay */
 SCH_tasks_G[Index].Delay -= 1;
 }
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 156

void SCC_A_MASTER_Send_Tick_Message(const tByte SLAVE_INDEX)
 {
 /* Find the slave ID for this slave
 ALL SLAVES MUST HAVE A UNIQUE (non-zero) ID! */
 tByte Slave_ID = (tByte) Current_Slave_IDs_G[SLAVE_INDEX];
 CAN_messages[0].Data[0] = Slave_ID;

 /* Fill the data fields */
 CAN_messages[0].Data[1] = Tick_message_data_G[SLAVE_INDEX][0];
 CAN_messages[0].Data[2] = Tick_message_data_G[SLAVE_INDEX][1];
 CAN_messages[0].Data[3] = Tick_message_data_G[SLAVE_INDEX][2];
 CAN_messages[0].Data[4] = Tick_message_data_G[SLAVE_INDEX][3];

 /* Send the message on the CAN bus */
 CAN_messages[0].MCR1 = 0xE7; /* TXRQ, reset CPUUPD */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 157

bit SCC_A_MASTER_Process_Ack(const tByte SLAVE_INDEX)
 {
 tByte Ack_ID, Slave_ID;

 /* First time this is called there is no Ack message to check
 - we simply return 'OK'. */
 if (First_ack_G)
 {
 First_ack_G = 0;
 return RETURN_NORMAL;
 }

 if ((CAN_messages[1].MCR1 & 0x03) == 0x02) /* if NEWDAT */
 {
 /* An ack message was received
 -> extract the data */
 Ack_ID = CAN_messages[1].Data[0]; /* Get data byte 0 */

 Ack_message_data_G[SLAVE_INDEX][0] = CAN_messages[1].Data[1];
 Ack_message_data_G[SLAVE_INDEX][1] = CAN_messages[1].Data[2];
 Ack_message_data_G[SLAVE_INDEX][2] = CAN_messages[1].Data[3];
 Ack_message_data_G[SLAVE_INDEX][3] = CAN_messages[1].Data[4];

 CAN_messages[1].MCR0 = 0xfd; /* reset NEWDAT, INTPND */
 CAN_messages[1].MCR1 = 0xfd;

 /* Find the slave ID for this slave */
 Slave_ID = (tByte) Current_Slave_IDs_G[SLAVE_INDEX];

 if (Ack_ID == Slave_ID)
 {
 return RETURN_NORMAL;
 }
 }

 /* No message, or ID incorrect */
 return RETURN_ERROR;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 158

void SCC_A_MASTER_Shut_Down_the_Network(void)
 {
 EA = 0;

 while(1)
 {
 SCC_A_MASTER_Watchdog_Refresh();
 }
 }

void SCC_A_MASTER_Enter_Safe_State(void)
 {
 /* USER DEFINED - Edit as required */

 TRAFFIC_LIGHTS_Display_Safe_Output();
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 159

Slave Software

void SCC_A_SLAVE_Init_CAN(void)
 {
 tByte i;
 tByte Message;

 /* Sort out the tasks */
 for (i = 0; i < SCH_MAX_TASKS; i++)
 {
 SCH_Delete_Task(i);
 }

 /* SCH_Delete_Task() will generate an error code,
 because the task array is empty.
 -> reset the global error variable. */
 Error_code_G = 0;

 /* Set the network error pin (reset when tick message received) */
 Network_error_pin = NETWORK_ERROR;

 /* ------ SYSCON Register
 The access to XRAM and CAN controller is enabled.
 The signals !RD and !WR are not activated during accesses
 to the XRAM/CAN controller.
 ALE generation is enabled. */
 SYSCON = 0x20;

 /* ------------ CAN Control/Status Register -------------- */
 CAN_cr = 0x41; /* INIT and CCE */

 /* ------------ Bit Timing Register ---------------------
 Baudrate = 333.333 kbaud
 - Need 308+ kbaud plus for 1ms ticks, 8 data bytes
 - See text for details

 There are 5 time quanta before sample point
 There are 4 time quanta after sample point
 The (re)synchronization jump width is 2 time quanta. */
 CAN_btr1 = 0x34; /* Bit Timing Register */
 CAN_btr0 = 0x42;
 CAN_gms1 = 0xFF; /* Global Mask Short Register 1 */
 CAN_gms0 = 0xFF; /* Global Mask Short Register 0 */
 CAN_ugml1 = 0xFF; /* Upper Global Mask Long Register 1 */
 CAN_ugml0 = 0xFF; /* Upper Global Mask Long Register 0 */
 CAN_lgml1 = 0xF8; /* Lower Global Mask Long Register 1 */
 CAN_lgml0 = 0xFF; /* Lower Global Mask Long Register 0 */

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 160

 /* ------ Configure 'Tick' Message Object */
 /* Message object 1 is valid */
 /* Enable receive interrupt */
 CAN_messages[0].MCR1 = 0x55; /* Message Ctrl. Reg. 1 */
 CAN_messages[0].MCR0 = 0x99; /* Message Ctrl. Reg. 0 */

 /* message direction is receive */
 /* extended 29-bit identifier */
 CAN_messages[0].MCFG = 0x04; /* Message Config. Reg. */

 CAN_messages[0].UAR1 = 0x00; /* Upper Arbit. Reg. 1 */
 CAN_messages[0].UAR0 = 0x00; /* Upper Arbit. Reg. 0 */
 CAN_messages[0].LAR1 = 0x00; /* Lower Arbit. Reg. 1 */
 CAN_messages[0].LAR0 = 0x00; /* Lower Arbit. Reg. 0 */

 /* ------ Configure 'Ack' Message Object */
 CAN_messages[1].MCR1 = 0x55; /* Message Ctrl. Reg. 1 */
 CAN_messages[1].MCR0 = 0x95; /* Message Ctrl. Reg. 0 */

 /* Message direction is transmit */
 /* Extended 29-bit identifier; 5 valid data bytes */
 CAN_messages[1].MCFG = 0x5C; /* Message Config. Reg. */
 CAN_messages[1].UAR1 = 0x00; /* Upper Arbit. Reg. 1 */
 CAN_messages[1].UAR0 = 0x00; /* Upper Arbit. Reg. 0 */
 CAN_messages[1].LAR1 = 0xF8; /* Lower Arbit. Reg. 1 */
 CAN_messages[1].LAR0 = 0x07; /* Lower Arbit. Reg. 0 */
 CAN_messages[1].Data[0] = 0x00; /* Data byte 0 */
 CAN_messages[1].Data[1] = 0x00; /* Data byte 1 */
 CAN_messages[1].Data[2] = 0x00; /* Data byte 2 */
 CAN_messages[1].Data[3] = 0x00; /* Data byte 3 */
 CAN_messages[1].Data[4] = 0x00; /* Data byte 4 */

 /* ------ Configure other objects --------------------------- */
 /* Configure remaining message objects (2-14) - none is valid */
 for (Message = 2; Message <= 14; ++Message)
 {
 CAN_messages[Message].MCR1 = 0x55; /* Message Ctrl. Reg. 1 */
 CAN_messages[Message].MCR0 = 0x55; /* Message Ctrl. Reg. 0 */
 }

 /* ------------ CAN Ctrl. Reg. --------------------- */
 /* Reset CCE and INIT */
 /* Enable interrupt generation from CAN Modul */
 /* Enable CAN-interrupt of Controller */
 CAN_cr = 0x02;
 IEN2 |= 0x02;

 SCC_A_SLAVE_Watchdog_Init(); /* Start the watchdog */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 161

void SCC_A_SLAVE_Start(void)
 {
 tByte Tick_00, Tick_ID;
 bit Start_slave;

 /* Disable interrupts */
 EA = 0;

 /* We can be at this point because:
 1. The network has just been powered up
 2. An error has occurred in the Master, and it is not gen. ticks
 3. The network has been damaged -> no ticks are being recv

 Try to make sure the system is in a safe state...
 NOTE: Interrupts are disabled here!! */
 SCC_A_SLAVE_Enter_Safe_State();

 Start_slave = 0;
 Error_code_G = ERROR_SCH_WAITING_FOR_START_COMMAND_FROM_MASTER;
 SCH_Report_Status(); /* Sch not yet running - do this manually */

 /* Now wait (indefinitely) for approp signal from the Master */
 do {
 /* Wait for 'Slave ID' message to be received */
 do {
 SCC_A_SLAVE_Watchdog_Refresh(); /* Must feed watchdog */
 } while ((CAN_messages[0].MCR1 & 0x03) != 0x02);

 /* Got a message - extract the data */
 if ((CAN_messages[0].MCR1 & 0x0c) == 0x08) /* if MSGLST set */
 {
 /* Ignore lost message */
 CAN_messages[0].MCR1 = 0xf7; /* reset MSGLST */
 }

 Tick_00 = (tByte) CAN_messages[0].Data[0]; /* Get Data 0 */
 Tick_ID = (tByte) CAN_messages[0].Data[1]; /* Get Data 1 */

 CAN_messages[0].MCR0 = 0xfd; /* reset NEWDAT, INTPND */
 CAN_messages[0].MCR1 = 0xfd;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 162

 if ((Tick_00 == 0x00) && (Tick_ID == SLAVE_ID))
 {
 /* Message is correct */
 Start_slave = 1;

 /* Send ack */
 CAN_messages[1].Data[0] = 0x00; /* Set data byte 0 */
 CAN_messages[1].Data[1] = SLAVE_ID; /* Set data byte 1 */
 CAN_messages[1].MCR1 = 0xE7; /* Send message */
 }
 else
 {
 /* Not yet received correct message - wait */
 Start_slave = 0;
 }
 } while (!Start_slave);

 /* Start the scheduler */
 IRCON = 0;
 EA = 1;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 163

void SCC_A_SLAVE_Update(void) interrupt INTERRUPT_CAN_c515c
 {
 tByte Index;

 /* Reset this when tick is received */
 Network_error_pin = NO_NETWORK_ERROR;

 /* Check tick data - send ack if necessary
 NOTE: 'START' message will only be sent after a 'time out' */
 if (SCC_A_SLAVE_Process_Tick_Message() == SLAVE_ID)
 {
 SCC_A_SLAVE_Send_Ack_Message_To_Master();

 /* Feed the watchdog ONLY when a *relevant* message is received
 (Noise on the bus, etc, will not stop the watchdog)
 START messages will NOT refresh the slave.
 - Must talk to every slave at suitable intervals. */
 SCC_A_SLAVE_Watchdog_Refresh();
 }

 /* Check the last error codes on the CAN bus */
 if ((CAN_sr & 0x07) != 0)
 {
 Error_code_G = ERROR_SCH_CAN_BUS_ERROR;
 Network_error_pin = NETWORK_ERROR;

 /* See Infineon c515c manual for error code details */
 CAN_error_pin0 = ((CAN_sr & 0x01) == 0);
 CAN_error_pin1 = ((CAN_sr & 0x02) == 0);
 CAN_error_pin2 = ((CAN_sr & 0x04) == 0);
 }
 else
 {
 CAN_error_pin0 = 1;
 CAN_error_pin1 = 1;
 CAN_error_pin2 = 1;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 164

 /* NOTE: calculations are in *TICKS* (not milliseconds) */
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 /* Check if there is a task at this location */
 if (SCH_tasks_G[Index].pTask)
 {
 if (SCH_tasks_G[Index].Delay == 0)
 {
 /* The task is due to run */
 SCH_tasks_G[Task_index].RunMe += 1; /* Inc RunMe */

 if (SCH_tasks_G[Task_index].Period)
 {
 /* Schedule periodic tasks to run again */
 SCH_tasks_G[Task_index].Delay =
 SCH_tasks_G[Task_index].Period;
 }
 }
 else
 {
 /* Not yet ready to run: just decrement the delay */
 SCH_tasks_G[Index].Delay -= 1;
 }
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 165

tByte SCC_A_SLAVE_Process_Tick_Message(void)
 {
 tByte Tick_ID;

 if ((CAN_messages[0].MCR1 & 0x0c) == 0x08) /* If MSGLST set */
 {
 /* The CAN controller has stored a new
 message into this object, while NEWDAT was still set,
 i.e. the previously stored message is lost.
 We simply IGNORE this here and reset the flag. */
 CAN_messages[0].MCR1 = 0xf7; /* reset MSGLST */
 }

 /* The first byte is the ID of the slave
 for which the data are intended. */
 Tick_ID = CAN_messages[0].Data[0]; /* Get Slave ID */

 if (Tick_ID == SLAVE_ID)
 {
 /* Only if there is a match do we need to copy these fields */
 Tick_message_data_G[0] = CAN_messages[0].Data[1];
 Tick_message_data_G[1] = CAN_messages[0].Data[2];
 Tick_message_data_G[2] = CAN_messages[0].Data[3];
 Tick_message_data_G[3] = CAN_messages[0].Data[4];
 }

 CAN_messages[0].MCR0 = 0xfd; /* reset NEWDAT, INTPND */
 CAN_messages[0].MCR1 = 0xfd;

 return Tick_ID;
 }

void SCC_A_SLAVE_Send_Ack_Message_To_Master(void)
 {
 /* First byte of message must be slave ID */
 CAN_messages[1].Data[0] = SLAVE_ID; /* data byte 0 */

 CAN_messages[1].Data[1] = Ack_message_data_G[0];
 CAN_messages[1].Data[2] = Ack_message_data_G[1];
 CAN_messages[1].Data[3] = Ack_message_data_G[2];
 CAN_messages[1].Data[4] = Ack_message_data_G[3];

 /* Send the message on the CAN bus */
 CAN_messages[1].MCR1 = 0xE7; /* TXRQ, reset CPUUPD */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 166

What about CAN without on-chip hardware support?

Master node using Microchip MCP2510 CAN transceiver

40
39
38
37
36
35
34

1
2
3
4
5
6
7
8
9

10

33
32
31

30
29
28
27
26
25
24

11
12
13
14
15
16
17
18
19
20

23
22
21

SCK

MISO

MOSI

/SS

P1.3

XTL1

AT89S53

1
2
3
4
5
6
7
8
9

18
17
16
15
14
13
12
11
10

MCP2510

Rx

Tx

SI

SCK

SO

/CS

/RST

Vcc

OSC1

1
2
3
4

8
7
6
5

PCA82C250

CANL

CANH

RXD

TXD

To CAN bus

12 MHz

[Note: code for this hardware will be discussed in Seminar 6]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 167

Slave node using Microchip MCP2510 CAN transceiver

40
39
38
37
36
35
34

1
2
3
4
5
6
7
8
9

10

33
32
31

30
29
28
27
26
25
24

11
12
13
14
15
16
17
18
19
20

23
22
21

SCK

MISO

MOSI

/SS

P1.3

XTL1

/ INT0

AT89S53

1
2
3
4
5
6
7
8
9

18
17
16
15
14
13
12
11
10

MCP2510

Rx

Tx

SI

SCK

SO

/CS

/RST

Vcc

OSC1

1
2
3
4

8
7
6
5

PCA82C250

CANL

CANH

RXD

TXD

To CAN bus

12 MHz

/INT

[Note: code for this hardware will be discussed in Seminar 6]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 168

Preparations for the next seminar

Please read the following chapters in “PTTES” before the next
seminar:

• Chapter 19 (switch interfaces)

• Chapter 20 (keypad interfaces)

• Chapter 22 (LCD displays)

• Chapter 24 (SPI)

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3

.0

P
1

.7

R
S

T

P
1

.6

P
1

.5

P
1

.4

P
1

.2

P
1

.3

P
1

.1

P
1

.0

V
S

S

X
T

L
2

X
T

L
1

P
3

.7

P
3

.6

P
3

.5

P
3

.3

P
3

.4

P
3

.2

P
3

.1

/ E
A

P
0

.6

P
0

.7

P
0

.5

P
0

.4

P
0

.3

P
0

.1

P
0

.2

P
0

.0

V
C

C

P
2

.0

P
2

.2

P
2

.1

P
2

.3

P
2

.4

P
2

.5

P
2

.7

P
2

.6

/ P
S

E
N

A
L

E

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 169

Seminar 6:
Case study: Intruder
alarm system using CAN

2

0

5

8

1

4

7

#

3

6

9

*

Intruder - Zone 3

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 170

Overview of this seminar

The study we re-work the simple intruder-alarm demonstrator from
PES I.

To simplify the discussions, we will treat this as a new design, and
start from scratch.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 171

Overview of the required system

Window
Bell box

Control
panel

W

W

W

W

W

Door

D

Statue

2

0

5

8

1

4

7

#

3

6

9

*

Intruder - Zone 3

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 172

System Operation

♦ When initially activated, the system is in ‘Disarmed’ state.
♦ In Disarmed state, the sensors are ignored. The alarm does not sound.

The system remains in this state until the user enters a valid password via
the keypad (in our demonstration system, the password is “1234”). When
a valid password is entered, the systems enters ‘Arming’ state.

♦ In Arming state, the system waits for 60 seconds, to allow the user to
leave the area before the monitoring process begins. After 60 seconds,
the system enters ‘Armed’ state.

♦ In Armed state, the status of the various system sensors is monitored. If a
window sensor is tripped, the system enters ‘Intruder’ state. If the door
sensor is tripped, the system enters ‘Disarming’ state. The keypad activity
is also monitored: if a correct password is typed in, the system enters
‘Disarmed’ state.

♦ In Disarming state, we assume that the door has been opened by someone
who may be an authorised system user. The system remains in this state
for up to 60 seconds, after which - by default - it enters Intruder state. If,
during the 60-second period, the user enters the correct password, the
system enters ‘Disarmed’ state.

♦ In Intruder state, an alarm will sound. The alarm will keep sounding (for
up to 20 minutes), unless the correct password is entered.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 173

How many processors?

The need for a modular, extensible, system suggests that some form
of multi-processor system would be more appropriate.

This could - for example - involve creating two different types of
nodes (‘controller’, ‘sensor / sounder’ nodes), and linking the nodes
together using some form of standard serial bus, or even a wireless
link.

Using this approach (within bus limits), we can add as many nodes
of each type to the network without difficulty. In the case of the
intruder alarm, this would allow us to add - say - one sensor node
per room, and therby adapt the system for use in any type of
property, from a garden shed to a extensive industrial complex or
mansion house.

If we review the various multi-processor patterns in the collection,
SCC SCHEDULER seems to be the basis of an effective design.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 174

The Controller node

Controller
node BeeperKeypad

Sensor
/ Sounder
node(s)

LCD
display

Heartbeat
LED

BeepKeypad data

Tick: System
status

Ack: Sensor
data

LCD data

LED status

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 175

Patterns for the Controller node

The processor in the controller node will be connected to a small
keypad: the necessary software and hardware interface is described
in the pattern KEYPAD INTERFACE.

LCD CHARACTER PANEL will also be useful.

We also need to control a small buzzer. For these purposes, a small
piezo-electric buzzer will be appropriate: these generate a high-
volume output at low voltages (3V - 5V), and low currents (around
10 mA). NAKED LOAD describes how to achieve this safely.

Note that in the Controller node (and the other nodes) the interface
to the CAN bus is fully described in the pattern SCC SCHEDULER.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 176

The Sensor / Sounder node

Sensor
/ Sounder

node

Door
sensors

Controller
node

Window
sensors

Sounder
unit

Door data

Ack: Sensor
data

Window data

Tick: System
status

Sound alarm

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 177

Patterns for the Sensor / Sounder node

Two main requirements.

1.
We need to reading inputs from a number of magnetic switches.
SWITCH INTERFACE (SOFTWARE) or SWITCH INTERFACE
(HARDWARE) will help with this.

2.
For the final system, we will assume that the bell box contains a
high-power sounder, requiring a DC drive voltage.

In this case (unlike the ‘beeper’ in the Controller node), the current
and voltage requirements will far exceed the very limited capability
of most microcontroller port pins: some form of driver circuit will
therefore be required. Seven different patterns for controlling DC
loads are presented in the PTTES collection: of these, MOSFET
DRIVER will probably be the most appropriate for use here.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 178

Meeting legal requirements

We have assumed that, for legal reasons, the alarm must be
switched off after 20 minutes.

This must happen even if the Master node is damaged, which
means that we need an independent clock source on the Slave.

Please note - in a few minutes - how this is achieved in the code;
the same approach can be used in other shared-clock designs to
create “backup Master” nodes
(that take over if the main Master fails).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 179

Processor decisions

• SCC SCHEDULER makes it clear that the CAN links can be
achieved either by using Extended 8051 devices (with on-
chip CAN support), or by using an external CAN transceiver
(such as the Microchip MCP2510) in conjunction with - say
- a Standard 8051 device.

• Of these solutions, the use of the external transceiver will
tend to result in a solution that is lower in cost, and in which
the code may be more easily ported to a different processor
(if, for example, a particular device goes out of production
during the life of the alarm system).

• However, the “external” solution is likely to be physically
slightly larger in size and which - because of the increased
circuit complexity - may prove to be less robust in the
presence of high humidity and / or vibration.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 180

• In this case, the physical size of the nodes will not be a
crucial issue, and neither vibration nor humidity are likely to
present significant problems.

• As a result, the use of the more portable, lower-cost solution
seems appropriate.

• We will therefore assume that the Microchip MCP2510
external CAN transceiver will be used on each node.

This device has a serial interface, based on the SPI protocol. The
pattern SPI PERIPHERAL provides guidance on the creation of SPI
libraries, and may also prove useful.

There are a number of low-cost Standard 8051s, with hardware
support for SPI.

The Atmel AT89S53) is widely available, at low cost. This device
would match the needs of both types of node.

We considered suitable hardware in Seminar 5.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 181

Hardware foundation

As noted earlier, all microcontroller-based designs require some
form of reset circuit, and some form of oscillator.

The patterns ROBUST RESET and CRYSTAL OSCILLATOR describe
how to implement the required hardware foundation.

Atmel
AT89S53

Vcc

RESET

GND

Vcc

EA

30 pF ±10

30 pF ±10

XTAL 2

XTAL 1

DS1812

12 MHz

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 182

Summary

• Using SCC SCHEDULER, we have identified a means of
dividing the intruder-alarm system cleanly into multiple
nodes, connected over an industry-standard serial bus. The
chosen solution is very flexible, and easy to extend.

• We have identified an appropriate processor for each of the
(three) types of system node, using SCC SCHEDULER, SPI
PERIPHERAL and STANDARD 8051.

• For each of the nodes we have designed an appropriate
hardware framework, using ROBUST RESET and CRYSTAL
OSCILLATOR.

• We have identified suitable ways of attaching a keypad to
the controller node, using KEYPAD INTERFACE. We have
also identified ways of activating the buzzer on this node,
using NAKED LOAD and PORT I/O.

• We have identified ways of determining the status of the
door and window sensors, using SWITCH INTERFACE
(HARDWARE).

• We have identified an appropriate ways controlling the main
alarm bell, using MOSFET DRIVER.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 183

The code: Controller node (List of files)

These are the new files created for this project:

♦ Main.c

♦ Intruder.c, Intruder.h
The core (multi-state) task.

♦ Sounder.c, Sounder.h
Control of the sounder (bell) unit.

♦ SCC_m89S53.c, SCC_m89S53.h
A new version of the shared-clock (CAN) scheduler code, for use with the
Microchip MCP2510.

♦ SPI_2510.c, SPI_2510.h
A small SPI library, to support the MCP2510.

These files are used “as is” from the PTTES CD:

♦ Main.h [Chapter 9]

♦ Port.h [Chapter 10]

♦ Delay_T0.h, Delay_T0.h [Chapter 11]

♦ Sch51.c, Sch51.h [Chapter 14]

♦ TimeoutH.h [Chapter 15]

♦ Char_map.C [Chapter 18]

♦ Keypad.c, Keypad.h [Chapter 20]

♦ LCD_A.c, LCD_A.h [Chapter 22]

♦ SPI_Core.c, SPI_Core.h [Chapter 24]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 184

The code: Controller node (Main.c)

#include "Main.h"
#include "SCC_m89S53.h"
#include "Port.h"

#include "LCD_B.h"
#include "Keypad.h"
#include "Intruder.h"
#include "Sounder.h"

void main(void)
 {
 /* Initialising LCD display 3 times ... */
 LCD_Init(0);
 LCD_Init(0);
 LCD_Init(1);

 Sounder_Init();
 KEYPAD_Init();
 INTRUDER_Init();

 /* Set up the scheduler */
 SCC_A_MASTER_Init_T2_CAN();

 /* TIMING IS IN TICKS (*** 6 ms *** tick interval) */
 /* Add the 'Intruder_Update' task - every 48ms */
 SCH_Add_Task(INTRUDER_Update, 1, 8);

 /* Add 'Sounder_update' every 240ms (timing not critical) */
 SCH_Add_Task(Sounder_Update, 1, 40);

 /* Update the whole display ~ every second
 - do this by updating a character once every 24 ms.
 (assumes a 40 character display) */
 SCH_Add_Task(LCD_Update, 3, 4);

 /* Start the scheduler */
 SCC_A_MASTER_Start();

 while(1)
 {
 SCH_Dispatch_Tasks();
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 185

The code: Controller node (Intruder.c)

#include "Main.H"
#include "Port.H"
#include "Intruder.H"
#include "Keypad.h"
#include "LCD_B.h"
#include "SCC_m89S53.h"

/* ------ Public variable declarations -------------------------- */

extern char LCD_data_G[LCD_LINES][LCD_CHARACTERS+1];
extern char code CHAR_MAP_G[10];
extern tByte Tick_message_data_G[NUMBER_OF_SLAVES];
extern tByte Ack_message_data_G[NUMBER_OF_SLAVES];

/* ------ Private data type declarations ------------------------ */

/* Possible system states */
typedef enum {DISARMED, ARMING, ARMED, DISARMING, INTRUDER, TAMPER}
 eSystem_state;

/* ------ Public variable definitions --------------------------- */

bit Key_pressed_flag_G;
bit Tamper_bit;
bit Alarm_bit;

/* ------ Private function prototypes --------------------------- */

static bit INTRUDER_Get_Password_G(void);
static bit INTRUDER_Check_Window_Sensors(void);
static bit INTRUDER_Check_Door_Sensor(void);
static void INTRUDER_Update_Alarm_Status(char);
static void INTRUDER_LCD_Clear_Password_Line(void);
static void INTRUDER_LCD_Display_State(void) ;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 186

/* ------ Private variables ------------------------------------- */

static tWord State_call_count_G;
static eSystem_state System_state_G;

static char Input_G[4] = {'X','X','X','X'};
static char Password_G[4] = {'1','2','3','4'};

static tByte Position_G;

static bit New_state_G = 0;

/* ------ Private constants ------------------------------------- */
#define ARM_DISARM_TIME 156

/* TICK MESSAGES */
#define SOUND_ALARM 'A'
#define DISABLE_ALARM 'C'

/* ACK MESSAGES */
#define ALLCLEAR 'C'
#define INTRUDER_DETECTED 'I'

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 187

/* --- */
void INTRUDER_Init(void)
 {
 /* Clear message on LCD */
 INTRUDER_LCD_Clear_Password_Line();

 /* Set the initial system state (DISARMED) */
 System_state_G = DISARMED;

 /* Set the 'time in state' variable to 0 */
 State_call_count_G = 0;

 /* Clear the keypad buffer */
 KEYPAD_Clear_Buffer();

 /* Set the 'New state' flag */
 New_state_G = 1;

 /* Set the sensor and the window pins to read mode */
 Window_sensor_pin =1;
 Door_sensor_pin =1;

 /* Ensure the sounder is OFF */
 Sounder_pin = 1;

 /* Clear key press flag */
 Key_pressed_flag_G = FALSE;

 /* Clear Alarm_bit */
 Alarm_bit = FALSE;
 Tamper_bit = FALSE;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 188

/* --- */

void INTRUDER_Update(void)
 {
 tByte ARM_DISARM_Countdown;

 /* Incremented every time */
 if (State_call_count_G < 65534)
 {
 State_call_count_G++;
 }

 if (Tamper_bit == TRUE)
 {
 System_state_G = TAMPER;
 New_state_G = 1;
 }

 /* Called every 48 ms */
 switch (System_state_G)
 {
 case DISARMED:
 {
 if (New_state_G)
 {
 INTRUDER_LCD_Clear_Password_Line();
 INTRUDER_LCD_Display_State();
 New_state_G = 0;
 }

 /* Disable Alarm Sounder */
 INTRUDER_Update_Alarm_Status(DISABLE_ALARM);
 Sounder_pin = 1;

 /* Wait for correct password ... */
 if (INTRUDER_Get_Password_G() == 1)
 {
 System_state_G = ARMING;
 New_state_G = 1;
 State_call_count_G = 0;
 break;
 }

 break;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 189

 case ARMING:
 {
 if (New_state_G)
 {
 INTRUDER_LCD_Clear_Password_Line();
 INTRUDER_LCD_Display_State();
 New_state_G = 0;
 }

 /* Update LCD */
 /* Writing Countdown to LCD */
 ARM_DISARM_Countdown = (ARM_DISARM_TIME-
 State_call_count_G)/21;
 LCD_data_G[0][16] = CHAR_MAP_G[ARM_DISARM_Countdown / 10];
 LCD_data_G[0][17] = CHAR_MAP_G[ARM_DISARM_Countdown % 10];

 /* Remain here for 60 seconds (48 ms tick assumed) */
 if (State_call_count_G > ARM_DISARM_TIME)
 {
 System_state_G = ARMED;
 New_state_G = 1;
 State_call_count_G = 0;
 break;
 }

 break;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 190

 case ARMED:
 {
 if (New_state_G)
 {
 INTRUDER_LCD_Clear_Password_Line();
 INTRUDER_LCD_Display_State();
 New_state_G = 0;
 }

 /* First, check the window sensors */
 if (INTRUDER_Check_Window_Sensors() == 1)
 {
 /* An intruder detected */
 System_state_G = INTRUDER;
 New_state_G = 1;
 State_call_count_G = 0;
 break;
 }

 /* Next, check the door sensors */
 if (INTRUDER_Check_Door_Sensor() == 1)
 {
 /* May be authorised user - go to 'Disarming' state */
 System_state_G = DISARMING;
 New_state_G = 1;
 State_call_count_G = 0;
 break;
 }

 /* Finally, check for correct password */
 if (INTRUDER_Get_Password_G() == 1)
 {
 System_state_G = DISARMED;
 New_state_G = 1;
 State_call_count_G = 0;
 break;
 }

 break;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 191

 case DISARMING:
 {
 if (New_state_G)
 {
 /* Update LCD */
 INTRUDER_LCD_Clear_Password_Line();
 New_state_G = 0;
 }

 /* Writing Countdown to LCD */
 INTRUDER_LCD_Display_State();
 ARM_DISARM_Countdown = (ARM_DISARM_TIME-
 State_call_count_G)/21;
 LCD_data_G[0][16] = CHAR_MAP_G[ARM_DISARM_Countdown / 10];
 LCD_data_G[0][17] = CHAR_MAP_G[ARM_DISARM_Countdown % 10];

 /* Remain here for 60 seconds (48 ms tick assumed)
 to allow user to enter the password
 - after time up, sound alarm. */
 if (State_call_count_G > ARM_DISARM_TIME)
 {
 System_state_G = INTRUDER;
 New_state_G = 1;
 State_call_count_G = 0;
 break;
 }

 /* Still need to check the window sensors */
 if (INTRUDER_Check_Window_Sensors() == 1)
 {
 /* An intruder detected */
 System_state_G = INTRUDER;
 New_state_G = 1;
 State_call_count_G = 0;
 break;
 }

 /* Finally, check for correct password */
 if (INTRUDER_Get_Password_G() == 1)
 {
 System_state_G = DISARMED;
 New_state_G = 1;
 State_call_count_G = 0;
 break;
 }

 break;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 192

 case INTRUDER:
 {
 if (New_state_G)
 {
 INTRUDER_LCD_Clear_Password_Line();
 INTRUDER_LCD_Display_State();
 New_state_G = 0;
 }

 /* Sound the alarm! */
 INTRUDER_Update_Alarm_Status(SOUND_ALARM);

 /* Keep sounding alarm until we get correct password */
 if (INTRUDER_Get_Password_G() == 1)
 {
 System_state_G = DISARMED;
 New_state_G = 1;
 State_call_count_G = 0;
 }

 break;
 }

 case TAMPER:
 {
 if (New_state_G)
 {
 New_state_G = 0;
 INTRUDER_LCD_Display_State();
 }

 /* Sound the alarm! */
 INTRUDER_Update_Alarm_Status(SOUND_ALARM);

 /* Indicate a Network Error */
 NETWORK_ERROR_pin = 0;

 /* Keep sounding alarm until we get correct password */
 if (INTRUDER_Get_Password_G() == 1)
 {
 System_state_G = DISARMED;
 New_state_G = 1;
 State_call_count_G = 0;
 }
 break;
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 193

bit INTRUDER_Get_Password_G(void)
 {
 signed char Key;
 tByte Password_G_count = 0;
 tByte i;

 /* Update the keypad buffer */
 KEYPAD_Update();

 /* Are there any new data in the keypad buffer? */
 if (KEYPAD_Get_Data_From_Buffer(&Key) == 0)
 {
 /* No new data - password can't be correct */
 return 0;
 }

 /* If we are here, a key has been pressed */

 /* How long since last key was pressed? */
 /* Must be pressed within 50 seconds (assume 48 ms 'tick') */
 if (State_call_count_G > 1041)
 {
 /* More than 50 seconds since last key
 - restart the input process. */
 State_call_count_G = 0;
 Position_G = 0;
 }

 if (Position_G == 0)
 {
 /* Blank password line */
 INTRUDER_LCD_Clear_Password_Line();
 }

 /* Write Key pressed to LCD Screen */
 LCD_data_G[1][8+Position_G] = '#';

 /* Set key press flag */
 Key_pressed_flag_G = TRUE;

 Input_G[Position_G] = Key;

 /* Have we got four numbers? */
 if ((++Position_G) == 4)
 {
 Position_G = 0;
 Password_G_count = 0;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 194

 /* Check the password */
 for (i = 0; i < 4; i++)
 {
 if (Input_G[i] == Password_G[i])
 {
 Password_G_count++;
 }
 }
 }

 if (Password_G_count == 4)
 {
 /* Password correct */
 return 1;
 }
 else
 {
 /* Password NOT correct */
 return 0;
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 195

/* --- */

bit INTRUDER_Check_Window_Sensors(void)
 {
 tByte i;

 /* Check status of window sensors from SLAVES */
 /* Check ACK data */
 for (i=0; i < NUMBER_OF_SLAVES; i++)
 {
 if (Ack_message_data_G[i] == INTRUDER_DETECTED)
 {
 return TRUE;
 }
 }

 return FALSE;
 }

/* --- */
bit INTRUDER_Check_Door_Sensor(void)
 {
 /* Single door sensor (access route) */
 if (Door_sensor_pin == 0)
 {
 /* Someone has opened the door... */
 return 1;
 }

 /* Default */
 return 0;
 }

/* --- */

void INTRUDER_Update_Alarm_Status(const char STATUS)
 {
 tByte i;

 for (i = 0; i < NUMBER_OF_SLAVES; i++)
 {
 /* Setting up tick data bytes for IAS Status */
 Tick_message_data_G[i] = STATUS;
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 196

/*--*/

void INTRUDER_LCD_Clear_Password_Line(void)
 {
 tByte c;

 for (c = 0; c < LCD_CHARACTERS; c++)
 {
 LCD_data_G[1][c] = ' ';
 }
 }

/*--*/

void INTRUDER_LCD_Display_State(void)
 {
 /* Displays the current state on 1st Line of LCD */
 char* pStr;
 tByte c;

 switch (System_state_G)
 {
 case DISARMED: pStr = " DISARMED"; break;
 case ARMING: pStr = " ARMING ..."; break;
 case ARMED: pStr = " ARMED"; break;
 case DISARMING: pStr = " DISARMING"; break;
 case INTRUDER: pStr = " INTRUDER!"; break;
 case TAMPER: pStr = " NETWORK TAMPER!";
 }

 for (c = 0; c < LCD_CHARACTERS; c++)
 {
 if (pStr[c] != '\0')
 {
 LCD_data_G[0][c] = pStr[c];
 }
 else
 {
 LCD_data_G[0][c] = ' ';
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 197

The code: Controller node (Sounder.c)

#include "Main.h"
#include "Port.h"
#include "Sounder.h"

/* ------ Public variable declarations ------------------------- */

extern bit Alarm_bit;

/*---*/

void Sounder_Init(void)
 {
 Alarm_bit = FALSE;
 }

/*---*/

void Sounder_Update(void)
 {
 if (Alarm_bit)
 {
 /* Alarm connected to this pin */
 Sounder_pin = 0;
 Alarm_bit = 0;
 }
 else
 {
 Sounder_pin = 1;
 Alarm_bit = 1;
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 198

The code: Controller node (SCC_m89S53.c)

#include "Main.h"
#include "Port.h"
#include "LCD_B.h"
#include "Spi_core.h"
#include "Spi_2510.h"
#include "Delay_T0.h"
#include "Intruder.h"

#include "SCC_m89S53.h"

/* ------ Public variable definitions --------------------------- */

/* One byte of data (plus ID information) is sent to each Slave */
tByte Tick_message_data_G[NUMBER_OF_SLAVES];
tByte Ack_message_data_G[NUMBER_OF_SLAVES];

/* ------ Public variable declarations -------------------------- */

/* The array of tasks (see Sch51.c) */
extern sTask SCH_tasks_G[SCH_MAX_TASKS];

/* The error code variable (see Sch51.c) */
extern tByte Error_code_G;

/* LCD Buffer */
extern char LCD_data_G[LCD_LINES][LCD_CHARACTERS+1];

/* Alarm Status bit */
extern bit Tamper_bit;

/* ------ Private variable definitions --------------------------- */
static tByte Slave_index_G = 0;
static bit First_ack_G = 1;

/* ------ Private function prototypes ---------------------------- */

static void SCC_A_MASTER_Send_Tick_Message(const tByte);
static bit SCC_A_MASTER_Process_Ack(const tByte);

static void SCC_A_MASTER_Shut_Down_the_Network(void);

static void SCC_A_MASTER_Enter_Safe_State(void);

static tByte SCC_A_MASTER_Start_Slave(const tByte) reentrant;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 199

/* ------ Private constants -------------------------------------- */

/* Do not use ID 0x00 (used to start slaves) */
static const tByte MAIN_SLAVE_IDs[NUMBER_OF_SLAVES] = {0x02,0x03};
static const tByte BACKUP_SLAVE_IDs[NUMBER_OF_SLAVES] = {0x02,0x03};

#define NO_NETWORK_ERROR (1)
#define NETWORK_ERROR (0)

/* ------ Private variables -------------------------------------- */

static tWord Slave_reset_attempts_G[NUMBER_OF_SLAVES];

/* Slave IDs may be any non-zero tByte value
 (but all must be different) */
static tByte Current_Slave_IDs_G[NUMBER_OF_SLAVES] = {0};

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 200

/*--*-

 SCC_A_MASTER_Init_T2_CAN()

 Scheduler initialisation function. Prepares scheduler data
 structures and sets up timer interrupts at required rate.
 Must call this function before using the scheduler.

-*--*/
void SCC_A_MASTER_Init_T2_CAN(void)
 {
 tByte i;
 tByte Slave_index;

 /* No interrupts (yet) */
 EA = 0;

 /* Show Network error until connected */
 NETWORK_ERROR_pin = NETWORK_ERROR;

 /* ------ Set up the scheduler -------------------------------- */
 /* Sort out the tasks */
 for (i = 0; i < SCH_MAX_TASKS; i++)
 {
 SCH_Delete_Task(i);
 }

 /* SCH_Delete_Task() will generate an error code,
 because the task array is empty
 -> reset the global error variable. */
 Error_code_G = 0;

 /* We allow any combination of ID numbers in slaves */
 for (Slave_index = 0; Slave_index < NUMBER_OF_SLAVES; Slave_index++)
 {
 Slave_reset_attempts_G[Slave_index] = 0;
 Current_Slave_IDs_G[Slave_index] = MAIN_SLAVE_IDs[Slave_index];
 Tick_message_data_G[Slave_index] = 'C';
 }

 /* Get ready to send first tick message */
 First_ack_G = 1;
 Slave_index_G = 0;
 /* ------ Set up the CAN link (begin) ------------------------ */

 /* Will be using SPI - must init on-chip SPI hardware
 - see SPI_Init_AT89S53() for SPI settings */
 SPI_Init_AT89S53(0x51); /* SPCR - 0101 0001 */

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 201

 /* Must init the MCP2510 */
 MCP2510_Init();
 MCP2510_Write_Register(CANCTRL, SetConfigurationMode);

 /* 12 MHz xtal on MCP2510 -> 333.333 kbaud */
 MCP2510_Write_Register(CNF1, 0x00);
 MCP2510_Write_Register(CNF2, 0xB8);
 MCP2510_Write_Register(CNF3, 0x07);

 /* We *don't* use Buffer 0 here.
 We therefore set it to receive CAN messages, as follows:
 - with Standard IDs.
 - matching the filter settings.
 [As all our messages have Extended IDs, this won't happen. */
 MCP2510_Write_Register(RxB0CTRL, 0x02);

 /* We set up MCP2510 Buffer 1 to receive Ack messages, as follows:
 - with Extended IDs.
 - matching the filter settings (see below) */
 MCP2510_Write_Register(RxB1CTRL, 0x04);

 /* --- Now set up masks and filters (BEGIN) --- */
 /* Buffer 0 mask
 (all 1s - so filter must match every bit)
 [Standard IDs] */
 MCP2510_Write_Register(RxM0SIDH, 0xFF);
 MCP2510_Write_Register(RxM0SIDL, 0xE0);

 /* Buffer 0 filters
 (all 1s, and Standard messages only) */
 MCP2510_Write_Register(RxF0SIDH, 0xFF);
 MCP2510_Write_Register(RxF0SIDL, 0xE0);

 MCP2510_Write_Register(RxF1SIDH, 0xFF);
 MCP2510_Write_Register(RxF1SIDL, 0xE0);

 /* Buffer 1 mask
 (all 1s - so filter must match every bit)
 [Extended IDs] */
 MCP2510_Write_Register(RxM1SIDH, 0xFF);
 MCP2510_Write_Register(RxM1SIDL, 0xE3);
 MCP2510_Write_Register(RxM1EID8, 0xFF);
 MCP2510_Write_Register(RxM1EID0, 0xFF);

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 202

 /* Buffer 1 filters
 Only accept Ack messages - with Extended ID 0x000000FF
 We set *ALL* relevant filters (2 - 5) to match this message */
 MCP2510_Write_Register(RxF2SIDH, 0x00);
 MCP2510_Write_Register(RxF2SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(RxF2EID8, 0x00);
 MCP2510_Write_Register(RxF2EID0, 0xFF);

 MCP2510_Write_Register(RxF3SIDH, 0x00);
 MCP2510_Write_Register(RxF3SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(RxF3EID8, 0x00);
 MCP2510_Write_Register(RxF3EID0, 0xFF);

 MCP2510_Write_Register(RxF4SIDH, 0x00);
 MCP2510_Write_Register(RxF4SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(RxF4EID8, 0x00);
 MCP2510_Write_Register(RxF4EID0, 0xFF);

 MCP2510_Write_Register(RxF5SIDH, 0x00);
 MCP2510_Write_Register(RxF5SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(RxF5EID8, 0x00);
 MCP2510_Write_Register(RxF5EID0, 0xFF);

 /* --- Now set up masks and filters (END) --- */

 MCP2510_Write_Register(CANCTRL, SetNormalMode);

 /* NO interrupts required */
 MCP2510_Write_Register(CANINTE, 0x00);

 /* Prepare 'Tick' message... */

 /* EXTENDED IDs used here
 (ID 0x00000000 used for Tick messages - matches PTTES) */
 MCP2510_Write_Register(TxB0SIDH, 0x00);
 MCP2510_Write_Register(TxB0SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(TxB0EID8, 0x00);
 MCP2510_Write_Register(TxB0EID0, 0x00);

 /* Number of data bytes */
 MCP2510_Write_Register(TxB0DCL, 0x02);

 /* ------ Set up the CAN link (end) -------------------------- */

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 203

 /* ------ Set up Timer 2 (begin) ----------------------------- */
 /* Now set up Timer 2
 16-bit timer function with automatic reload
 Crystal is assumed to be 12 MHz
 The Timer 2 resolution is 0.000001 seconds (1 µs)
 The required Timer 2 overflow is 0.006 seconds (6 ms,
 which takes 6000 timer ticks
 -> reload value is 65536 - 6000 = 59536 (dec) = 0xE890 */

 T2CON = 0x04; /* Load Timer 2 control register */
 T2MOD = 0x00; /* Load Timer 2 mode register */

 TH2 = 0xE8; /* Load Timer 2 high byte */
 RCAP2H = 0xE8; /* Load Timer 2 reload capture reg, high byte */
 TL2 = 0x90; /* Load Timer 2 low byte */
 RCAP2L = 0x90; /* Load Timer 2 reload capture reg, low byte */

 ET2 = 1; /* Timer 2 interrupt is enabled */

 /* ------ Set up Timer 2 (end) -------------------------------- */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 204

/*--*-

 SCC_A_MASTER_Start()

 Starts the scheduler, by enabling interrupts.

 NOTE: Usually called after all regular tasks are added,
 to keep the tasks synchronised.

 NOTE: ONLY THE SCHEDULER INTERRUPT SHOULD BE ENABLED!!!

-*--*/
void SCC_A_MASTER_Start(void)
 {
 tByte Num_active_slaves;
 tWord i;
 tByte Slave_replied_correctly;
 tByte Slave_index, Slave_ID;

 /* Report error as we wait to start */
 NETWORK_ERROR_pin = NETWORK_ERROR;

 Error_code_G = ERROR_SCH_WAITING_FOR_SLAVE_TO_ACK;
 SCH_Report_Status(); /* Sch not yet running - do this manually */

 /* Pause here (~300 ms), to time-out all the slaves
 [This is the means by which we synchronise the network] */
 for (i = 0; i < 10; i++)
 {
 Hardware_Delay_T0(30);
 }

 /* Currently disconnected from all slaves */
 Num_active_slaves = 0;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 205

 /* After the initial (long) delay, all slaves will have timed out.
 All (operational) slaves will now be 'READY TO START'
 -> send them a 'slave ID' message to get them started. */
 Slave_index = 0;
 do {
 Slave_ID = (tByte) Current_Slave_IDs_G[Slave_index];

 Slave_replied_correctly = SCC_A_MASTER_Start_Slave(Slave_ID);

 if (Slave_replied_correctly)
 {
 Num_active_slaves++;
 Slave_index++;
 }
 else
 {
 /* Slave did not reply correctly
 - try to switch to backup device (if available) */
 if (Current_Slave_IDs_G[Slave_index] !=
 BACKUP_SLAVE_IDs[Slave_index])
 {
 /* There is a backup available - use it */
 Current_Slave_IDs_G[Slave_index] =
 BACKUP_SLAVE_IDs[Slave_index];
 }
 else
 {
 /* No backup available (or backup failed too)
 - have to continue */
 Slave_index++;
 }
 }
 } while (Slave_index < NUMBER_OF_SLAVES);

 /* DEAL WITH CASE OF MISSING SLAVE(S) HERE ... */
 if (Num_active_slaves < NUMBER_OF_SLAVES)
 {
 /* Simplest solution is to display an error and carry on */
 Error_code_G = ERROR_SCH_ONE_OR_MORE_SLAVES_DID_NOT_START;
 NETWORK_ERROR_pin = NETWORK_ERROR;
 }
 else
 {
 Error_code_G = 0;
 NETWORK_ERROR_pin = NO_NETWORK_ERROR;
 }
 TR2 = 1; /* Start Timer 2 */
 EA = 1; /* Enable Interrupts */
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 206

/*--*-

 SCC_A_MASTER_Update_T2

 This is the scheduler ISR. It is called at a rate determined by
 the timer settings in SCC_A_MASTER_Init_T2(). This version is
 triggered by Timer 2 interrupts: timer is automatically reloaded.

-*--*/
void SCC_A_MASTER_Update_T2(void) interrupt INTERRUPT_Timer_2_Overflow
 {
 tByte Index;
 tByte Previous_slave_index;
 tByte Slave_replied_correctly;

 /* Clear the Timer overflow flag */
 TF2 = 0; /* Have to manually clear this. */

 /* Default */
 NETWORK_ERROR_pin = NO_NETWORK_ERROR;

 /* Keep track of the current slave */
 Previous_slave_index = Slave_index_G; /* 1st value is 0 */

 if (++Slave_index_G >= NUMBER_OF_SLAVES)
 {
 Slave_index_G = 0;
 }

 /* Check that the approp slave responded to the prev message:
 (if it did, store the data sent by this slave) */
 if (SCC_A_MASTER_Process_Ack(Previous_slave_index) == RETURN_ERROR)
 {
 Error_code_G = ERROR_SCH_LOST_SLAVE;
 NETWORK_ERROR_pin = NETWORK_ERROR;

 /* If we have lost contact with a slave, we attempt to
 switch to a backup device (if one is available) */
 if (Current_Slave_IDs_G[Slave_index_G] !=
 BACKUP_SLAVE_IDs[Slave_index_G])
 {
 /* There is a backup available:
 - switch to backup and try again */
 Current_Slave_IDs_G[Slave_index_G] =
 BACKUP_SLAVE_IDs[Slave_index_G];
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 207

 else
 {
 /* There is no backup available (or we are already using it)
 -> re-try main device. */
 Current_Slave_IDs_G[Slave_index_G] =
 MAIN_SLAVE_IDs[Slave_index_G];
 }

 /* Try to connect to the slave */
 Slave_replied_correctly =
 SCC_A_MASTER_Start_Slave(Current_Slave_IDs_G[Slave_index_G]);

 if (!Slave_replied_correctly)
 {
 /* No backup available (or backup failed too) - we shut down
 OTHER BEHAVIOUR MAY BE MORE APPROP IN YOUR SYSTEM! */
 SCC_A_MASTER_Shut_Down_the_Network();
 }
 }

 /* Send 'tick' message to all connected slaves
 (sends one data byte to the current slave) */
 SCC_A_MASTER_Send_Tick_Message(Slave_index_G);

 /* NOTE: calculations are in *TICKS* (not milliseconds) */
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 /* Check if there is a task at this location */
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 /* The task is due to run */
 SCH_tasks_G[Index].RunMe += 1; /* Inc RunMe */

 if (SCH_tasks_G[Index].Period)
 {
 /* Schedule periodic tasks to run again */
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 }
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 208

/*--*-

 SCC_A_MASTER_Send_Tick_Message()

 This function sends a tick message, over the CAN network.
 The receipt of this message will cause an interrupt to be generated
 in the slave(s): this invoke the scheduler 'update' function
 in the slave(s).

-*--*/
void SCC_A_MASTER_Send_Tick_Message(const tByte SLAVE_INDEX)
 {
 /* Find the slave ID for this slave */
 /* ALL SLAVES MUST HAVE A UNIQUE (non-zero) ID */
 tByte Slave_ID = (tByte) Current_Slave_IDs_G[SLAVE_INDEX];

 /* First byte of message must be slave ID */
 MCP2510_Write_Register(TxB0D0, Slave_ID);

 /* Now the data */
 MCP2510_Write_Register(TxB0D1, Tick_message_data_G[SLAVE_INDEX]);

 /* Send the message */
 MCP2510_cs = 0;
 SPI_Exchange_Bytes(RTS_BUFFER0_INSTRUCTION);
 MCP2510_cs = 1;

 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 209

/*--*-

 SCC_A_MASTER_Process_Ack()

 Make sure the slave (SLAVE_ID) has acknowledged the previous
 message that was sent. If it has, extract the message data
 from the USART hardware: if not, call the appropriate error
 handler.

-*--*/

bit SCC_A_MASTER_Process_Ack(const tByte SLAVE_INDEX)
 {
 tByte Ack_ID, Slave_ID;

 /* First time this is called there is no Ack message to check
 - we *assume* everything is OK. */
 if (First_ack_G)
 {
 First_ack_G = 0;
 return RETURN_NORMAL;
 }

 if ((MCP2510_Read_Register(CANINTF) & 0x02) != 0)
 {
 /* An ack message was received
 -> extract the data */
 /* Get data byte 0 (Slave ID) */
 Ack_ID = MCP2510_Read_Register(RxB1D0);

 Ack_message_data_G[SLAVE_INDEX] = MCP2510_Read_Register(RxB1D1);

 /* Clear *ALL* flags ... */
 MCP2510_Write_Register(CANINTF, 0x00);

 /* Find the slave ID for this slave */
 Slave_ID = (tByte) Current_Slave_IDs_G[SLAVE_INDEX];

 if (Ack_ID == Slave_ID)
 {
 return RETURN_NORMAL;
 }
 }

 /* No message, or ID incorrect */
 return RETURN_ERROR;

 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 210

/*--*-

 SCC_A_MASTER_Shut_Down_the_Network()

 This function will be called when a slave fails to
 acknowledge a tick message.

-*--*/
void SCC_A_MASTER_Shut_Down_the_Network(void)
 {
 SCC_A_MASTER_Enter_Safe_State();
 }

/*--*-

 SCC_A_MASTER_Enter_Safe_State()

 This is the state enterted by the system when:
 (1) The node is powered up or reset
 (2) The Master node cannot detect a slave
 (3) The network has an error

 Try to ensure that the system is in a 'safe' state in these
 circumstances.

-*--*/
void SCC_A_MASTER_Enter_Safe_State(void)
 {
 /* USER DEFINED - Edit as required */
 /* Set Tamper bit */
 Tamper_bit = TRUE;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 211

/*--*-

 SCC_A_MASTER_Start_Slave()

 Try to connect to a slave device.

-*--*/
tByte SCC_A_MASTER_Start_Slave(const tByte SLAVE_ID) reentrant
 {
 tByte Slave_replied_correctly = 0;

 tByte Ack_ID, Ack_00;

 /* Prepare a 'Slave ID' message */
 MCP2510_Write_Register(TxB0D0, 0x00); /* Not a valid slave ID */
 MCP2510_Write_Register(TxB0D1, SLAVE_ID);

 /* Send the message */
 MCP2510_cs = 0;
 SPI_Exchange_Bytes(RTS_BUFFER0_INSTRUCTION);
 MCP2510_cs = 1;

 /* Wait to give slave time to reply */
 Hardware_Delay_T0(5);

 /* Check we had a reply */
 if ((MCP2510_Read_Register(CANINTF) & 0x02)!=0)
 {
 /* An ack message was received - extract the data */
 Ack_00 = MCP2510_Read_Register(RxB1D0); /* Get data byte 0 */
 Ack_ID = MCP2510_Read_Register(RxB1D1); /* Get data byte 1 */

 /* Clear *ALL* flags */
 MCP2510_Write_Register(CANINTF, 0x00);

 if ((Ack_00 == 0x00) && (Ack_ID == SLAVE_ID))
 {
 Slave_replied_correctly = 1;
 }
 }

 return Slave_replied_correctly;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 212

The code: Sensor / Sounder node (List of files)

These are the new files created for this project:

♦ Main.c

♦ Intruder.c, Intruder.h
The core task for the slave node (less complex than Master)

♦ Sounder.c, Sounder.h
Control of the sounder (bell) unit.

♦ SCC_s89S53.c, SCC_s89S53.h
A new version of the shared-clock (CAN) scheduler code, for use with the
Microchip MCP2510.

♦ SPI_2510.c, SPI_2510.h
A small SPI library, to support the MCP2510
(NOTE: Same as Master - not reproduced again)

These files are used “as is” from the PTTES CD:

♦ Main.h [Chapter 9]

♦ Port.h [Chapter 10]

♦ Delay_T0.h, Delay_T0.h [Chapter 11]

♦ Sch51.c, Sch51.h [Chapter 14]

♦ LED_flas.c, LED_flas.h [Chapter 14]

♦ Swit_A.c, Swit_A.h [Chapter 19]

♦ LCD_A.c, LCD_A.h [Chapter 22]

♦ SPI_Core.c, SPI_Core.h [Chapter 24]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 213

The code: Sensor / Sounder node (Main.c)

#include "Main.h"

#include "LED_Flas.h"
#include "Intruder.h"
#include "SCC_s89S53.h"
#include "Sounder.h"
#include "Port.h"
#include "Swit_A.h"

void main(void)
 {
 SWITCH_Init();
 LED_Flash_Init();
 INTRUDER_Init();
 SOUNDER_Init_T2();

 /* Set up the scheduler */
 SCC_A_SLAVE_Init_CAN();

 /* TIMING IS IN TICKS (6 ms tick interval) */
 SCH_Add_Task(SWITCH_Update,1, 1);

 /* Sch every 48 ms */
 SCH_Add_Task(INTRUDER_Update, 0, 8);

 /* Add a 'flash LED' task (on for 1002 ms, off for 1002 ms) */
 SCH_Add_Task(LED_Flash_Update,0, 167);

 /* Start the scheduler */
 SCC_A_SLAVE_Start();

 while(1)
 {
 SCH_Dispatch_Tasks();
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 214

The code: Sensor / Sounder node (Intruder.c)

#include "Main.H"
#include "Port.H"
#include "Intruder.H"

/* ------ Public variable declarations ---------------------------- */
extern tByte Tick_message_data_G;
extern tByte Ack_message_data_G;

extern bit Sw_pressed_G;

/* ------ Public variable definitions ----------------------------- */
/* Set to TRUE to sound the alarm */
bit Sound_alarm_G;

/* ------ Private function prototypes ----------------------------- */
static bit INTRUDER_Check_Window_Sensors(void);

/* ------ Private constants --------------------------------------- */

/* Ticks */
#define SOUND_ALARM 'A'
#define DISABLE_ALARM 'C'

/* Acks */
#define ALL_CLEAR 'C'
#define INTRUDER_DETECTED 'I'

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 215

/* --- */
void INTRUDER_Init(void)
 {
 /* Set Ack message as allclear initialy */
 Ack_message_data_G = ALL_CLEAR;

 /* Clear alarm bit for startup */
 Sound_alarm_G = FALSE;

 /* Set window sensor to read */
 Window_sensor_pin = 1;
 Sounder_pin = 1;
 }

/* --- */

void INTRUDER_Update(void)
 {
 /* Deal with window sensors */
 if (Sw_pressed_G == 1)
 {
 /* Intruder detected (tell Master) */
 Ack_message_data_G = INTRUDER_DETECTED;
 }
 else
 {
 /* All clear (tell Master) */
 Ack_message_data_G = ALL_CLEAR;
 }

 /* Check for instructions from Master */
 if (Tick_message_data_G == SOUND_ALARM)
 {
 Sound_alarm_G = TRUE;
 return;
 }

 if (Tick_message_data_G == DISABLE_ALARM)
 {
 Sound_alarm_G = FALSE;
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 216

The code: Sensor / Sounder node (Sounder.c)

void Sounder_Init_T2(void)
 {
 /* Clear counts; */
 Tick_count_G = 0;
 Minute_count_G = 0;

 /* Set sounder to off */
 Sounder_pin = 1;

 /* Set Low Priority Timer2 interrupt for timing of sounder */
 /* Set up Timer 2
 16-bit timer function with automatic reload
 Crystal is assumed to be 12 MHz
 The Timer 2 resolution is 0.000001 seconds (1 µs)
 The required Timer 2 overflow is 0.050 seconds (50 ms)
 - this takes 50000 timer ticks
 Reload value is 65536 - 50000 = 15536 (dec) = 0x3CB0 */
 T2CON = 0x04; /* Load Timer 2 control register */
 T2MOD = 0x00; /* Load Timer 2 mode register */

 TH2 = 0x3C; /* Load Timer 2 high byte */
 RCAP2H = 0x3C; /* Load Timer 2 reload capture reg, high byte */
 TL2 = 0xB0; /* Load Timer 2 low byte */
 RCAP2L = 0xB0; /* Load Timer 2 reload capture reg, low byte */
 PT2 = 0; /* Set to low priority */

 ET2 = 1; /* Timer 2 interrupt is enabled */
 }

NOTE!
We have broken the “one interrupt per microcontroller” rule. In this
case, this may be acceptable, because we can afford to miss some of
the interrupts from T2 (this will simply cause a slight variation in the
alarm timing).

Other (better?) solutions are possible, which do not involve breaking
this rule: we’ll discuss these in the seminar.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 217

/* ---

 SOUNDER_Update_T2()

 Timer 2 overflow ISR set to low Priority interupt

 Called every 50ms

 --- */
void SOUNDER_Update_T2 (void) interrupt INTERRUPT_Timer_2_Overflow
 {
 /* Clear the Timer overflow flag */
 TF2 = 0; /* Have to manually clear this. */

 if (Sound_alarm_G == FALSE)
 {
 /* Just reset the counters */
 Tick_count_G = 0;
 Minute_count_G = 0;

 return;
 }

 /* Ensure that alarm only sounds for 20 minutes */

 /* 50 ms ticks (1200 x 50ms => 1 minute) */
 if (Tick_count_G < 1200)
 {
 Tick_count_G++;
 }
 else
 {
 Minute_count_G++;
 Tick_count_G = 0;
 }

 /* If alarm set for longer than 20 min switch off
 [NOTE: we use only 2 minutes here, for testing purposes.] */
 if (Minute_count_G > 2)
 {
 Sounder_pin = 1; /* Stop sounder */
 Sound_alarm_G = FALSE; /* Clear alarm after 20 minutes */
 }
 else
 {
 Sounder_pin = 0; /* Sounder on */
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 218

The code: Sensor / Sounder node (SCC_s89S53.c)

#include "Main.h"
#include "Port.h"
#include "Spi_core.h"
#include "Spi_2510.h"

#include "SCC_s89S53.h"

/* ------ Public variable definitions ----------------------------- */

/* Data sent from the master to this slave */
tByte Tick_message_data_G;

/* Data sent from this slave to the master
 - data may be sent on, by the master, to another slave */
tByte Ack_message_data_G = 'C';

/* ------ Public variable declarations ---------------------------- */

/* The array of tasks (see Sch51.c) */
extern sTask SCH_tasks_G[SCH_MAX_TASKS];

/* The error code variable (see Sch51.c) */
extern tByte Error_code_G;

extern bit Sound_alarm_G;

/* ------ Private function prototypes ----------------------------- */
static void SCC_A_SLAVE_Enter_Safe_State(void);

static void SCC_A_SLAVE_Send_Ack_Message_To_Master(void);
static tByte SCC_A_SLAVE_Process_Tick_Message(void);

static void SCC_A_SLAVE_Watchdog_Init(void);
static void SCC_A_SLAVE_Watchdog_Refresh(void) reentrant;

/* ------ Private constants --------------------------------------- */
/* Each slave (and backup) must have a unique (non-zero) ID */
#define SLAVE_ID 0x02

#define NO_NETWORK_ERROR (1)
#define NETWORK_ERROR (0)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 219

/*--*-

 SCC_A_SLAVE_Init_CAN()

 Scheduler initialisation function. Prepares scheduler
 data structures and sets up timer interrupts at required rate.
 Must call this function before using the scheduler.

-*--*/
void SCC_A_SLAVE_Init_CAN(void)
 {
 tByte i;

 /* Sort out the tasks */
 for (i = 0; i < SCH_MAX_TASKS; i++)
 {
 SCH_Delete_Task(i);
 }

 /* SCH_Delete_Task() will generate an error code,
 because the task array is empty.
 -> reset the global error variable. */
 Error_code_G = 0;

 /* Set the network error pin (reset when tick message received) */
 Network_error_pin = NETWORK_ERROR;

 /* Will be using SPI - must init on-chip SPI hardware
 - see SPI_Init_AT89S53() for SPI settings */
 SPI_Init_AT89S53(0x51); /* SPCR bit 3 - 0101 0001 */

 /* Must init the MCP2510 */
 MCP2510_Init();
 MCP2510_Write_Register(CANCTRL, SetConfigurationMode);

 /* 12 MHz xtal on MCP2510 -> 333.333 kbaud */
 MCP2510_Write_Register(CNF1, 0x00);
 MCP2510_Write_Register(CNF2, 0xB8);
 MCP2510_Write_Register(CNF3, 0x07);

 /* We *don't* use Buffer 0 here.
 We therefore set it to receive CAN messages, as follows:
 - with Standard IDs.
 - matching the filter settings.
 [As all our messages have Extended IDs, this won't happen. */
 MCP2510_Write_Register(RxB0CTRL, 0x02);

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 220

 /* We set up MCP2510 Buffer 1 to receive Tick mgs, as follows:
 - with Extended IDs.
 - matching the filter settings (see below) */
 MCP2510_Write_Register(RxB1CTRL, 0x04);

 /* --- Now set up masks and filters (BEGIN) --- */
 /* Buffer 0 mask
 (all 1s - so filter must match every bit)
 [Standard IDs] */
 MCP2510_Write_Register(RxM0SIDH, 0xFF);
 MCP2510_Write_Register(RxM0SIDL, 0xE0);

 /* Buffer 0 filters (all 1s, and Standard messages only) */
 MCP2510_Write_Register(RxF0SIDH, 0xFF);
 MCP2510_Write_Register(RxF0SIDL, 0xE0);

 MCP2510_Write_Register(RxF1SIDH, 0xFF);
 MCP2510_Write_Register(RxF1SIDL, 0xE0);

 /* Buffer 1 mask (all 1s - so filter must match every bit)
 [Extended IDs] */
 MCP2510_Write_Register(RxM1SIDH, 0xFF);
 MCP2510_Write_Register(RxM1SIDL, 0xE3);
 MCP2510_Write_Register(RxM1EID8, 0xFF);
 MCP2510_Write_Register(RxM1EID0, 0xFF);

 /* Buffer 1 filters
 (only accept messages with Extended ID 0x00000000)
 We set *ALL* relevant filters (2 - 5) to match this message */
 MCP2510_Write_Register(RxF2SIDH, 0x00);
 MCP2510_Write_Register(RxF2SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(RxF2EID8, 0x00);
 MCP2510_Write_Register(RxF2EID0, 0x00);
 MCP2510_Write_Register(RxF3SIDH, 0x00);
 MCP2510_Write_Register(RxF3SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(RxF3EID8, 0x00);
 MCP2510_Write_Register(RxF3EID0, 0x00);
 MCP2510_Write_Register(RxF4SIDH, 0x00);
 MCP2510_Write_Register(RxF4SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(RxF4EID8, 0x00);
 MCP2510_Write_Register(RxF4EID0, 0x00);
 MCP2510_Write_Register(RxF5SIDH, 0x00);
 MCP2510_Write_Register(RxF5SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(RxF5EID8, 0x00);
 MCP2510_Write_Register(RxF5EID0, 0x00);

 /* --- Now set up masks and filters (END) --- */

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 221

 /* Into 'Normal' mode */
 MCP2510_Write_Register(CANCTRL, SetNormalMode);

 /* Interrupts are required if data are in Buffer 1.
 Clear *all* interrupt flags before enabling interrupt */
 MCP2510_Write_Register(CANINTF, 0x00);

 /* Enable MCP2510 interrupt generation
 (*Rx only here - no errors, etc *)
 Interrupts from Buffer 1 only */
 MCP2510_Write_Register(CANINTE, 0x02);

 /* Prepare 'Ack' message...
 EXTENDED IDs used here
 (ID 0x000000FF used for Ack messages - matches PTTES) */
 MCP2510_Write_Register(TxB0SIDH, 0x00);
 MCP2510_Write_Register(TxB0SIDL, 0x08); /* EXIDE bit */
 MCP2510_Write_Register(TxB0EID8, 0x00);
 MCP2510_Write_Register(TxB0EID0, 0xFF);

 /* Number of data bytes */
 /* NOTE: First byte is the slave ID */
 MCP2510_Write_Register(TxB0DCL, 0x02);

 /* Initial values of the data bytes
 [Generally only need to change data values and send message] */
 MCP2510_Write_Register(TxB0D0, 0x01); /* Slave ID */
 MCP2510_Write_Register(TxB0D1, 0x02); /* Data byte */

 /* Now set up interrupts from MCP2510
 (generated on receipt of Tick message) */

 /* Slave is driven by an interrupt input
 The interrupt is enabled
 It is triggered by a falling edge at pin P3.2 */
 IT0 =1;
 EX0 =1;
 /* Set as High priority */
 PX0 =1;

 /* Start the watchdog */
 SCC_A_SLAVE_Watchdog_Init();
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 222

/*--*-

 SCC_A_SLAVE_Start()

 Starts the slave scheduler, by enabling interrupts.

 NOTE: Usually called after all regular tasks are added,
 to keep the tasks synchronised.

-*--*/
void SCC_A_SLAVE_Start(void)
 {
 tByte Tick_00, Tick_ID;
 tByte Start_slave;
 tByte CAN_interrupt_flag;

 /* Disable interrupts */
 EA = 0;

 /* We can be at this point because:
 1. The network has just been powered up
 2. An error has occurred in the Master -> no Ticks
 3. The network has been damaged -> no Ticks

 Try to make sure the system is in a safe state...
 [NOTE: Interrupts are disabled here.] */
 SCC_A_SLAVE_Enter_Safe_State();
 Network_error_pin = NETWORK_ERROR;

 Start_slave = 0;
 Error_code_G = ERROR_SCH_WAITING_FOR_START_COMMAND_FROM_MASTER;
 SCH_Report_Status(); /* Sch not yet running - do this manually */

 /* Now wait (indefinitely) for approp. signal from the Master */
 do {
 /* Wait for CAN message to be received */
 do {
 SCC_A_SLAVE_Watchdog_Refresh(); /* Must feed watchdog */
 CAN_interrupt_flag = MCP2510_Read_Register(CANINTF);
 } while ((CAN_interrupt_flag & 0x02) == 0);

 /* Get the first two data bytes */
 Tick_00 = MCP2510_Read_Register(RxB1D0); /* Byte 0, Buffer 1 */
 Tick_ID = MCP2510_Read_Register(RxB1D1); /* Byte 1, Buffer 1 */

 /* We simply clear *ALL* flags here... */
 MCP2510_Write_Register(CANINTF, 0x00);

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 223

 if ((Tick_00 == 0x00) && (Tick_ID == SLAVE_ID))
 {
 /* Message is correct */
 Start_slave = 1;

 /* Turn off the alarm */
 Sound_alarm_G = FALSE;

 /* Prepare Ack message for transmission to Master */
 MCP2510_Write_Register(TxB0D0, 0x00); /* Always 0x00 */
 MCP2510_Write_Register(TxB0D1, SLAVE_ID); /* Slave ID */

 /* Send the message */
 MCP2510_cs = 0; /* Select the MCP2510 */
 SPI_Exchange_Bytes(RTS_BUFFER0_INSTRUCTION);
 MCP2510_cs = 1; /* Deselect the MCP2510 */
 }
 else
 {
 /* Not yet received correct message - wait */
 Start_slave = 0;
 Network_error_pin = NETWORK_ERROR;
 }
 } while (!Start_slave);

 /* Set up the watchdog (normal timeout) */
 SCC_A_SLAVE_Watchdog_Refresh();

 /* Clear Interupt Flag */
 IE0 =0;

 /* Start the scheduler */
 EA = 1;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 224

/*--*-

 SCC_A_SLAVE_Update

 This is the scheduler ISR.
 This Slave is triggered by Rx interrupt from MCP2510.

-*--*/
void SCC_A_SLAVE_Update(void) interrupt INTERRUPT_EXTERNAL_0
 {
 tByte Index;

 /* Clear Interupt Flag */
 IE0 =0;

 /* Check Tick data - send Ack if necessary
 NOTE: 'START' message will only be sent after a 'time out' */
 if (SCC_A_SLAVE_Process_Tick_Message() == SLAVE_ID)
 {

 SCC_A_SLAVE_Send_Ack_Message_To_Master();

 /* Feed the watchdog ONLY when a *relevant* message is received
 (noise on the bus, etc, will not stop the watchdog...)
 START messages will NOT refresh the slave
 - Must talk to every slave at regular intervals. */
 SCC_A_SLAVE_Watchdog_Refresh();
 }

 /* NOTE: calculations are in *TICKS* (not milliseconds) */
 for (Index = 0; Index < SCH_MAX_TASKS; Index++)
 {
 /* Check if there is a task at this location */
 if (SCH_tasks_G[Index].pTask)
 {
 if (--SCH_tasks_G[Index].Delay == 0)
 {
 /* The task is due to run */
 SCH_tasks_G[Index].RunMe = 1; /* Set the run flag */

 if (SCH_tasks_G[Index].Period)
 {
 /* Schedule periodic tasks to run again */
 SCH_tasks_G[Index].Delay = SCH_tasks_G[Index].Period;
 }
 }
 }
 }
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 225

/*--*-

 SCC_A_SLAVE_Process_Tick_Message()

 The ticks messages are crucial to the operation of this shared-clock
 scheduler: the arrival of a tick message (at regular intervals)
 invokes the 'Update' ISR, that drives the scheduler.

 The tick messages themselves may contain data. These data are
 extracted in this function.

-*--*/
tByte SCC_A_SLAVE_Process_Tick_Message(void)
 {
 tByte Tick_ID;

 /* Must have received a message (to generate the 'Tick')
 The first byte is the ID of the slave for which the data are
 intended. */
 Tick_ID = MCP2510_Read_Register(RxB1D0); /* Get Slave ID? */

 if (Tick_ID == SLAVE_ID)
 {
 /* Only if there is a match do we need to copy these fields */
 Tick_message_data_G = MCP2510_Read_Register(RxB1D1);
 }

 /* Clear *ALL* flags ... */
 MCP2510_Write_Register(CANINTF, 0x00);
 Network_error_pin = NO_NETWORK_ERROR;

 return Tick_ID;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 226

/*--*-

 SCC_A_SLAVE_Send_Ack_Message_To_Master()

 Slave must send and 'Acknowledge' message to the master, after
 tick messages are received. NOTE: Only tick messages specifically
 addressed to this slave should be acknowledged.

 The acknowledge message serves two purposes:
 [1] It confirms to the master that this slave is alive & well.
 [2] It provides a means of sending data to the master and - hence
 - to other slaves.

 NOTE: Data transfer between slaves is NOT permitted!

-*--*/
void SCC_A_SLAVE_Send_Ack_Message_To_Master(void)
 {
 /* Prepare Ack message for transmission to Master */

 /* First byte of message must be slave ID */
 MCP2510_Write_Register(TxB0D0, SLAVE_ID);

 /* Now the data */
 MCP2510_Write_Register(TxB0D1, Ack_message_data_G);

 /* Send the message */
 MCP2510_cs = 0;
 SPI_Exchange_Bytes(RTS_BUFFER0_INSTRUCTION);
 MCP2510_cs = 1;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 227

/*--*-

 SCC_A_SLAVE_Watchdog_Init()

 This function sets up the watchdog timer On the AT89S53.

-*--*/
void SCC_A_SLAVE_Watchdog_Init(void)
 {
 /* Set 128ms Watchdog
 PS2 = 0, PS1 = 1, PS0 = 1
 Set WDTRST = 1
 Set WDTEN = 1 - start watchdog. */

 WMCON |= 0xE3;
 }

/*--*-

 SCC_A_SLAVE_Watchdog_Refresh()

 Feed the internal AT89S53 watchdog.

-*--*/
void SCC_A_SLAVE_Watchdog_Refresh(void) reentrant
 {
 WMCON |= 0x02;
 }

/*--*-

 SCC_A_SLAVE_Enter_Safe_State()

 This is the state entered by the system when:
 (1) The node is powerec up or reset
 (2) The Master node fails, and no working backup is available
 (3) The network has an error
 (4) Tick messages are delayed for any other reason

 Try to ensure that the system is in a 'safe' state in these
 circumstances.

-*--*/
void SCC_A_SLAVE_Enter_Safe_State(void)
 {
 /* Turn on the alarm when system is powered up
 (or undergoes a watchdog reset - caused by Master failure) */
 Sound_alarm_G = TRUE;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 228

Preparations for the next seminar

Please read “PTTES” Chapter 32 and 34 before the next seminar.

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3

.0

P
1

.7

R
S

T

P
1

.6

P
1

.5

P
1

.4

P
1

.2

P
1

.3

P
1

.1

P
1

.0

V
S

S

X
T

L
2

X
T

L
1

P
3

.7

P
3

.6

P
3

.5

P
3

.3

P
3

.4

P
3

.2

P
3

.1

/ E
A

P
0

.6

P
0

.7

P
0

.5

P
0

.4

P
0

.3

P
0

.1

P
0

.2

P
0

.0

V
C

C

P
2

.0

P
2

.2

P
2

.1

P
2

.3

P
2

.4

P
2

.5

P
2

.7

P
2

.6

/ P
S

E
N

A
L

E

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 229

Seminar 7:
Processing sequences
of analogue values

Transmitter
(Master)

Transmitter
(Master)

Receiver A
(Slave)

Receiver A
(Slave)

Receiver B
(Slave)

Receiver B
(Slave)

Receiver C
(Slave)

Receiver C
(Slave)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 230

Overview of this seminar

The recording of analogue signals is an important part of many
condition monitoring, data acquisition and control applications. In
this seminar, we will consider how to read and write analogue
values using a microcontroller.

The main focus will be on the recording / playback of sequences of
analogue values, and the impact that this can have on the
software architecture used in single- and multi-processor
designs.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 231

PATTERN: One-Shot ADC

We begin by considering some of the hardware options that are
available to allow the measurement of analogue voltage signals
using a microcontroller.

Specifically, we will consider four options:

• Using a microcontroller with on-chip ADC;

• Using an external serial ADC;

• Using an external parallel ADC;

• Using a current-mode ADC.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 232

Using a microcontroller with on-chip ADC

Many members of the 8051 family contain on-board ADCs.

In general, use of an internal ADC (rather than an external one) will
result in increased reliability, since both hardware and software
complexity will generally be lower.

In addition, the ‘internal’ solution will usually be physically
smaller, and have a lower system cost.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 233

Using an external parallel ADC

The ‘traditional’ alternative to an on-chip ADC is a parallel ADC.
In general, parallel ADCs have the following strengths and
weaknesses:

☺ They can provide fast data transfers
☺ They tend to be inexpensive
☺ They require a very simple software framework
 They tend to require a large number of port pins. In the case of a 16-bit

conversion, the external ADC will require 16 pins for the data transfer, plus
between 1 and 3 pins to control the data transfers.

 The wiring complexity can be a source of reliability problems in some
environments.

We give examples of the use of a parallel ADC below.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 234

Example: Using a Max150 ADC

This example illustrates this use of an 8-bit parallel ADC: the
Maxim MAX 150:

To microcontroller
‘NOT_RD’ pin

To microcontroller
‘NOT_INT’ pin

+5V

To microcontroller
‘NOT_WRITE’ pin

+5V

0V

0V

20

19

18

17

16

15

14

1

2

3

4

5

6

7

8

9

10

13

12

11GND

/RD

/INT

MODE

/WR RDY

DB3

DB1

DB2

DB0

Vin

Vref-

/CS

Vref+

DB4

DB5

DB6

/OFL

DB7

TP /RO

Vdd

Max 150

Analogue
Input

To microcontroller
data port

To microcontroller
data port

See PTTES, Chapter 32, for code

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 235

Using an external serial ADC

Many more recent ADCs have a serial interface. In general, serial
ADCs have the following strengths and weaknesses:

☺ They require a small number of port pins (between 2 and 4),
regardless of the ADC resolution.
 They require on-chip support for the serial protocol, or the use of a suitable

software library.

 The data transfer may be slower than a parallel alternative.

 They can be comparatively expensive.

We give two examples of the use of serial ADCs below.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 236

Example: Using an external SPI ADC

This example illustrates the use of an external, serial (SPI) ADC
(the SPI protocol is described in detail in PTTES, Chapter 24).

The hardware comprises an Atmel AT89S53 microcontroller, and a
Maxim MAX1110 ADC:

1
2
3
4
5
6
7
8

Vcc

P 0.7 (AD7) 32

P 0.6 (AD6) 33

P 0.5 (AD5) 34

P 0.4 (AD4) 35

P 0.3 (AD3) 36

P 0.2 (AD2) 37

P 0.1 (AD1) 38

P 0.0 (AD0) 39

8
7
6
5
4
3
2
1

P 2.7 (A15) 28

P 2.6 (A14) 27

P 2.5 (A13) 26

P 2.4 (A12) 25

P 2.3 (A11) 24

P 2.2 (A10) 23

P 2.1 (A9) 22

P 2.0 (A8) 21

/ PSEN

ALE (/ PROG)

29

30

31

XTL119

XTL218

RST

40

VCC

VSS

A
T

89
S5

3
Vcc (+5V)

Vcc

30 pF

30 pF

10 µF

10 K

20

P 3.7 (/ RD)
P 3.6 (/ WR)
P 3.5 (T1)
P 3.4 (T0)
P 3.3 (/ INT1)
P 3.2 (/ INT 0)
P 3.1 (TXD)
P 3.0 (RXD)

/ EA

17
16
15
14
13
12
11
10

9

P 1.7 (SCK)
P 1.6 (MISO)
P 1.5 (MOSI)

P 1.4(/SS)
P 1.3
P 1.2

P 1.1 (T2EX)
P 1.0 (T2)

12 MHz

M
ax

11

10

CH0
CH1
CH2
CH3
CH4
CH5
CH6
CH7

A
G

N
D

D
G

N
D

CO
M

13 14 9

1 µF

0.1 µF

SCLK
DOUT
DIN

/CS

19
15
17

18

/S
H

D
N

20

RE
FI

N
11

V
dd

10

See PTTES, Chapter 32, for code

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 237

Example: Using an external I2C ADC

This example illustrates the use of an external, serial (I2C) ADC
(the I2C protocol is described in detail in PTTES, Chapter 23).

The ADC hardware comprises a Maxim MAX127 ADC: this device
is connected to the microcontroller as follows:

Analogue
Input

0V

0V

0V

0V

To microcontroller
‘I2C_SCL’ pin

To microcontroller
‘I2C_SDA’ pin

24

23

22

21

20

19

1

2

3

4

5

6 A0

SCL

N.C.

DGND

Vdd

Vdd

7 18

8

9

10

17

16

15A1

A2

N.C.

SDA

Max 127

11 14

12 13AGND

/SHDN

CH2

CH4

CH3

CH5

CH6

CH7

N.C.

REFadj

REF

N.C.

CH0

CH1

See PTTES, Chapter 32, for code

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 238

Using a current-mode ADC?

Use of current-based data transmission can be useful in some
circumstances - particularly for process control.

A number of current-mode sensor components (e.g. the Burr-Brown
XTR105) and ADCs (e.g. the Burr-Brown RCV420) are now
available.

In addition, CURRENT SENSOR [PTTES, p. 648] discusses current
sensing using voltage-mode ADCs.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 239

PATTERN: SEQUENTIAL ADC

In ONE-SHOT ADC [PTTES, p. 606], we were concerned with the
use of analogue signals to address questions such as:

• What central-heating temperature does the user require?

• What is the current angle of the crane?

• What is the humidity level in Greenhouse 3?

20oC

15oC 25oC

10oC 30oC

0.1 uF

≤ +24v (DC)

0

50 k pot

+ 5v

0 - 5 v

0

To ADC

7805

1 8 9 4

DownUp

3000

2000 4000

1000 5000

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 240

In SEQUENTIAL ADC, we are concerned with the recording of
sequences of analogue samples, in order to address questions such
as:

• How quickly is the car accelerating?

• How fast is the plan turning?

• What is the frequency of this waveform?

Time

Signal level

Time

Signal level

Samples = { 0.46, 0.42, 0.17, 0.04,
 0.00, 0.13, 0.21, 0.53,
 0.84, 0.89, 1.00, 1.00,
 0.63, 0.42, 0.42, 0.21,
 0.00, 0.11, 0.00, 0.42,
 0.42, 0.23, 0.46, 0.42,
 0.48, 0.52, 0.54, 0.57 }

(a)

(c)

(b)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 241

Key design stages

There are several key design stages to be carried out implementing
SEQUENTIAL ADC:

1. You need to determine the required sample rate;

2. You may need to remove any high-frequency components
from the input signal;

3. You need to determine the required bit rate;

4. You need to employ an appropriate software architecture.

5. You need to select an appropriate ADC;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 242

Sample rate (monitoring and signal proc. apps)

Example - speech recognition

Recognise
words “Hello”

We need to sample at a frequency known as the Nyquist
frequency.

This is appropriate for applications such as:

• Speech recognition;

• Recording ECGs;

• Recording auditory-evoked responses;

• Vibration monitoring.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 243

Sample rate (control systems)

For example:

Radar
Speed

Controller

User
interface

(ADC)

DC Motor
Interface
(DAC)

Speed
sensor

Required speed
of rotation

New speed
settings

Current speed
of rotation

Current speed
of rotation

This type of application also involves regular sampling, in this case
of the motor speed. For this type of control application, different
techniques are required to determine the required sampling rate; we
delay consideration of these techniques until Seminar 8.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 244

Determining the required bit rate

The process of analogue-to-digital conversion is never perfect, since
we are representing a continuous analogue signal with a digital
representation that has only a limited number of possible values:

-10

-8

-6

-4

-2

0

2

4

6

8

10

Time

-10

-8

-6

-4

-2

0

2

4

6

8

10

Time

• For example, if we were to
use a 3-bit ADC, then we
would have only 8
possible signal levels (23)
possible signal levels to
represent our analogue
signal.

• The error introduced by
the digitisation process is
half a quantisation level;
thus, for our 3-bit ADC,
this error would be equal
to ±1/16 of the available
analogue range.

• The resulting errors, over a
sequence of samples, can
be viewed as a form of
quantisation noise.

Formal techniques for determining the required bit-rate for a
general sampled-data application are complex, and beyond the
scope of this course: please see PTTES for pointers to further
reading in this area.

However, in most practical cases, use of a 12-bit ADC will provide
adequate performance, and even the most sophisticated speech
processing systems rarely use more than 16 bits.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 245

Impact on the software architecture

The main impact that the use of SEQUENTIAL ADC has on the
software architecture is the need to allow regular and frequent
samples to be made.

Where sample rates of up to 1 kHz are required, this is rarely a
problem. Obtaining a sample from the ADC typically requires
~100 ns, and the scheduled architectures we have discussed
throughout this course can support the creation of suitable data-
acquisition tasks with unduly loading the system.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 246

• Where sample rates in excess of 1 kHz are required, then use
of a fast 8051 device will generally be required.

• For example, the Dallas high-speed and ultra-high-speed
family of devices will allow the use of short tick intervals
without unduly loading the CPU (see PTTES, Chapter 14).

• However, even where sample rates of 10 kHz and above can
be supported, this has important implications for other
aspects of the design and - specifically - on the task
durations.

• Use of HYBRID SCHEDULER (as discussed in Seminar 2) can
be particularly valuable in these circumstances, since this
allow the data sampling to be configured as a pre-emptive
task (without significant side effects).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 247

Example: Using the c515c internal ADC

PTTES, Chapter 32, includes an example showing how to make
sequential analogue readings using the on-chip ADC in an Infineon
c515c microcontroller.

The ADC is initialised. Each time a reading is required, we start the
ADC conversion and wait (with timeout, of course) for the
conversion to complete.

The duration of the individual ADC task depends on the speed of
the internal ADC.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 248

PATTERN: ADC PRE-AMP

How do you convert an analogue voltage signal into a range
suitable for subsequent analogue-to-digital conversion?

Background

In a 5V system, an ADC will typically encode a range of analogue
signals, from 0V to approximately 5V. If we have an analogue
signal in the range 0 - 5 mV, we need to amplify this voltage prior
to use of the ADC, or the digital signal will be a very poor
representation of the analogue original.

Please see PTTES, p.777, for suitable solutions.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 249

PATTERN: A-A FILTER

If you are sampling a signal at regular frequency (F Hz), you will
generally need to include a filter in your system to remove all
frequencies above F/2 Hz, to avoid a phenomena known as aliasing.

-1

-0.5

0

0.5

1

TimeA
m

pl
itu

de

Pre-amp

ADC
(10 kHz)

ADC
(10 kHz)

A-A filter (5 kHz)(Max frequency 5 kHz)

Please refer to pattern A-A FILTER [PTTES, p. 641] for further
details.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 250

Example: Speech-recognition system

Pre-amp

ADC
(10 kHz)

ADC
(10 kHz)

A-A filter (5 kHz)(Max frequency 5 kHz)

A possible design for a suitable A-A filter, created using the
Microchip FilterLab software.

VoutOp Amp

+

-

0.0033 µF

21.4K

0.0022 µF

6.51K

Op Amp

+

-

0.0068 µF

16.3K

0.0022 µF

4.15K

Op Amp

+

-

0.047 µF

5.80K

0.0022 µF

1.69K

Vin

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 251

Alternative: “Over sampling”

Sometimes it is possible to reduce the need for A-A filters
altogether (or at least to manage with simple op-amp filters),
without reducing the signal quality. This is possible if we over-
sample the signal.

Suppose, however, that we carry out the following:

• Filter the signal using a low-quality, 5 kHz, analogue A-A
filter;

• Sample at 40 kHz (thereby correctly sampling all
frequencies up to 20 kHz);

• Digitally low-pass filter the 40 kHz signal, in software, to
remove frequencies above 5 kHz, and;

• Discard three out of every four samples (a process referred
to as decimation), to provide the 10 kHz data which we
require.

This process results in a high-quality signal, without the need to
invest in an expensive analogue A-A filter: it is for these reason that
almost all manufacturers of CD players use over-sampling
(typically 4x) to reduce the cost of their products without sacrificing
quality.

Performing the required digital filtering operating is straightforward
(e.g. see Lynn and Fuerst, 1998).

The main drawback with this approach is that we require high
sample rates; this may, in turn, necessitate the use of a HYBRID
SCHEDULER [PTTES, p. 291].

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 252

PATTERN: CURRENT SENSOR

How do you monitor the current flowing through a DC load?

Vcc

LoadIload

 RsensorVsensor

The current through the load can then simply be determined, from
Ohm’s law, as follows:

load

load
load R

VI =

See PTTES, p.802 for further details

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 253

PWM revisited

We looked one means of generating “analogue outputs” in PES I
(Seminar 10).

x yV

Time

Duty cycle (%) = x
x y+

×100

Period = x + y, where x and y are in seconds.

Frequency = 1
x y+

, where x and y are in seconds.

The key point to note is that the average voltage seen by the load is
given by the duty cycle multiplied by the load voltage.

See: “Patterns for Time-Triggered Embedded Systems”, Chapter 33

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 254

Software PWM

PWM_PERIOD_G

PWM_position_G

 if (PWM_position_G < PWM_G)
 {
 PWM_pin = PWM_ON;
 }
 else
 {
 PWM_pin = PWM_OFF;
 }

PWM_G

See: “Patterns for Time-Triggered Embedded Systems”, Chapter 33

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 255

Using Digital-to-Analogue Converters (DACs)

As the operating frequencies for digital hardware have grown,
pulse-width modulation (PWM) has become a cost-effective means
of creating an analogue signal in many circumstances.

There are two main sets of circumstances in which use of a DAC is
still cost-effective: in high-frequency / high bit-rate applications
(particularly audio applications), and in process control.

There are several key design decisions which must be made when
generating an analogue output using a DAC:

1. You need to determine the required sample rate.

2. You need to determine the required bit rate (DAC
resolution).

3. You need to select an 8051 family member with an
appropriate DAC or, if necessary, add an external DAC.

4. You may need to shape the frequency response of the output
signal.

5. You need to use an appropriate software architecture.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 256

Decisions …

Determining the required sample rate

Please refer to SEQUENTIAL ADC [PTTES, p. 633] for discussions
about sample rates.

Determining the required bit rate

Please refer to ONE-SHOT ADC [PTTES, p. 606] for discussions
about bit rates.

8051 microcontrollers with on-chip DACs

The number of devices with on-chip DACs is very limited.

Two exceptions:

• Analog Devices ADµC812

• Cygnal C8051F000

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 257

General implications for the software architecture

The use of a DAC at high frequencies (10 kHz or 16 kHz) will have
a major impact on the overall architecture of your application. For
example, even at 10 kHz, you may require a 0.1 ms tick interval.
This imposes a substantial load on a basic 8051 device.

In general, only 8051 devices which operate at less than 12 clock
cycles per instruction can provide these levels of performance. Use
of recent devices such as the Dallas 89C420 (a ‘Standard 8051’
with 1 clock cycle per instruction, operating at up to 50 MHz: see
PTTES, Chapter 3) can make it practical to operate at 16 kHz
(0.0625 ms tick interval).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 258

Example: Speech playback using a 12-bit parallel DAC

Here we consider how we can use a 12-bit parallel DAC to play
back a speech sample at a 10 kHz sample rate.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Time

Note that the necessary smoothing and amplification components
are discussed in DAC SMOOTHER [PTTES, p. 705] and DAC
DRIVER [PTTES, p. 707].

P 0.7 (AD7) 32

P 0.6 (AD6) 33

P 0.5 (AD5) 34

P 0.4 (AD4) 35

P 0.3 (AD3) 36

P 0.2 (AD2) 37

P 0.1 (AD1) 38

P 0.0 (AD0) 39

8P 1.7
P 1.6 7

P 1.5 6

P 1.4 5

P 1.3 4

P 1.2 3

P 1.1 2

P 1.0 1

P 2.7 (A15)
P 2.6 (A14)
P 2.5 (A13)
P 2.4 (A12)
P 2.3 (A11)
P 2.2 (A10)
P 2.1 (A9)
P 2.0 (A8)

28
27
26
25
24
23
22
21

P 3.7 (/ RD)
P 3.6 (/ WR)
P 3.5 (T1)
P 3.4 (T0)
P 3.3 (/ INT1)
P 3.2 (/ INT 0)
P 3.1 (TXD)
P 3.0 (RXD)

17
16
15
14
13
12
11
10

/ PSEN

ALE (/ PROG)

/ EA

XTL1

XTL2

RST

29

30

31

19

18

9

40

VCC

20

VSS

“8
05

1”

AD7248A

DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0

+ 5 V

/WR Vss

Vout

AGND

Vdd

5K 5K

/C
SL

SB

/C
SM

SB

/L
D

A
C

+ 12 V

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 259

void main(void)
 {
 /* Set up the scheduler */
 hSCH_Init_T2();

 /* Set up the switch pin */
 SWITCH_Init();

 /* Add the 'switch' task (check every 200 ms)
 *** THIS IS A PRE-EMPTIVE TASK *** */
 hSCH_Add_Task(SWITCH_Update, 0, 200, 0);

 /* NOTE:
 'Playback' task is added by the SWITCH_Update task
 (as requested by user)
 'Playback' is CO-OPERATIVE
 *** NOTE REQUIRED LINKER OPTIONS (see above) *** */

 /* Start the scheduler */
 hSCH_Start();

 while(1)
 {
 hSCH_Dispatch_Tasks();
 }
 }

NOTE: hybrid scheduler is used
(see Seminar 2)

See PTTES, Chapter 34 for complete code listings

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 260

Example: Digital telephone system

Suppose we wish to create a high-quality digital communication
system, to be used in a hydrofoil. Specifically, we will assume that
the hydrofoil contains a computer network intended for non-critical
operations, such as monitoring the passenger cabin temperature; this
network has spare bandwidth, which we intend to utilise to provide
the means of conveying messages from the crew to the passengers:

Transmitter
(Master)

Transmitter
(Master)

Receiver A
(Slave)

Receiver A
(Slave)

Receiver B
(Slave)

Receiver B
(Slave)

Receiver C
(Slave)

Receiver C
(Slave)

[We will discuss the design of this system in the seminar.]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 261

Preparations for the next seminar

Please read “PTTES” Chapter 35 before the next seminar.

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3

.0

P
1

.7

R
S

T

P
1

.6

P
1

.5

P
1

.4

P
1

.2

P
1

.3

P
1

.1

P
1

.0

V
S

S

X
T

L
2

X
T

L
1

P
3

.7

P
3

.6

P
3

.5

P
3

.3

P
3

.4

P
3

.2

P
3

.1

/ E
A

P
0

.6

P
0

.7

P
0

.5

P
0

.4

P
0

.3

P
0

.1

P
0

.2

P
0

.0

V
C

C

P
2

.0

P
2

.2

P
2

.1

P
2

.3

P
2

.4

P
2

.5

P
2

.7

P
2

.6

/ P
S

E
N

A
L

E

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 262

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 263

Seminar 8:
Applying “Proportional
Integral Differential”

(PID) control

−+−

 +−

+++−=)2()1(21)(1)1()(ke

T
Tke

T
Tke

T
T

T
TKkuku DDD

I

−+−

 +−

+++−=)2()1(21)(1)1()(ke

T
Tke

T
Tke

T
T

T
TKkuku DDD

I

−+−

 +−

+++−=)2()1(21)(1)1()(ke

T
Tke

T
Tke

T
T

T
TKkuku DDD

I

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 264

Overview of this seminar

• The focus of this seminar is on Proportional-Integral-
Differential (PID) control.

• PID is both simple and effective: as a consequence it is the
most widely used control algorithm.

• The focus here will be on techniques for designing and
implementing PID controllers for use in embedded
applications.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 265

Why do we need closed-loop control?

Suppose we wish to control the speed of a DC motor, used as part
of an air-traffic control application.

To control this speed, we will assume that we have decided to
change the applied motor voltage using a DAC.

Controlled
system

Open-loop
controller

Desired
output

Actual
output

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 266

In an ideal world, this type of open-loop control system would be
easy to design: we would simply have a look-up table linking the
required motor speed to the required output parameters.

Input (v)

Ou
tpu

t (
s)

s = 100v

Radar rotation speed (RPM) DAC setting (8-bit)

0 0
2 51
4 102
6 153
8 204

10 255

Linear System
y = ax + b

Output (y)Input (x)

∆y

∆xb

Input (x)

Ou
tpu

t (
y)

a =
∆y
∆x

y = ax + b

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 267

Unfortunately, such linearity is very rare in practical systems.

For example:

Input (v)

Ou
tpu

t (
s)

Max. speed

However, we can still create a table:

Radar rotation speed (RPM) DAC setting (8-bit)

0 0
2 61
4 102
6 150
8 215

10 255

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 268

However, this is not the only problem we have to deal with.

Most real systems also demonstrate characteristics which vary with
time.

Radar
Speed

Controller

User
interface
(ADC)

Wind
speed
sensor

Wind direction
sensor

DC Motor
Interface

(DAC)

Required speed
of rotation

New speed
settingsWind speed

Wind direction

Overall, this approach to control system design quickly becomes
impractical.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 269

Closed-loop control

Radar
Speed

Controller

User
interface

(ADC)

DC Motor
Interface
(DAC)

Speed
sensor

Required speed
of rotation

New speed
settings

Current speed
of rotation

Current speed
of rotation

Closed-loop
controller

Controlled
system

Desired
output

Actual
output

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 270

What closed-loop algorithm should you use?

There are numerous possible control algorithms that can be
employed in the box marked ‘Closed-loop controller’ on the
previous slide, and the development and evaluation of new
algorithms is an active area of research in many universities.

A detailed discussion of some of the possible algorithms available is
given by Dutton et al., (1997), Dorf and Bishop (1998) and Nise
(1995).

Despite the range of algorithms available, Proportional-Integral-
Differential (PID) control is found to be very effective in many
cases and - as such - it is generally considered the ‘standard’ against
which alternative algorithms are judged.

Without doubt, it is the most widely used control algorithm in the
world at the present time.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 271

What is PID control?

If you open a textbook on control theory, you will encounter a
description of PID control containing an equation similar to that
shown below:

u k u k K
T
T

T
T

e k
T
T

e k
T
T

e k
I

D D D() () () () (= − + + +

 − +

 − + −

1 1 1 2 1 2)

Where:

u(k) is the signal sent to the plant, and e(k) is the error signal, both at sample k;
T is the sample period (in seconds), and 1/T is the sample rate (in Hz);
K is the proportional gain;
1/TI is the integral gain;
TD is the derivative gain;

This may appear rather complex, but can - in fact - be implemented
very simply.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 272

A complete PID control implementation

/* Proportional term */
Change_in_controller_output = PID_KP * Error;

/* Integral term */
Sum += Error;
Change_in_controller_output += PID_KI * Sum;

/* Differential term */
Change_in_controller_output += (PID_KD * SAMPLE_RATE * (Error -
Old_error));

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 273

Another version

float PID_Control(float Error, float Control_old)
 {
 /* Proportional term */
 float Control_new = Control_old + (PID_KP * Error);

 /* Integral term */
 Sum_G += Error;
 Control_new += PID_KI * Sum_G;

 /* Differential term */
 Control_new += (PID_KD * SAMPLE_RATE * (Error - Old_error_G));

 /* Control_new cannot exceed PID_MAX or fall below PID_MIN */
 if (Control_new > PID_MAX)
 {
 Control_new = PID_MAX;
 }
 else
 {
 if (Control_new < PID_MIN)
 {
 Control_new = PID_MIN;
 }
 }

 /* Store error value */
 Old_error_G = Error;

 return Control_new;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 274

Dealing with ‘windup’

float PID_Control(float Error, float Control_old)
 {
 /* Proportional term */
 float Control_new = Control_old + (PID_KP * Error);

 /* Integral term */
 Sum_G += Error;
 Control_new += PID_KI * Sum_G;

 /* Differential term */
 Control_new += (PID_KD * SAMPLE_RATE * (Error - Old_error_G));

 /* Optional windup protection - see text */
 if (PID_WINDUP_PROTECTION)
 {
 if ((Control_new > PID_MAX) || (Control_new < PID_MIN))
 {
 Sum_G -= Error; /* Don't increase Sum... */
 }
 }

 /* Control_new cannot exceed PID_MAX or fall below PID_MIN */
 if (Control_new > PID_MAX)
 {
 Control_new = PID_MAX;
 }
 else
 {
 if (Control_new < PID_MIN)
 {
 Control_new = PID_MIN;
 }
 }

 /* Store error value */
 Old_error_G = Error;

 return Control_new;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 275

Choosing the controller parameters

Two aspects of PID control algorithms deter new users. The first is
that the algorithm is seen to be ‘complex’: as we have demonstrated
above, this is a fallacy, since PID controllers can be very simply
implemented.

The second concern lies with the tuning of the controller
parameters. Fortunately, such concerns are - again - often
exagerated.

We suggest the use of the following methodology to tune the PID
parameters:

1. Set the integral (KI) and differential (KD) terms to 0.

2. Increase the proportional term (KP) slowly, until you get
continuous oscillations.

3. Reduce KP to half the value determined above.

4. If necessary, experiment with small values of KD to damp-
out ‘ringing’ in the response.

5. If necessary, experiment with small values of KI to reduce
the steady-state error in the system.

6. Always use windup protection if using a non-zero KI value.

Note that steps 1-3 of this technique are a simplified version of the
Ziegler-Nichols guide to PID tuning; these date from the 1940s (see
Ziegler and Nichols, 1942; Ziegler and Nichols, 1943).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 276

What sample rate?

One effective technique involves the measurement of the system
rise time.

Input

Ou
tpu

t

Rise time

Having determined the rise time (measured in seconds), we can -
making some simplifying assumptions - calculate the required
sample frequency as follows:

Sample frequency = timeRise
40

Thus, if the rise time measured was 0.1 second, the required sample
frequency would be around 400 Hz.

Please note that this value is approximate, and involves several
assumptions about the nature of the system. See Franklin et al.
(1994), for further details.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 277

Hardware resource implications

• Implementation of a PID control algorithm requires some
floating-point or integer mathematical operations.

• The precise load will vary with the implementation used, but
a typical implementation requires 4 multiplications, 3
additions and 2 subtractions.

• With floating-point operations, this amounts to a total of
approximately 2000 instructions (using the Keil compiler,
on an 8051 without hardware maths support).

• This operation can be carried out every millisecond on a
standard (12 osc / instruction) 8051 running at 24 MHz, if
there is no other CPU-intensive processing to be done.

• A one-millisecond loop time is more than adequate for most
control applications, which typically require sample
intervals of several hundred milliseconds or longer.

• Of course, if you require higher performance, then many
more modern implementations of the 8051 microcontroller
can provide this.

• Similarly, devices such as the Infineon 517 and 509, which
have hardware maths support, will also execute this code
more rapidly, should this be required.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 278

PID: Overall strengths and weaknesses

☺ Suitable for many single-input, single-output (SISO) systems.
☺ Generally effective.
☺ Easy to implement.
 Not (generally) suitable for use in multi-input or multi-output applications.

 Parameter tuning can be time consuming.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 279

Why open-loop controllers are still (sometimes) useful

• Open-loop control still has a role to play.

• For example, if we wish to control the speed of an electric
fan in an automotive air-conditioning system, we may not
need precise speed control, and an open-loop approach
might be appropriate.

• In addition, it is not always possible to directly measure the
quantity we are trying to control, making closed-loop
control impractical.

• For example, in an insulin delivery system used for patients
with diabetes, we are seeking to control levels of glucose in
the bloodstream. However, glucose sensors are not
available, so an open-loop controller must be used; please
see Dorf and Bishop (1998, p. 22) for further details.

[Similar problems apply throughout much of the process
industry, where sensors are not available to determine
product quality.]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 280

Limitations of PID control

• PID control is only suitable for ‘single-input, single-output’
(SISO) systems, or for system that can be broken down into
SISO components.

• PID control is not suitable for systems with multiple inputs
and / or multiple outputs.

• In addition, even for SISO systems, PID can only control a
single system parameter’ it is not suitable for multi-
parameter (sometimes called multi-variable) systems.

Please refer to Dorf and Bishop (1998), Dutton et al., (1997),
Franklin et al., (1994), Franklin et al., (1998) and Nise (1995) for
further discussions on multi-input, multi-output and multi-parameter
control algorithms.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 281

Example: Tuning the parameters of a cruise-control system

In this example, we take a simple computer simulation of a vehicle,
and develop an appropriate cruise-control system to match.
#include <iostream.h>
#include <fstream.h>
#include <math.h>
#include "PID_f.h"

/* ------ Private constants --------------------------------------- */

#define MS_to_MPH (2.2369) /* Convert metres/sec to mph */

#define FRIC (50) /* Friction coeff- Newton Second / m */
#define MASS (1000) /* Mass of vehicle (kgs) */
#define N_SAMPLES (1000) /* Number of samples */
#define ENGINE_POWER (5000) /* N */
#define DESIRED_SPEED (31.3f) /* Metres/sec [* 2.2369 -> mph] */

int main()
 {
 float Throttle = 0.313f; /* Throttle setting (fraction) */
 float Old_speed = DESIRED_SPEED, Old_throttle = 0.313f;
 float Error, Speed, Accel, Dist;
 float Sum = 0.0f;

 /* Open file to store results */
 fstream out_FP;
 out_FP. open("pid.txt", ios::out);

 if (!out_FP)
 {
 cerr << "ERROR: Cannot open an essential file.";
 return 1;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 282

 for (int t = 0; t < N_SAMPLES; t++)
 {
 /* Error drives the controller */
 Error = (DESIRED_SPEED - Old_speed);

 /* Calculate throttle setting */
 Throttle = PID_Control(Error, Throttle);
 /* Throttle = 0.313f; - Use for open-loop demo */

 /* Simple car model */
 Accel = (float)(Throttle * ENGINE_POWER
 - (FRIC * Old_speed)) / MASS;
 Dist = Old_speed + Accel * (1.0f / SAMPLE_RATE);
 Speed = (float) sqrt((Old_speed * Old_speed)
 + (2 * Accel * Dist));

 /* Disturbances */
 if (t == 50)
 {
 Speed = 35.8f; /* Sudden gust of wind into rear of car */
 }

 if (t == 550)
 {
 Speed = 26.8f; /* Sudden gust of wind into front of car */
 }

 /* Display speed in miles per hour */
 cout << Speed * MS_to_MPH << endl;
 out_FP << Speed * MS_to_MPH << endl;

 /* Ready for next loop */
 Old_speed = Speed;
 Old_throttle = Throttle;
 }

 return 0;
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 283

Open-loop test

55

65

75

85

1 29 57 85 11
3

14
1

16
9

19
7

22
5

25
3

28
1

30
9

33
7

36
5

39
3

42
1

44
9

47
7

50
5

53
3

56
1

58
9

61
7

64
5

67
3

70
1

72
9

75
7

78
5

81
3

84
1

86
9

89
7

92
5

95
3

98
1

[NO CONTROLLER - open loop]

Time (Seconds)

Speed (mph)

• The car is controlled by maintaining a fixed throttle position
at all times. Because we assume the vehicle is driving on a
straight, flat, road with no wind, the speed is constant (70
mph) for most of the 1000-second trip.

• At time t = 50 seconds, we simulate a sudden gust of wind at
the rear of the car; this speeds the vehicle up, and it slowly
returns to the set speed value.

• At time t = 550 seconds, we simulate a sharp gust of wind at
the front of the car; this slows the vehicle down.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 284

Tuning the PID parameters: methodology

We will tune a PID algorithm for use with this system by applying
the following methodology:

1. Set integral (KI) and differential (KD) terms to 0.

2. Increase the proportional term (KP) slowly, until you get
continuous oscillations.

3. Reduce KP to half the value determined above.

4. If necessary, experiment with small values of KD to damp-
out ‘ringing’ in the response.

5. If necessary, experiment with small values of KI to reduce
the steady-state error in the system.

6. Always use windup protection if using a non-zero KI value.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 285

First test

55

65

75

85

1 29 57 85 11
3

14
1

16
9

19
7

22
5

25
3

28
1

30
9

33
7

36
5

39
3

42
1

44
9

47
7

50
5

53
3

56
1

58
9

61
7

64
5

67
3

70
1

72
9

75
7

78
5

81
3

84
1

86
9

89
7

92
5

95
3

98
1

#define PID_KP (0.20f)
#define PID_KI (0.00f)
#define PID_KD (0.00f)

Time (Seconds)

Speed (mph)

Now we increase the value of KP, until we small, constant,
oscillations.

55

65

75

85

1 29 57 85 11
3

14
1

16
9

19
7

22
5

25
3

28
1

30
9

33
7

36
5

39
3

42
1

44
9

47
7

50
5

53
3

56
1

58
9

61
7

64
5

67
3

70
1

72
9

75
7

78
5

81
3

84
1

86
9

89
7

92
5

95
3

98
1

#define PID_KP (1.00f)
#define PID_KI (0.00f)
#define PID_KD (0.00f)

Time (Seconds)

Speed (mph)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 286

The results of this experiment suggest that a value of KP = 0.5 will
be appropriate (that is, half the value used to generate the constant
oscillations).

55

65

75

85

1 29 57 85 11
3

14
1

16
9

19
7

22
5

25
3

28
1

30
9

33
7

36
5

39
3

42
1

44
9

47
7

50
5

53
3

56
1

58
9

61
7

64
5

67
3

70
1

72
9

75
7

78
5

81
3

84
1

86
9

89
7

92
5

95
3

98
1

#define PID_KP (0.50f)
#define PID_KI (0.00f)
#define PID_KD (0.00f)

Time (Seconds)

Speed (mph)

We then experiment a little more:

55

65

75

85

1 2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

5
0

5

5
3

3

5
6

1

5
8

9

6
1

7

6
4

5

6
7

3

7
0

1

7
2

9

7
5

7

7
8

5

8
1

3

8
4

1

8
6

9

8
9

7

9
2

5

9
5

3

9
8

1

#define PID_KP (0.50f)
#define PID_KI (0.00f)
#define PID_KD (0.10f)

Time (Seconds)

Speed (mph)

• Note that, with these parameters, the system reaches the
required speed within a few seconds of each disturbance.

• Note also that we can reduce the system complexity here by
omitting the integral term, and using this PD controller.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 287

Example: DC Motor Speed Control

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Logic 0 (0v) to turn motor

+12 V

74LS06

1K
- 10K

IRF540 (or similar)

0 V

M

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

���������������������
���������������������
���������������������
���������������������

8051 Device
P1.1

P3.5

Optical encoder connected here
(mounted on motor shaft)

Note that this example uses a different, integer-based, PID
implementation. As we discussed in ‘Hardware resource
implications’, integer-based solutions impose a lower CPU load
than floating-point equivalents.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 288

void main(void)
 {
 SCH_Init_T1(); /* Set up the scheduler */
 PID_MOTOR_Init();

 /* Set baud rate to 9600, using internal baud rate generator */
 /* Generic 8051 version */
 PC_LINK_Init_Internal(9600);

 /* Add a 'pulse count poll' task */
 /* TIMING IS IN TICKS (1ms interval) */
 /* Every 5 milliseconds (200 times per second) */
 SCH_Add_Task(PID_MOTOR_Poll_Speed_Pulse, 1, 1);

 SCH_Add_Task(PID_MOTOR_Control_Motor, 300, 1000);

 /* Sending data to serial port */
 SCH_Add_Task(PC_LINK_Update, 3, 1);

 /* All tasks added: start running the scheduler */
 SCH_Start();

 while(1)
 {
 SCH_Dispatch_Tasks();
 }
 }

...

#define PULSE_HIGH (0)
#define PULSE_LOW (1)

#define PID_PROPORTIONAL (5)
#define PID_INTEGRAL (50)
#define PID_DIFFERENTIAL (50)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 289

void PID_MOTOR_Control_Motor(void)
 {
 int Error, Control_new;

 Speed_measured_G = PID_MOTOR_Read_Current_Speed();
 Speed_required_G = PID_MOTOR_Get_Required_Speed();

 /* Difference between required and actual speed (0-255) */
 Error = Speed_required_G - Speed_measured_G;

 /* Proportional term */
 Control_new = Controller_output_G + (Error / PID_PROPORTIONAL);

 /* Integral term [SET TO 0 IF NOT REQUIRED] */
 if (PID_INTEGRAL)
 {
 Sum_G += Error;
 Control_new += (Sum_G / (1 + PID_INTEGRAL));
 }

 /* Differential term [SET TO 0 IF NOT REQUIRED] */
 if (PID_DIFFERENTIAL)
 {
 Control_new += (Error - Old_error_G) / (1 + PID_DIFFERENTIAL);

 /* Store error value */
 Old_error_G = Error;
 }

 /* Adjust to 8-bit range */
 if (Control_new > 255)
 {
 Control_new = 255;
 Sum_G -= Error; /* Windup protection */
 }

 if (Control_new < 0)
 {
 Control_new = 0;
 Sum_G -= Error; /* Windup protection */
 }

 /* Convert to required 8-bit format */
 Controller_output_G = (tByte) Control_new;

 /* Update the PWM setting */
 PID_MOTOR_Set_New_PWM_Output(Controller_output_G);
 ...
 }

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 290

Alternative: Fuzzy control

Most available textbooks highlight traditional (mathematically-
based) approaches to the design of control systems.

A less formal approach to control system design has emerged
recently: this is known as ‘fuzzy control’ and is suitable for SISO,
MISO and MIMO systems, with one or more parameters.

(Refer to Passino and Yurkovich, 1998, for further information on
fuzzy control.)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 291

Preparations for the next seminar

Please review “PTTES” Chapter 28 and Chapter 35 before the next
seminar.

40393837363534

1234567

‘8051’

8910

33323130292827262524

11121314151617181920

232221

P
3

.0

P
1

.7

R
S

T

P
1

.6

P
1

.5

P
1

.4

P
1

.2

P
1

.3

P
1

.1

P
1

.0

V
S

S

X
T

L
2

X
T

L
1

P
3

.7

P
3

.6

P
3

.5

P
3

.3

P
3

.4

P
3

.2

P
3

.1

/ E
A

P
0

.6

P
0

.7

P
0

.5

P
0

.4

P
0

.3

P
0

.1

P
0

.2

P
0

.0

V
C

C

P
2

.0

P
2

.2

P
2

.1

P
2

.3

P
2

.4

P
2

.5

P
2

.7

P
2

.6

/ P
S

E
N

A
L

E

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 292

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 293

Seminar 9:
Case study:

Automotive cruise
control using PID and

CAN

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 294

Overview of this seminar

We have considered the design of schedulers for multi-processor
distributed systems in this module, and looked - briefly - at some
elements of control-system design.

In this session, we take the simple cruise-control example discussed
in Seminar 8 and convert this into a complete - distributed - system.

We will then use the resulting system as a testbed to explore the
impact of network delays on distributed embedded control
systems.

How would I design and
implement a
cruise control system
for a car?

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 295

Single-processor system: Overview

Car
model

CCS

Throttle
setting

Vehicle
speed (pulses)

(Microcontroller 0)

(Microcontroller 1)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 296

Single-processor system: Code

[We’ll discuss this in the seminar]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 297

Multi-processor design: Overview

Car
model

Throttle
setting

Vehicle
speed (pulses)

PID node
(Master)

PID node
(Master)

Throttle node
(Slave)

Throttle node
(Slave)

Speed node
(Slave)

Speed node
(Slave)

CAN

(Microcontroller 0)

(Microcontroller 1) (Microcontroller 2) (Microcontroller 3)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 298

Multi-processor design: Code (PID node)

[We’ll discuss this in the seminar]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 299

Multi-processor design: Code (Speed node)

[We’ll discuss this in the seminar]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 300

Multi-processor design: Code (Throttle node)

[We’ll discuss this in the seminar]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 301

Exploring the impact of network delays

• We discussed in the last seminar how we can calculate the
required sampling rate for a control system.

• When developing a distributed control system, we also need
to take into account the network delays.

Time

Tick
Message
(Data for S1)

Ack
Message

(from S1)

...

Tick latency
(varies with baud rate)

• This is a complex topic…

• Two effective “rules of thumb”:

◊ Make sure the delays are short, when compared with the sampling
interval. Aim for no more than 10% of the sample interval between
sensing (input) and actuation (output).

◊ Make sure the delays are constant - avoid “jitter”.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 302

Example: Impact of network delays on the CCS system

[We’ll discuss this in the seminar - and you will try it in the lab.]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 303

Preparations for the next seminar

In the final seminar on this course we’ll discuss the use of watchdog
timers with embedded systems.

You’ll find some information about this topic in PTTES (Chapter
12).

You’ll also find more information about this topic on the following
WWW site:

http://www.engg.le.ac.uk/books/Pont/downloads.htm

You may find it useful to have a copy of the paper from the WWW
site with you at the seminar.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 304

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 305

Seminar 10:
Improving system
reliability using
watchdog timers

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 306

Overview of this seminar

In this seminar we’ll discuss the use of watchdog timers with
embedded systems.

You’ll find a more detailed version of the material introduced in
this seminar in this paper:

Pont, M.J. and Ong, H.L.R. (2002) "Using watchdog timers to
improve the reliability of TTCS embedded systems: Seven new
patterns and a case study", to appear in the proceedings of
VikingPLOP 2002, Denmark, September 2002.

A copy is available on the following WWW site:

http://www.engg.le.ac.uk/books/Pont/downloads.htm

You may find it useful to have a copy of this paper with you at the
seminar.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 307

The watchdog analogy

Watchdog timers will - usually - have the following two features:

• The timer must be refreshed at regular, well-defined,
intervals.
If the timer is not refreshed at the required time it will
overflow, an process which will usually cause the associated
microcontroller to be reset.

• When starting up, the microcontroller can determine the
cause of the reset.

That is, it can determine if it has been started ‘normally’, or
re-started as a result of a watchdog overflow. This means
that, in the latter case, the programmer can ensure that the
system will try to handle the error that caused the watchdog
overflow.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 308

PATTERN: Watchdog Recovery

Understanding the basic operation of watchdog timer hardware is
not difficult.

However, making good use of this hardware in a TTCS application
requires some care. As we will see, there are three main issues
which need to be considered:

• Choice of hardware;

• The watchdog-induced reset;

• The recovery process.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 309

Choice of hardware

We have seen in many previous cases that, where available, the use
of on-chip components is to be preferred to the use of equivalent
off-chip components. Specifically, on-chip components tend to
offer the following benefits:

• Reduced hardware complexity, which tends to result in
increased system reliability.

• Reduced application cost.

• Reduced application size.

These factors also apply when selecting a watchdog timer.

In addition, when implementing WATCHDOG RECOVERY, it is
usually important that the system is able to determine - as it begins
operation - whether it was reset as a result of normal power cycling,
or because of a watchdog timeout.

In most cases, only on-chip watchdogs allow you to determine the
cause of the reset in a simple and reliable manner.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 310

Time-based error detection

A key requirement in applications using a co-operative scheduler is
that, for all tasks, under all circumstances, the following condition
must be adhered to:

<TaskDuration TickInterval

Where: TaskDuration is the task duration, and TickInterval is the system
‘tick interval’.

It is possible to use a watchdog timer to detect task overflows, as
follows:

• Set the watchdog timer to overflow at a period greater than
the tick interval.

• Create a task that will update the watchdog timer shortly
before it overflows.

• Start the watchdog.

[We’ll say more about this shortly]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 311

Other uses for watchdog-induced resets

If your system uses timer-based error detection techniques, then it
can make sense to also use watchdog-induced resets to handle other
errors. Doing this means that you can integrate some or all of your
error-handling mechanisms in a single place (usually in some form
of system initialisation function). This can - in many systems -
provide a very “clean” and approach to error handling that is easy to
understand (and maintain).

Note that this combined approach is only appropriate where the
recovery behaviour you will implement is the same for the different
errors you are trying to detect.

Here are some suggestions for the types of errors that can be
effectively handled in this way:

• Failure of on-chip hardware (e.g. analogue-to-digital
converters, ports).

• Failure of external actuators (e.g. DC motors in an industrial
robot; stepper motors in a printer).

• Failure of external sensors (e.g. ultraviolet sensor in an art
gallery; vibration sensor in an automotive system).

• Temporary reduction is power-supply voltage.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 312

Recovery behaviour

Before we decide whether we need to carry out recovery behaviour,
we assume that the system has been reset.

If the reset was “normal” we simply start the scheduler and run the
standard system configuration.

If, instead, the cause of the reset was a watchdog overflow, then
there are three main options:

• We can simply continue as if the processor had undergone
an “ordinary” reset.

• We can try to “freeze” the system in the reset state. This
option is known as “fail-silent recovery”.

• We can try to have the system run a different algorithm
(typically, a very simple version of the original algorithm,
often without using the scheduler). This is often referred to
as “limp home recovery”.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 313

Risk assessment

In safety-related or safety-critical systems, this pattern should not be
implemented before a complete risk-assessment study has been
conducted (by suitably-qualified individuals).

Successful use of this pattern requires a full understanding of the errors
that are likely to be detected by your error-detection strategies (and
those that will be missed), plus an equal understanding of the recovery
strategy that you have chosen to implement.

Without a complete investigation of these issues, you cannot be sure
that implementation of the pattern you will increase (rather than
decrease) the reliability of your application.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 314

The limitations of single-processor designs

It is important to appreciate that there is a limit to the extent to
which reliability of a single-processor embedded system can be
improved using a watchdog timer.

For example, LIMP-HOME RECOVERY is the most sophisticated
recovery strategy considered in this seminar.

If implemented with due care, it can prove very effective.
However, it relies for its operation on the fact that - even in the
presence of an error - the processor itself (and key support circuitry,
such as the oscillator, power supply, etc) still continues to function.
If the processor or oscillator suffer physical damage, or power is
removed, LIMP-HOME RECOVERY cannot help your system to
recover.

In the event of physical damage to your “main” processor (or its
support hardware), you may need to have some means of engaging
another processor to take over the required computational task.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 315

Time, time, time …

Suppose that the braking system in an automotive application uses a
500 ms watchdog and the vehicle encounters a problem when it is
travelling at 70 miles per hour (110 km per hour).

In these circumstances, the vehicle and its passengers will have
travelled some 15 metres / 16 yards - right into the car in front -
before the vehicle even begins to switch to a “limp-home” braking
system.

In some circumstances, the programmer can reduce the delays
involved with watchdog-induced resets.

For example, using the Infineon C515C:
/* Set up the watchdog for “normal” use
 - overflow period = ~39 ms */
WDTREL = 0x00;

...

/* Adjust watchdog timer for faster reset
 - overflow set to ~300 µs */
WDTREL = 0x7F;

/* Now force watchdog-induced reset */
while(1)
 ;

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 316

Watchdogs: Overall strengths and weaknesses

☺ Watchdogs can provide a ‘last resort’ form of error recovery. If you
think of the use of watchdogs in terms of ‘if all else fails, then we’ll let
the watchdog reset the system’, you are taking a realistic view of the
capabilities of this approach.
 Use of this technique usually requires an on-chip watchdog.

 Used without due care at the design phase and / or adequate testing,
watchdogs can reduce the system reliability dramatically. In particular, in
the presence of sustained faults, badly-designed watchdog “recovery”
mechanisms can cause your system to repeatedly reset itself. This can be
very dangerous.
 Watchdogs with long timeout periods are unsuitable for many applications.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 317

PATTERN: Scheduler Watchdog

As we have mentioned, a key requirement in applications using a
co-operative scheduler is that, for all tasks, under all circumstances,
the following condition must be adhered to:

<TaskDuration TickInterval

Where: TaskDuration is the task duration, and TickInterval is the system
‘tick interval’.

It is possible to use a watchdog timer to detect task overflows, as
follows:

• Set the watchdog timer to overflow at a period greater than
the tick interval.

• Create a task that will update the watchdog timer shortly
before it overflows.

• Start the watchdog.

So - how do you select the watchdog overflow period?

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 318

Selecting the overflow period - “hard” constraints

For systems with “hard” timing constraints for one or more tasks, it
is usually appropriate to set the watchdog overflow period to a
value slightly greater than the tick interval (e.g. 1.1 ms overflow in
a system with 1 ms ticks).

Please note that to do this, the watchdog timer will usually need to
be driven by a crystal oscillator (or the timing will not be
sufficiently accurate).

In addition, the watchdog timer will need to give you enough
control over the timer settings, so that the required overflow period
can be set.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 319

Selecting the overflow period - “soft” constraints

Many (‘soft’) TTCS systems continue to operate safely and effectively,
even if - occasionally - the duration of the task(s) that are scheduled to
run at a particular time exceeds the tick interval.

To give a simple example, a scheduler with a 1 ms tick interval can
- without problems - schedule a single task with a duration of 10 ms
that is called every 20 ms.

Of course, if the same system is also trying to schedule a task of
duration 0.1 ms every 5 ms, then the 0.1 ms task will sometimes be
blocked. Often careful design will avoid this blockage but - even if
it occurs - it still may not matter because, although the 0.1 ms will
not always run on time, it will always run (that is, it will run 200
times every second, as required).

For some tasks - with soft deadlines - this type of behaviour may be
acceptable. If so:

• Set the watchdog to overflow after a period of around 100
ms.

• Feed the watchdog every millisecond, using an appropriate
task.

• Only if the scheduling is blocked for more than 100 ms will
the system be reset.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 320

PATTERN: Program-Flow Watchdog

Use of PROGRAM-FLOW WATCHDOG may help to improve
reliability of your system in the presence of program-flow errors
(which may, in turn, result from EMI).

Arguably, the most serious form of program-flow error in an
embedded microcontroller is corruption of the program counter
(PC), also known as the instruction pointer.

Since the PC of the 8051 is a 16-bit wide register, we make the
reasonable assumption that – in response to PC corruption – the PC
may take on any value in the range 0 to 65535. In these
circumstances, the 8051 processor will fetch and execute the next
instruction from the code memory location pointed to by the
corrupted PC register. This can be very dangerous!

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 321

The most straightforward implementation of PROGRAM-FLOW
WATCHDOG involves two stages:

• We fill unused locations at the end of the program code
memory with single-byte “No Operation” (NOP), or
equivalent, instructions.

• We place a “PC Error Handler” (PCEH) at the end of code
memory to deal with the error.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 322

Dealing with errors

Here, we will assume that the PCEH will consist mainly of a loop:
/* Force watchdog timeout */
while(1)
 ;

This means that, as discussed in WATCHDOG RECOVERY [this
seminar] the watchdog timer will force a clean system reset.

Please note that, as also discussed in WATCHDOG RECOVERY, we
may be able to reduce the time taken to reset the processor by
adapting the watchdog timing. For example:

/* Set up the watchdog for “normal” use
 - overflow period = ~39 ms */
WDTREL = 0x00;

...

/* Adjust watchdog timer for faster reset
 - overflow set to ~300 µs */
WDTREL = 0x7F;

/* Now force watchdog-induced reset */
while(1)
 ;

After the watchdog-induced reset, we need to implement a suitable
recovery strategy. A range of different options are discussed in
RESET RECOVERY [this seminar], FAIL-SILENT RECOVERY [this
seminar] and LIMP-HOME RECOVERY [this seminar].

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 323

Hardware resource implications

PROGRAM-FLOW WATCHDOG can only be guaranteed to work
where the corrupted PC points to an “empty” memory location.

Maximum effectiveness will therefore be obtained with
comparatively small programs (a few kilobytes of code memory),
and larger areas of empty memory.

If devices with less than 64kB of code memory are used, a problem
known as “memory aliasing” can occur:

Code

0kB 2kB 64kB0xA552

64kB physical code memory – no memory aliasing

Code Code Code Code

16kB physical code memory – memory overlap 4 times due to aliasing

0kB 2kB 64kB

0x6552

16kB 18kB 32kB 34kB 48kB 50kB

0xE5520xA5520x2552

Aliased section

If you want to increase the chances of detecting program-flow errors
using this approach, you need to use the maximum amount of (code)
memory that is supported by your processor. In the case of the 8051
family, this generally means selecting a device with 64 kB of memory.
Clearly, this choice will have cost implications.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 324

Speeding up the response

We stated in “Solution” that the most straightforward
implementation of PROGRAM-FLOW WATCHDOG involves two
stages:

• We fill unused locations at the end of the program code
memory with single-byte “No Operation” (NOP), or
equivalent, instructions.

• Second, a small amount of program code, in the form of an
“PC Error Handler” (PCEH), is placed at the end of code
memory to deal with the error.

Two problems:

• It may take an appreciable period of time for the processor
to reach the error handler.

• The time taken to recover from an error is highly variable
(since it depends on the value of the corrupted PC).

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 325

An alternative is to fill the memory not with “NOP” instructions but
with “jump” instructions.

(In effect, we want to fill each location with “Jump to address X”
instructions, and then place the error handler at address X.)

• In the 8051, the simplest implementation is to fill the empty
memory with “long jump” instructions (0x02).

• The error handler will then be located at address 0x0202.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 326

PATTERN: Reset Recovery

Using RESET RECOVERY we assume that the best way to deal with
an error (the presence of which is indicated by a watchdog-induced
reset) is to re-start the system, in its normal configuration.

Implementation

RESET RECOVERY is very to easy to implement. We require a
basic watchdog timer, such as the common “1232” external device,
available from various manufacturers (we show how to use this
device in an example below).

Using such a device, the cause of a system reset cannot be easily
determined. However, this does not present a problem when
implementing RESET RECOVERY. After any reset, we simply start
(or re-start) the scheduler and try to carry out the normal system
operations.

The particular problem with RESET RECOVERY is that, if the error that

gave rise to the watchdog reset is permanent (or long-lived), then you
are likely to lose control of your system as it enters an endless loop
(reset, watchdog overflow, reset, watchdog overflow, …).

This lack of control can have disastrous consequences in many
systems.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 327

PATTERN: Fail-Silent Recovery

When using FAIL-SILENT RECOVERY, our aim is to shut the system
down after a watchdog-induced reset. This type of response is
referred to as “fail silent” behaviour because the processor becomes
“silent” in the event of an error.

FAIL-SILENT RECOVERY is implemented after every “Normal” reset
as follows:

• The scheduler is started and program execution is normal.

By contrast, after a watchdog-induced reset, FAIL-SILENT
RECOVERY will typically be implemented as follows:

• Any necessary port pins will be set to appropriate levels (for
example, levels which will shut down any attached
machinery).

• Where required, an error port will be set to report the cause
of the error,

• All interrupts will be disabled, and,

• The system will be stopped, either by entering an endless
loop or (preferably) by entering power-down or idle mode.

(Power-down or idle mode is used because, in the event that the
problems were caused by EMI or ESD, this is thought likely to
make the system more robust in the event of another interference
burst.)

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 328

Example: Fail-Silent behaviour in the Airbus A310

• In the A310 Airbus, the slat and flap control computers form
an ‘intelligent’ actuator sub-system.

• If an error is detected during landing, the wings are set to a
safe state and then the actuator sub-system shuts itself down
(Burns and Wellings, 1997, p.102).

[Please note that the mechanisms underlying this “fail silent”
behaviour are unknown.]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 329

Example: Fail-Silent behaviour in a steer-by-wire application

Suppose that an automotive steer-by-wire system has been created
that runs a single task, every 10 ms. We will assume that the
system is being monitored to check for task over-runs (see
SCHEDULER WATCHDOG [this seminar]). We will also assume that
the system has been well designed, and has appropriate timeout
code, etc, implemented.

Further suppose that a passenger car using this system is being
driven on a motorway, and that an error is detected, resulting in a
watchdog reset. What recovery behaviour should be implemented?

We could simply re-start the scheduler and “hope for the best”.
However, this form of “reset recovery” is probably not appropriate.
In this case, if we simply perform a reset, we may leave the driver
without control of their vehicle (see RESET RECOVERY [this
seminar]).

Instead, we could implement a fail-silent strategy. In this case, we
would simply aim to bring the vehicle, slowly, to a halt. To warn
other road vehicles that there was a problem, we could choose to
flash all the lights on the vehicle on an off (continuously), and to
pulse the horn. This strategy (which may - in fact - be far from
silent) is not ideal, because there can be no guarantee that the driver
and passengers (or other road vehicles) will survive the incident.
However, it the event of a very serious system failure, it may be all
that we can do.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 330

PATTERN: Limp-Home Recovery

In using LIMP-HOME RECOVERY, we make two assumptions about
our system:

• A watchdog-induced reset indicates that a significant error
has occurred.

• Although a full (normal) re-start is considered too risky, it
may still be possible to let the system “limp home” by
running a simple version of the original algorithm.

Overall, in using this pattern, we are looking for ways of ensuring
that the system continues to function - even in a very limited way -
in the event of an error.

LIMP-HOME RECOVERY is implemented after ever “Normal” reset
as follows:

• The scheduler is started and program execution is normal.

By contrast, after a watchdog-induced reset, LIMP-HOME
RECOVERY will typically be implemented as follows:

• The scheduler will not be started.

• A simple version of the original algorithm will be executed.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 331

Example: Limp-home behaviour in a steer-by-wire
application

In FAIL-SILENT RECOVERY [this seminar], we considered one
possible recovery strategy in a steer-by-sire application.

As an alternative to the approach discussed in the previous example,
we may wish to consider a limp-home control strategy. In this case,
a suitable strategy might involve a code structure like this:

while(1)
 {
 Update_basic_steering_control();
 Software_delay_10ms();
 }

This is a basic software architecture (based on SUPER LOOP
[PTTES, p.162]).

In creating this version, we have avoided use of the scheduler code.
We might also wish to use a different (simpler) control algorithm at
the heart of this system. For example, the main control algorithm
may use measurements of the current speed, in order to ensure a
smooth response even when the vehicle is moving rapidly. We
could omit this feature in the “limp home” version.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 332

• Of course, simply using a different software implementation
may still not be enough.

For example, in our steer-by-wire application, we may have
a position sensor (attached to the steering column) and an
appropriate form of DC motor (attached to the steering
rack). Both the sensor and the actuator would then be linked
to the processor.

• When designing the limp-home controller, we would like to
have an additional sensor and actuator, which are - as far as
possible - independent of the components used in the main
(scheduled) system.

• This option makes sense because it is likely to maximise the
chances that the Slave node will operate correctly when it
takes over.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 333

This approach has two main implications:

1. The hardware must ‘fail silently’: for example, if we did
add a backup motor to the steering rack, this would be little
use if the main motor ‘seized’ when the scheduler task was
shut down.

Note that there may be costs associated with obtaining this
behaviour. For example, we may need to add some kind of
clutch assembly to the motor output, to ensure that it could
be disconnected in the event of a motor jam. However, such
a decision would need to be made only after a full risk
assessment. For example, it would not make sense to add a
clutch unit if a failure of this unit (leading to a loss of
control of steering) was more likely than a motor seizure.

2. The cost of hardware duplication can be significant, and
will often be considerably higher than the cost of a
duplicated processor: this may make this approach
economically unfeasible.

When costs are too high, sometimes a compromise can
prove effective. For example, in the steering system, we
might consider adding a second set of windings to the motor
for use by the Slave (rather than adding a complete new
motor assembly). Again, such a decision should be made
only after a full risk assessment.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 334

PATTERN: Oscillator Watchdog

People sometimes assume that watchdog timer is a good way of
detecting oscillator failure. However, a few moments thought
quickly reveals that this is very rarely the case.

When the oscillator fails, the associated microcontroller will stop.

Even if (by using a watchdog timer, or some other technique) you detect
that the oscillator has failed, you cannot execute any code to deal with
the situation.

In these circumstances, you may be able to improve the reliability
of your system by using an oscillator watchdog.

The OW operates as follows: if an oscillator failure is detected, the
microcontroller is forced into a reset state: this means that port
pins take on their reset values.

The state of the port pins is crucial, since it means that the developer
has a chance to ensure that hardware devices controlled by the
processor (for example, dangerous machinery) will be shut down if the
oscillator fails.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 335

What happens next?

• In most cases, the microcontroller will be held in a reset
state “for ever”.

• However, most oscillator watchdogs will continue to
monitor the clock input to the chip: if the main oscillator is
restored, the system will leave reset and will begin operating
again.

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 336

Conclusions

Watchdog timers are powerful tools, that have features that are
particularly well matched to the needs of time-triggered designs.

[That’s it - we’ve reached the end of PES II.]

COPYRIGHT © MICHAEL J. PONT, 2001-2003. Contains material from:
Pont, M.J. (2001) “Patterns for triggered embedded systems”, Addison-Wesley.

PES II - 337

Acknowledgements

I’m grateful to the many students who have taken my modules in
embedded systems in Leicester over the last few years: I’ve greatly
enjoyed (and learned an enormous amount from) this teaching.

I’d particularly like to thank:
• Ian Dinning, Umesh Patel and Justin Lado Lomoro, who

helped develop the “intruder alarm” example presented in
Seminar 6.

• Mark Banner, Devaraj Ayavoo, Thomas Sorrel and Ridwan
Kureemun, who helped develop the cruise-control
demonstrator discussed in Seminar 9.

