
Programming PIC Microcontrollers in BASIC - mikroElektronika

Table of Contents

● Preface

● Chapter 1: The Basics

● Chapter 2: Elements of BASIC Language

● Chapter 3: Operators

● Chapter 4: Control Structures

● Chapter 5: Built-in and Library Routines

● Chapter 6: Examples with PIC Integrated Peripherals

● Chapter 7: Examples with Displaying Data

● Chapter 8: Examples with Memory and Storage Media

● Chapter 9: Communications Examples (under construction)

● Appendix A: mikroBasic IDE

Preface

In order to simplify things and crash some prejudices, I will allow myself to give you

some advice before reading this book. You should start reading it from the chapter that

interests you the most, in any order you find suitable. As the time goes by, read the

parts you may need at that exact moment. If something starts functioning without you

knowing exactly how, it shouldn’t bother you too much. Anyway, it is better that your

program works than that it doesn’t. Always stick to the practical side of life. Better to

finish the application on time, make it reliable and, of course, get paid for it as well as

possible.

In other words, it doesn’t matter if the exact manner in which the electrons move

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/00.htm (1 sur 4)05/11/2004 02:02:31

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/0a.htm

Programming PIC Microcontrollers in BASIC - mikroElektronika

within the PN junctions escapes your knowledge. You are not supposed to know the

whole history of electronics in order to assure the income for you or your family. Do

not expect that you will find everything you need in a single book, though. The

information are dispersed literally everywhere around us, so it is necessary to collect

them diligently and sort them out carefully. If you do so, the success is inevitable.

With all my hopes of having done something worthy investing your time in.

Yours,

Nebojsa Matic

mikroElektronika Recommends

EasyPIC 2
Development system for PIC MCUs

USB programmer on board! System supports 18, 28 and

40-pin microcontrollers (it is delivered with PIC16F877). With the system also comes

the programmer. You can test many different industrial applications on the system:

temperature controllers, counters, timers… [more]

mikroBasic
Advanced BASIC compiler for PIC

A beginner? Worry not. Easy-to-learn BASIC syntax, advanced

compiler features, built-in routines, source-level debugger, and

many practical examples we have provided allow quick start in programming PIC.

Highly intuitive, user-friendly IDE and comprehensive help guarantee success! [more]

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/00.htm (2 sur 4)05/11/2004 02:02:31

http://www.mikroelektronika.co.yu/english/product/tools/easypic2.htm
http://www.mikroelektronika.co.yu/english/product/tools/easypic2.htm
http://www.mikroelektronika.co.yu/english/product/compilers/mikrobasic/index.htm
http://www.mikroelektronika.co.yu/english/product/compilers/mikrobasic/index.htm

Programming PIC Microcontrollers in BASIC - mikroElektronika

USB PIC Flash
Programmer for PIC18 family

PIC Flash is the USB In-System programmer for Flash

family of Microchip’s MCUs. Beside standard FLASH

MCUs, it can also program the latest models of PIC18 family. [more]

“PIC Microcontrollers”
On-line book, 3rd edition

The purpose of the book is not to make a microcontroller expert out

of you, but to make you equal to those who had somebody to ask.

Many practical examples allow quick start in programming PIC.

[more]

To Reader’s Knowledge

The contents published in the book “Programming PIC microcontrollers in BASIC” is

subject to copyright and it must not be reproduced in any form without an explicit

written permission released from the editorial of mikroElektronika. The contact

address for the authorization regarding contents of this book:

office@mikroelektronika.co.yu.

The book was prepared with due care and attention, however the publisher does not

accept any responsibility neither for the exactness of the information published

therein, nor for any consequences of its application.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/00.htm (3 sur 4)05/11/2004 02:02:31

http://www.mikroelektronika.co.yu/english/product/tools/picflashusb.htm
http://www.mikroelektronika.co.yu/english/product/tools/picflashusb.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/picbook.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/picbook.htm
mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip

Technology Inc. USA. Microchip logo and name are the registered tokens of the Microchip

Technology. mikroBasic is a registered trade mark of mikroElektronika. All other tokens

mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please

contact our office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/00.htm (4 sur 4)05/11/2004 02:02:31

mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

Chapter 1: The Basics

● Introduction

● 1.1 Why BASIC?

● 1.2 Choosing the right PIC for the task

● 1.3 A word about code writing

● 1.4 Writing and compiling your program

● 1.5 Loading program to microcontroller

● 1.6 Running the program

● 1.7 Troubleshooting

Introduction

Simplicity and ease which higher programming languages bring in, as well as broad

application of microcontrollers today, were reasons to incite some companies to adjust and

upgrade BASIC programming language to better suit needs of microcontroller

programming. What did we thereby get? First of all, developing applications is faster and

easier with all the predefined routines which BASIC brings in, whose programming in

assembly would take the largest amount of time. This allows programmer to concentrate on

solving the important tasks without wasting his time on, say, code for printing on LCD

display.

To avoid any confusion in the further text, we need to clarify several terms we will be using

frequently throughout the book:

Programming language is a set of commands and rules according to which we write the

program. There are various programming languages such as BASIC, C, Pascal, etc. There is

plenty of resources on BASIC programming language out there, so we will focus our

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (1 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

attention particularly to programming of microcontrollers.

Program consists of a sequence of commands written in programming language that

microcontroller executes one after another. Chapter 2 deals with the structure of BASIC

program in details.

Compiler is a program run on computer and its task is to translate the original BASIC code

into language of zeros and ones that can be fed to microcontroller. The process of translation

of BASIC program into executive HEX code is shown in the figure below. The program

written in BASIC and saved as file program.pbas is converted by compiler into

assembly code (program.asm). The generated assembly code is further translated into

executive HEX code which can be written to microcontroller memory.

Programmer is a device which we use to transfer our HEX files from computer to

microcontroller memory.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (2 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

1.1 Why BASIC?

Originally devised as an easy-to-use tool, BASIC became widespread on home

microcomputers in the 1980s, and remains popular to this day in a handful of heavily

evolved dialects. BASIC’s name, coined in classic, computer science tradition to produce a

nice acronym, stands for Beginner’s All-purpose Symbolic Instruction Code.

BASIC is still considered by many PC users to be the easiest programming language to use.

Nowadays, this reputation is being shifted to the world of microcontrollers. BASIC allows

faster and much easier development of applications for PIC compared to the Microchip’s

assembly language MPASM. When writing the code for MCUs, programmers frequently

deal with the same issues, such as serial communication, printing on LCD display,

generating PWM signals, etc. For the purpose of facilitating programming, BASIC provides

a number of built-in and library routines intended for solving these problems.

As far as the execution and program size are in question, MPASM has a small advantage in

respect with BASIC. This is why there is an option of combining BASIC and assembly code

— assembly is commonly used for parts of program in which execution time is critical or

same commands are executed great number of times. Modern microcontrollers, such as PIC,

execute instructions in a single cycle. If microcontroller clock is 4MHz, then one assembly

instruction requires 250ns x 4 = 1us. As each BASIC command is technically a sequence of

assembly instructions, the exact time necessary for its execution can be calculated by simply

summing up the execution times of constituent assembly instructions.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (3 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

1.2 Choosing the right PIC for the task

Currently, the best choice for application development using BASIC are: the famous

PIC16F84, PIC16F87x, PIC16F62x, PIC18Fxxx. These controllers have program memory

built on FLASH technology which provides fast erasing and reprogramming, thus allowing

fast debugging. By a single mouse click in the programming software, microcontroller

program can be instantly erased and then reloaded without removing chip from device. Also,

program loaded in FLASH memory can be stored after the power is off. Beside FLASH

memory, microcontrollers of PIC16F87x and PIC16F84 series also contain 64-256 bytes of

internal EEPROM memory, which can be used for storing program data and other

parameters when power is off. BASIC features built-in EEPROM_Read and

EEPROM_Write instructions that can be used for loading and saving data to EEPROM.

Older PIC microcontroller families (12C67x, 14C000, 16C55x, 16C6xx, 16C7xx, and

16C92x) have program memory built on EPROM/ROM technology, so they can either be

programmed only once (OTP version with ROM memory) or have a glass window (JW

version with EPROM memory) which allows erasing by few minutes exposure to UV light.

OTP versions are usually cheaper and are a natural choice for manufacturing large series of

products.

In order to have complete information about specific microcontroller in the application, you

should get the appropriate Data Sheet or Microchip CD-ROM.

The program examples worked out throughout the book are mostly to be run on

the microcontrollers PIC16F84 or PIC6F877, but with minor adjustments, can

be run on any other PIC microcontroller.

1.3 A word about code writing

Technically, any text editor that can save program file as pure ASCII text (without special

symbols for formatting) can be used for writing your BASIC code. Still, there is no need to

do it “by hand” — there are specialized environments that take care of the code syntax, free

the memory and provide all the necessary tools for writing a program.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (4 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

mikroBasic IDE includes highly adaptable Code Editor, fashioned to satisfy needs of both

novice users and experienced programmers. Syntax Highlighting, Code Templates, Code &

Parameter Assistant, Auto Correct for common typos, and other features provide

comfortable environment for writing a program.

If you had no previous experience with advanced IDEs, you may wonder what Code and

Parameter Assistants do. These are utilities which facilitate the code writing. For example, if

you type first few letter of a word in Code Editor and then press CTRL+SPACE, all valid

identifiers matching the letters you typed will be prompted to you in a floating panel. Now

you can keep typing to narrow the choice, or you can select one from the list using keyboard

arrows and Enter.

In combination with comprehensive help, integrated tools, extensive libraries, and Code

Explorer which allows you to easily monitor program items, all the necessary tools are at

hand.

1.4 Writing and compiling your program

The first step is to write our code. Every source file is saved in a single text file with

extension .pbas. Here is an example of one simple BASIC program, blink.pbas.

program LED_Blink

main:

 TRISB = 0 ' Configure pins of PORTB as

output
 eloop:

 PORTB = $FF ' Turn on diodes on PORTB

 Delay_ms(1000) ' Wait 1 second

 PORTB = 0 ' Turn off diodes on PORTB

 Delay_ms(1000) ' Wait 1 second

 goto eloop ' Stay in loop

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (5 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

end.

When the program is completed and saved as .pbas file, it can be compiled by clicking on

Compile Icon (or just hit CTRL+F9) in mikroBasic IDE. The compiling procedure takes

place in two consecutive steps:

1. Compiler will convert .pbas file to assembly code and save it as blink.asm file.

2. Then, compiler automatically calls assembly, which converts .asm file into

executable HEX code ready for feeding to microcontroller.

You cannot actually make the difference between the two steps, as the process is completely

automated and indivisible. In case of syntax error in program code, program will not be

compiled and HEX file will not be generated. Errors need to be corrected in the original .

pbas file and then the source file may be compiled again. The best approach is to write and

test small, logical parts of the program to make debugging easier.

1.5 Loading program to microcontroller

As a result of successful compiling of our previous code, mikroBasic will generate

following files:

● blink.asm - assembly file

● blink.lst - program listing

● blink.mcl - mikro compile library

● blink.hex - executable file which is written into the programming memory

MCL file (mikro compile library) is created for each module you have included in the

project. In the process of compiling, .mcl files will be linked together to output asm, lst and

hex files. If you want to distribute your module without disclosing the source code, you can

send your compiled library (file extension .mcl). User will be able to use your library as if

he had the source code. Although the compiler is able to determine which routines are

implemented in the library, it is a common practice to provide routine prototypes in a

separate text file.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (6 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

HEX file is the one you need to program the microcontroller. Commonly, generated HEX

will be standard 8-bit Merged Intel HEX format, accepted by the vast majority of the

programming software. The programming device (programmer) with accessory software

installed on PC is in charge of writing the physical contents of HEX file into the internal

memory of a microcontroller. The contents of a file blink.hex is given below:

:100000000428FF3FFF3FFF3F031383168601FF30A5

:10001000831286000630F000FF30F100FF30F2005E

:10002000F00B13281A28F10B16281928F20B1628A2

:10003000132810281A30F000FF30F100F00B2128AF

:100040002428F10B21281E284230F000F00B26282E

:1000500086010630F000FF30F100FF30F200F00BB7

:1000600032283928F10B35283828F20B3528322868

:100070002F281A30F000FF30F100F00B4028432801

:10008000F10B40283D284230F000F00B45280428B1

:100090004828FF3FFF3FFF3FFF3FFF3FFF3FFF3F3E

:02400E007A3FF7

:00000001FF

Beside loading a program code into programming memory, programmer also configures the

target microcontroller, including the type of oscillator, protection of memory against

reading, watchdog timer, etc. The following figure shows the connection between PC,

programming device and the MCU.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (7 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

Note that the programming software should be used only for the communication with the

programming device — it is not suitable for code writing.

1.6 Running the program

For proper functioning of microcontroller, it is necessary to provide power supply,

oscillator, and a reset circuit. The supply can be set with the simple rectifier with Gretz

junction and LM7805 circuit as shown in the figure below.

Oscillator can be 4MHz crystal and either two 22pF capacitors or the ceramic resonator of

the same frequency (ceramic resonator already contains the mentioned capacitors, but unlike

oscillator has three termination instead of only two). The rate at which the microcontroller

operates, i.e. the speed at which the program runs, depends heavily on the oscillator

frequency. During the application development, the easiest thing to do is to use the internal

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (8 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

reset circuit — MCLR pin is connected to +5V through a 10K resistor. Below is the scheme

of a rectifier with LM7805 circuit which gives the output of stable +5V, and the minimal

configuration relevant for the operation of a PIC microcontroller.

After the supply is brought to the circuit previously shown, PIC microcontroller should look

animated, and the LED diode should blink once every second. If the signal is completely

missing (LED diode does not blink), then check if +5V is present at all the relevant pins of

PIC.

1.7 Troubleshooting

There are several commonly encountered problems of bringing PIC microcontroller to

working conditions. You need to check a few external components and test whether their

values correspond to the desired ones, and finally to see whether all the connections are

done right. We will present a few notes you may find useful.

● Check whether the MCLR pin is connected to +5V, over reset circuit, or simply with

10K resistor. If the pin remains disconnected, its level will be “floating” and it may

work sometimes, but it usually won’t. Chip has power-on-reset circuit, so the

appropriate external pull-up resistor on MCLR pin should be sufficient.

● Check whether the connection with the resonator is stable. For most PIC

microcontrollers to begin with 4MHz resonator is well enough.

● Check the supply. PIC microcontroller consumes very little energy but the supply

needs to be well filtrated. At the rectifier output, the current is direct but pulsating,

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (9 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

and as such is not suitable for the supply of microcontroller. To avoid the pulsating,

the electrolytic capacitor of high capacitance (e.g. 470 mF) is placed at the rectifier

output.

● If PIC microcontroller supervises devices that pull a lot of energy, they may provoke

enough malfunctioning on the supply lines to cause the microcontroller start behaving

somewhat strangely. Even seven-segmented LED display may well induce tension

drops (the worst scenario is when all the digits are 8, when LED display needs the

most power), if the source itself is not capable to procure enough current (e.g. 9V

battery).

● Some PIC microcontrollers feature multi-functional I/O pins, for example

PIC16C62x family (PIC16C620, 621 and 622). Controllers of this family are

provided with analog comparators on port A. After putting those chips to work, port

A is set to analog mode, which brings about the unexpected behavior of the pin

functions on the port. Upon reset, any PIC with analog inputs will show itself in

analog mode (if the same pins are used as digital lines they need to be set to digital

mode). One possible source of troubles is that the fourth pin of port A exhibits

singular behavior when it is used as output, because the pin has open collectors output

instead of usual bipolar state. This implies that clearing this pin will nevertheless set

it to low level, while setting the pin will let it float somewhere in between, instead of

setting it to high level. To make the pin behave as expected, the pull-up resistor was

placed between RA4 and 5V. Its magnitude is between 4.7K and 10K, depending on

the current necessary for the input. In this way, the pin functions as any other input

pin (all pins are output after reset).

More problems are to be expected if you plan to be seriously working with PIC. Sometimes

the thing seems like it is going to work, but it just won’t, regardless of the effort. Just

remember that there is always more than one way to solve the problem, and that a different

approach may bring solution.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip

Technology Inc. USA. Microchip logo and name are the registered tokens of the Microchip

Technology. mikroBasic is a registered trade mark of mikroElektronika. All other tokens mentioned

in the book are the property of the companies to which they belong.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (10 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollers in BASIC - mikroElektronika

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our

office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/01.htm (11 sur 11)05/11/2004 02:10:07

mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

Chapter 2: Elements of BASIC Language

● Introduction

● 2.1 Identifiers

● 2.2 Operators

● 2.3 Expressions

● 2.4 Instructions

● 2.5 Data Types

● 2.6 Constants

● 2.7 Variables

● 2.8 Symbols

● 2.9 Directives

● 2.10 Comments

● 2.11 Labels

● 2.12 Procedures and Functions

● 2.13 Modules

Introduction

This chapter deals with the elements of BASIC language and the ways to use them efficiently. Learning how to

program is not complicated, but it requires skill and experience to write code that is efficient, legible, and easy to

handle. First of all, program is supposed to be comprehensible, so that the programmer himself, or somebody else

working on the application, could make necessary corrections and improvements. We have provided a code sample

written in a clear and manifest way to give you an idea how programs could be written:

'**

' microcontroller : P16F877A

'

' Project: Led_blinking

' This project is designed to work with PIC 16F877A;

' with minor adjustments, it should work with any other PIC MCU.

'

' The code demonstrates blinking of diodes connected to PORTB.

' Diodes go on and off each second.

'**

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (1 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

program LED_Blinking

main: ' Beginning of program

 TRISB = 0 ' Configure pins of PORTB as output

 PORTB = %11111111 ' Turn ON diodes on PORTB

 Delay_ms(1000) ' Wait for 1 second

 PORTB = %00000000 ' Turn OFF diodes on PORTB

 Delay_ms(1000) ' Wait for 1 second

 goto main ' Endless loop

end. ' End of program

Through clever use of comments, symbols, labels and other elements supported by BASIC, program can be rendered

considerably clearer and more understandable, offering programmer a great deal of help.

Also, it is advisable to divide larger programs into separate logical entities (such as routines and modules, see below)

which can be addressed when needed. This also increases reusability of code.

Names of routines and labels indicating a program segment should make some obvious sense. For example, program

segment that swaps values of 2 variables, could be named "Swap", etc.

2.1 Identifiers

Identifiers are names used for referencing the stored values, such as variables and constants. Every program, module,

procedure, and function must be identified (hence the term) by an identifier.

Valid identifier:

1. Must begin with a letter of English alphabet or possibly the underscore (_)

2. Consists of alphanumeric characters and the underscore (_)

3. May not contain special characters:

~ ! @ # $ % ^ & * () + ` - = { } [] : " ; ' < > ? , . / | \

4. Can be written in mixed case as BASIC is case insensitive; e.g. First, FIRST, and fIrST are an

equivalent identifier.

Elements ignored by the compiler include spaces, new lines, and tabs. All these elements are collectively known as

the “white space”. White space serves only to make the code more legible – it does not affect the actual compiling.

Several identifiers are reserved in BASIC, meaning that you cannot use them as your own identifiers (e.g. words

function, byte, if, etc). For more information, please refer to the list of reserved words. Also, BASIC has a

number of predefined identifiers which are listed in Chapter 4: Instructions.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (2 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

2.2 Operators

BASIC language possesses set of operators which is used to assign values, compare values, and perform other

operations. The objects manipulated for that purpose are called operands (which themselves can be variables,

constants, or other elements).

Operators in BASIC must have at least two operands, with an exception of two unary operators. They serve to create

expressions and instructions that in effect compose the program.

There are four types of operators in BASIC:

1. Arithmetic Operators

2. Boolean Operators

3. Logical (Bitwise) Operators

4. Relation Operators (Comparison Operators)

Operators are covered in detail in chapter 3.

2.3 Expressions

Expression is a construction that returns a value. BASIC syntax restricts you to single line expressions, where

carriage return character marks the end of the expression. The simplest expressions are variables and constants,

while more complex can be constructed from simpler ones using operators, function calls, indexes, and typecasts.

Here is one simple expression:

A = B + C ' This expression sums up the values of variables B and C

 ' and stores the result into variable A.

You need to pay attention that the sum must be within the range of variable A in order to avoid the overflow and

therefore the evident computational error. If the result of the expression amounts to 428, and the variable A is of

byte type (having range between 0 and 255), the result accordingly obtained will be 172, which is obviously wrong.

2.4 Instructions

Each instruction determines an action to be performed. As a rule, instructions are being executed in an exact order in

which they are written in the program. However, the order of their execution can be changed by means of jump,

routine call, or an interrupt.

if Time = 60 then

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (3 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

 goto Minute ' If variable Time equals 60 jump to label Minute

end if

Instruction if..then contains the conducting expression Time = 60 composed of two operands, variable

Time, constant 60 and the comparison operator (=). Generally, instructions may be divided into conditional

instructions (decision making), loops (repeating blocks), jumps, and specific built-in instructions (e.g. for

accessing the peripherals of microcontroller). Instruction set is explained in detail in Chapter 4: Instructions.

2.5 Data Types

Type determines the allowed range of values for variable, and which operations may be performed on it. It also

determines the amount of memory used for one instance of that variable.

Simple data types include:

Type Size Range of values

byte 8-bit 0 .. 255

char* 8-bit 0 .. 255

word 16-bit 0 .. 65535

short 8-bit -128 .. 127

integer 16-bit -32768 .. 32767

longint 32-bit -2147483648 .. 2147483647

* char type can be treated as byte type in every aspect

Structured types include:

Array, which represent an indexed collection of elements of the same type, often called the base type. Base type can

be any simple type.

String represents a sequence of characters. It is an array that holds characters and the first element of string holds

the number of characters (max number is 255).

Sign is important attribute of data types, and affects the way variable is treated by the compiler.

Unsigned can hold only positive numbers:

byte 0 .. 255

word 0 .. 65535

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (4 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Signed can hold both positive and negative numbers:

short -128 .. 127

integer -32768 .. 32767

longint -2147483648 .. 214748364

2.6 Constants

Constant is data whose value cannot be changed during the runtime. Every constant is declared under unique name

which must be a valid identifier. It is a good practice to write constant names in uppercase.

If you frequently use the same fixed value throughout the program, you should declare it a constant (for example,

maximum number allowed is 1000). This is a good practice since the value can be changed simply by modifying the

declaration, instead of going trough the entire program and adjusting each instance manually. As simple as this:

const MAX = 1000

Constants can be declared in decimal, hex, or binary form. Decimal constants are written without any prefix.

Hexadecimal constants begin with a sign $, while binary begin with %.

const A = 56 ' 56 decimal

const B = $0F ' 15 hexadecimal

const C = %10001100 ' 140 binary

It is important to understand why constants should be used and how this affects the MCU. Using a constant in a

program consumes no RAM memory. This is very important due to the limited RAM space (PIC16F877 has 368

locations/bytes).

2.7 Variables

Variable is data whose value can be changed during the runtime. Each variable is declared under unique name which

has to be a valid identifier. This name is used for accessing the memory location occupied by the variable. Variable

can be seen as a container for data and because it is typed, it instructs the compiler how to interpret the data it holds.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (5 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

In BASIC, variable needs to be declared before it can be used. Specifying a data type for each variable is mandatory.

Variable is declared like this:

dim identifier as type

where identifier is any valid identifier and type can be any given data type.

For example:

dim temperature as byte ' Declare variable temperature of byte type

dim voltage as word ' Declare variable voltage of word type

Individual bits of byte variables (including SFR registers such as PORTA, etc) can be accessed by means of dot,

both on left and right side of the expression. For example:

Data_Port.3 = 1 ' Set third bit of byte variable Data_Port

2.8 Symbols

Symbol makes possible to replace a certain expression with a single identifier alias. Use of symbols can increase

readability of code.

BASIC syntax restricts you to single line expressions, allowing shortcuts for constants, simple statements, function

calls, etc. Scope of symbol identifier is a whole source file in which it is declared.

For example:

symbol MaxAllowed = 234 ' Symbol as alias for numeric value

symbol PORT = PORTC ' Symbol as alias for Special Function

Register

symbol DELAY1S = Delay_ms(1000) ' Symbol as alias for procedure call

 ...

if teA > MaxAllowed then

 teA = teA - 100

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (6 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

end if
PORT.1 = 0

DELAY1S

 ...

Note that using a symbol in a program technically consumes no RAM memory – compiler simply replaces each

instance of a symbol with the appropriate code from the declaration.

2.9 Directives

Directives are words of special significance for BASIC, but unlike other reserved words, appear only in contexts

where user-defined identifiers cannot occur. You cannot define an identifier that looks exactly like a directive.

Directive Meaning

Absolute specify exact location of variable in RAM

Org specify exact location of routine in ROM

Absolute specifies the starting address in RAM for variable (if variable is multi-byte, higher bytes are stored at

consecutive locations).

Directive absolute is appended to the declaration of variable:

dim rem as byte absolute $22

 ' Variable will occupy 1 byte at address $22

dim dot as word absolute $23

 ' Variable will occupy 2 bytes at addresses $23 and $24

Org specifies the starting address of routine in ROM. For PIC16 family, routine must fit in one page – otherwise,

compiler will report an error. Directive org is appended to the declaration of routine:

sub procedure test org $200

 ' Procedure will start at address $200

...

end sub

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (7 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

2.10 Comments

Comments are text that is added to the code for purpose of description or clarification, and are completely ignored

by the compiler.

 ' Any text between an apostrophe and the end of the

 ' line constitutes a comment. May span one line only.

It is a good practice to comment your code, so that you or anybody else can later reuse it. On the other hand, it is

often useful to comment out a troublesome part of the code, so it could be repaired or modified later. Comments

should give purposeful information on what the program is doing. Comment such as Set Pin0 simply explains the

syntax but fails to state the purpose of instruction. Something like Turn Relay on might prove to be much more

useful.

Specialized editors feature syntax highlighting – it is easy to distinguish comments from code due to different color,

and comments are usually italicized.

2.11 Labels

Labels represent the most direct way of controlling the program flow. When you mark a certain program line with

label, you can jump to that line by means of instructions goto and gosub. It is convenient to think of labels as

bookmarks of sort. Note that the label main must be declared in every BASIC program because it marks the

beginning of the main module.

Label name needs to be a valid identifier. You cannot declare two labels with same name within the same routine.

The scope of label (label visibility) is tied to the routine where it is declared. This ensures that goto cannot be used

for jumping between routines.

Goto is an unconditional jump statement. It jumps to the specified label and the program execution continues

normally from that point on.

Gosub is a jump statement similar to goto, except it is tied to a matching word return. Upon jumping to a

specified label, previous address is saved on the stack. Program will continue executing normally from the label,

until it reaches return statement – this will exit the subroutine and return to the first program line following the

caller gosub instruction.

Here is a simple example:

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (8 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

program test

main:

' some instructions...

' simple endless loop using a label

my_loop:

 ' some instructions...

 ' now jump back to label _loop

goto my_loop

end.

Note: Although it might seem like a good idea to beginners to program by means of jumps and labels, you should

try not to depend on it. This way of thinking strays from the procedural programming and can teach you bad

programming habits. It is far better to use procedures and functions where applicable, making the code structure

more legible and easier to maintain.

2.12 Procedures and Functions

Procedures and functions, referred to as routines, are self-contained statement blocks that can be called from

different locations in a program. Function is a routine that returns a value upon execution. Procedure is a routine that

does not return a value.

Once routines have been defined, you can call them any number of times. Procedure is called upon to perform a

certain task, while function is called to compute a certain value.

Procedure declaration has the form:

sub procedure procedureName(parameterList)

 localDeclarations

 statements

end sub

where procedureName is any valid identifier, statements is a sequence of statements that are executed upon the

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (9 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

calling the procedure, and (parameterList), and localDeclarations are optional declaration of variables and/or

constants.

sub procedure pr1_procedure(dim par1 as byte, dim par2 as byte,

 dim byref vp1 as byte, dim byref vp2 as byte)

dim locS as byte

 par1 = locS + par1 + par2

 vp1 = par1 or par2

 vp2 = locS xor par1

end sub

par1 and par2 are passed to the procedure by the value, but variables marked by keyword byref are passed by the

address.

This means that the procedure call

pr1_procedure(tA, tB, tC, tD)

passes tA and tB by the value: creates par1 = tA; and par2 = tB; then manipulates par1 and par2 so that tA and tB

remain unchanged;

passes tC and tD by the address: whatever changes are made upon vp1 and vp2 are also made upon tC and tD.

Function declaration is similar to procedure declaration, except it has a specified return type and a return value.

Function declaration has the form:

sub function functionName(parameterList) as returnType

 localDeclarations

 statements

end sub

where functionName is any valid identifier, returnType is any simple type, statements is a sequence of statements to

be executed upon calling the function, and (parameterList), and localDeclarations are optional declaration of

variables and/or constants.

In BASIC, we use the keyword Result to assign return value of a function. For example:

sub function Calc(dim par1 as byte, dim par2 as word) as word

dim locS as word

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (10 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

 locS = par1 * (par2 + 1)

 Result = locS

end sub

As functions return values, function calls are technically expressions. For example, if you have defined a function

called Calc, which collects two integer arguments and returns an integer, then the function call Calc(24, 47) is

an integer expression. If I and J are integer variables, then I + Calc(J, 8) is also an integer expression.

2.13 Modules

Large programs can be divided into modules which allow easier maintenance of code. Each module is an actual file,

which can be compiled separately; compiled modules are linked to create an application. Note that each source file

must end with keyword end followed by a dot.

Modules allow you to:

1. Break large code into segments that can be edited separately,

2. Create libraries that can be used in different programs,

3. Distribute libraries to other developers without disclosing the source code.

In mikroBasic IDE, all source code including the main program is stored in .pbas files. Each project consists of a

single project file, and one or more module files. To build a project, compiler needs either a source file or a compiled

file for each module.

Every BASIC application has one main module file and any number of additional module files. All source files have

same extension (pbas). Main file is identified by keyword program at the beginning, while other files have

keyword module instead. If you want to include a module, add the keyword include followed by a quoted name

of the file.

For example:

program test_project

include "math2.pbas"

dim tA as word

dim tB as word

main:

 tA = sqrt(tb)

end.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (11 sur 12)05/11/2004 02:12:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Keyword include instructs the compiler which file to compile. The example above includes module math2.

pbas in the program file. Obviously, routine sqrt used in the example is declared in module math2.pbas.

If you want to distribute your module without disclosing the source code, you can send your compiled library (file

extension .mcl). User will be able to use your library as if he had the source code. Although the compiler is able to

determine which routines are implemented in the library, it is a common practice to provide routine prototypes in a

separate text file.

Module files should be organized in the following manner:

module unit_name ' Module name

include ... ' Include other modules if necessary

symbol ... ' Symbols declaration

const ... ' Constants declaration

dim ... ' Variables declaration

sub procedure procedure_name ' Procedures declaration

 ...

end sub

sub function function_name ' Functions declaration

 ...

end sub

end. ' End of module

Note that there is no “body” section in the module – module files serve to declare functions, procedures, constants

and global variables.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc. USA. Microchip

logo and name are the registered tokens of the Microchip Technology. mikroBasic is a registered trade mark of

mikroElektronika. All other tokens mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/02.htm (12 sur 12)05/11/2004 02:12:53

mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

Chapter 3: Operators

● Introduction

● 3.1 Arithmetic Operators

● 3.2 Boolean Operators

● 3.3 Logical (Bitwise) Operators

● 3.4 Relation Operators (Comparison Operators)

Introduction

In complex expressions, operators with higher precedence are evaluated before the

operators with lower precedence; operators of equal precedence are evaluated

according to their position in the expression starting from the left.

Operator Priority

not first (highest)

*, div, mod, and, <<, >> second

+, -, or, xor third

=, <>, <, >, <=, >= fourth (lowest)

3.1 Arithmetic Operators

Overview of arithmetic operators in BASIC:

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm (1 sur 6)05/11/2004 02:14:47

Programming PIC Microcontrollers in BASIC - mikroElektronika

Operator Operation Operand types Result type

+ addition byte, short,

integer, words,

longint

byte, short,

integer, words,

longint

- subtraction byte, short,

integer, words,

longint

byte, short,

integer, words,

longint

* multiplication byte, short,

integer, words

integer, words,

long

div division byte, short,

integer, words

byte, short,

integer, words

mod remainder byte, short,

integer, words

byte, short,

integer, words

A div B is the value of A divided by B rounded down to the nearest integer. The

mod operator returns the remainder obtained by dividing its operands. In other words,

X mod Y = X - (X div Y) * Y.

If 0 (zero) is used explicitly as the second operand (i.e. X div 0), compiler will

report an error and will not generate code. But in case of implicit division by zero : X

div Y , where Y is 0 (zero), result will be the maximum value for the appropriate

type (for example, if X and Y are words, the result will be $FFFF).

If number is converted from less complex to more complex data type, upper bytes are

filled with zeros. If number is converted from more complex to less complex data

type, data is simply truncated (upper bytes are lost).

If number is converted from less complex to more complex data type, upper bytes are

filled with ones if sign bit equals 1 (number is negative). Upper bytes are filled with

zeros if sign bit equals 0 (number is positive). If number is converted from more

complex to less complex data type, data is simply truncated (upper bytes are lost).

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm (2 sur 6)05/11/2004 02:14:47

Programming PIC Microcontrollers in BASIC - mikroElektronika

BASIC also has two unary arithmetic operators:

Operator Operation Operand types Result type

+ (unary) sign identity short, integer,

longint

short, integer,

longint

- (unary) sign negation short, integer,

longint

short, integer,

longint

Unary arithmetic operators can be used to change sign of variables:

a = 3

b = -a

 ' assign value -3 to b

3.2 Boolean Operators

Boolean operators are not true operators, because there is no boolean data type defined

in BASIC. These operators conform to standard Boolean logic. They cannot be used

with any data type, but only to build complex conditional expression.

Operator Operation

not negation

and conjunction

or disjunction

For example:

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm (3 sur 6)05/11/2004 02:14:47

Programming PIC Microcontrollers in BASIC - mikroElektronika

if (astr > 10) and (astr < 20) then

PORTB = 0xFF

end if

3.3 Logical (Bitwise) Operators

Overview of logical operators in BASIC:

Operator Operation Operand types Result type

not bitwise negation byte, word,

short, integer,

long

byte, word,

short, integer,

long

and bitwise and byte, word,

short, integer,

long

byte, word,

short, integer,

long

or bitwise or byte, word,

short, integer,

long

byte, word,

short, integer,

long

xor bitwise xor byte, word,

short, integer,

long

byte, word,

short, integer,

long

<< bit shift left byte, word,

short, integer,

long

byte, word,

short, integer,

long

>> bit shift right byte, word,

short, integer,

long

byte, word,

short, integer,

long

<< : shift left the operand for a number of bit places specified in the right operand

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm (4 sur 6)05/11/2004 02:14:47

Programming PIC Microcontrollers in BASIC - mikroElektronika

(must be positive and less then 255).

>> : shift right the operand for a number of bit places specified in the right operand

(must be positive and less then 255).

For example, if you need to extract the higher byte, you can do it like this:

dim temp as word

main:

 TRISA = word(temp >> 8)

end.

3.4 Relation Operators (Comparison
Operators)

Relation operators (Comparison operators) are commonly used in conditional and loop

statements for controlling the program flow. Overview of relation operators in BASIC:

Operator Operation Operand types Result type

= equality All simple types True or False

<> inequality All simple types True or False

< less-than All simple types True or False

> greater-than All simple types True or False

<= less-than-or-equal-to All simple types True or False

>= greater-than-or-equal-

to

All simple types True or False

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm (5 sur 6)05/11/2004 02:14:47

Programming PIC Microcontrollers in BASIC - mikroElektronika

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip

Technology Inc. USA. Microchip logo and name are the registered tokens of the Microchip

Technology. mikroBasic is a registered trade mark of mikroElektronika. All other tokens

mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please

contact our office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/03.htm (6 sur 6)05/11/2004 02:14:47

mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

Chapter 4: Control Structures

● Introduction

● 4.1 Conditional Statements

● 4.1.1 IF..THEN Statement

● 4.1.2 SELECT..CASE Statement

● 4.1.3 GOTO Statement

● 4.2 Loops

● 4.2.1 FOR Statement

● 4.2.2 DO..LOOP Statement

● 4.2.3 WHILE Statement

● 4.3 ASM Statement

Introduction

Statements define algorithmic actions within a program. Simple statements - like assignments and

procedure calls - can be combined to form loops, conditional statements, and other structured

statements.

Simple statement does not contain any other statements. Simple statements include assignments, and

calls to procedures and functions.

Structured statements are constructed from other statements. Use a structured statement when you

want to execute other statements sequentially, conditionally, or repeatedly.

4.1 Conditional Statements

Conditional statements are used for change the flow of the program execution upon meeting a certain

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (1 sur 9)05/11/2004 02:15:36

Programming PIC Microcontrollers in BASIC - mikroElektronika

condition. The BASIC instruction of branching in BASIC language is the IF instruction, with several

variations that provide the necessary flexibility.

4.1.1 IF..THEN Statement – conditional program branching

Syntax if expression then

 statements1

[else

 statements2]

end if

Description Instruction selects one of two possible program paths. Instruction IF..THEN is the

fundamental instruction of program branching in PIC BASIC and it can be used in

several ways to allow flexibility necessary for realization of decision making logic.

Expression returns a True or False value. If expression is True, then statements1

are executed; otherwise statements2 are executed, if the else clause is present.

Statements1 and statements2 can be statements of any type.

Example The simplest form of the instruction is shown in the figure below. Our example

tests the button connected to RB0 - when the button is pressed, program jumps to

the label "Add" where value of variable "w" is increased. If the button is not

pressed, program jumps back to the label "Main".

dim j as byte

Main:

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (2 sur 9)05/11/2004 02:15:36

Programming PIC Microcontrollers in BASIC - mikroElektronika

 if PORTB.0 = 0 then

 goto Add

 end if

 goto Main

Add: j = j + 1

end.

More complex form of instruction is program branching with the ELSE clause:

dim j as byte

Main:

 if PORTB.0 = 0 then

 j = j + 1

 else

 j = j - 1

 endif

 goto Main

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (3 sur 9)05/11/2004 02:15:36

Programming PIC Microcontrollers in BASIC - mikroElektronika

end.

4.1.2 SELECT..CASE Statement – Conditional multiple program
branching

Syntax select case Selector

 case Value_1

 Statements_1

 case Value_2

 Statements_2

 ...

 case Value_N

 Statements_n

 [case else

 Statements_else]

end select

Description Select Case statement is used for selecting one of several available branches in the

program course. It consists of a selector variable as a switch condition, and a list

of possible values. These values can be constants, numerals, or expressions.

Eventually, there can be an else statement which is executed if none of the labels

corresponds to the value of the selector.

As soon as the Select Case statement is executed, at most one of the statements

statements_1 .. statements_n will be executed. The Value which matches the

Selector determines the statements to be executed.

If none of the Value items matches the Selector, then the statements_else in the

else clause (if there is one) are executed.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (4 sur 9)05/11/2004 02:15:36

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example select case W

 case 0

 B = 1

 PORTB = B

 case 1

 A = 1

 PORTA = A

 case else

 PORTB = 0

end select

...

select case Ident

 case testA

 PORTB = 6

 Res = T mod 23

 case teB + teC

 T = 1313

 case else

 T = 0

end select

4.1.3 GOTO Statement – Unconditional jump to the specified label

Syntax goto Label

Description Goto statement jumps to the specified label unconditionally, and the program

execution continues normally from that point on.

Avoid using GOTO too often, because over-labeled programs tend to be less

intelligible.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (5 sur 9)05/11/2004 02:15:36

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example program test

main:

 ' some instructions ...

goto myLabel

 ' some instructions...

myLabel:

 ' some instructions...

end.

4.2 Loops

Loop statements allow repeating one or more instructions for a number of times. The conducting

expression determines the number of iterations loop will go through.

4.2.1 FOR Statement – Repeating of a program segment

Syntax for counter = initialValue to finalValue [step step_value]

 statement_1

 statement_2

 ...

 statement_N

next counter

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (6 sur 9)05/11/2004 02:15:36

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description For statement requires you to specify the number of iterations you want the loop to go

through.

Counter is variable; initialValue and finalValue are expressions compatible with

counter; statement is any statement that does not change the value of counter;

step_value is value that is added to the counter in each iteration. Step_value is

optional, and defaults to 1 if not stated otherwise. Be careful when using large values

for step_value, as overflow may occur.

Every statement between for and next will be executed once per iteration.

Example Here is a simple example of a FOR loop used for emitting hex code on PORTB for 7-

segment display with common cathode. Nine digits should be printed with one second

delay.

for i = 1 to 9

 portb = i

 delay_ms(1000)

next i

4.2.2 DO..LOOP Statement – Loop until condition is fulfilled

Syntax do
 statement_1

 ...

 statement_N

loop until expression

Description Expression returns a True or False value. The do..loop statement executes

statement_1; ...; statement_N continually, checking the expression after each

iteration. Eventually, when expression returns True, the do..loop statement

terminates.

The sequence is executed at least once because the check takes place in the end.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (7 sur 9)05/11/2004 02:15:36

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example I = 0

do

 I = I + 1 ' execute these 2 statements

 PORTB = I ' until i equals 10 (ten)

loop until I = 10

4.2.3 WHILE Statement – Loop while condition is fulfilled

Syntax while expression

 statement_0

 statement_1

 ...

 statement_N

wend

Description Expression is tested first. If it returns True, all the following statements enclosed

by while and wend will be executed (or only one statement, alternatively). It

will keep on executing statements until the expression returns False.

Eventually, as expression returns False, while will be terminated without

executing statements.

While is similar to do..loop, except the check is performed at the beginning

of the loop. If expression returns False upon first test, statements will not be

executed.

Example while I < 90

 I = I + 1

wend

 ...

while I > 0

 I = I div 3

 PORTA = I

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (8 sur 9)05/11/2004 02:15:36

Programming PIC Microcontrollers in BASIC - mikroElektronika

wend

4.3 ASM Statement – Embeds assembly instruction block

Syntax asm
 statementList

end asm

Description Sometimes it can be useful to write part of the program in assembly. ASM

statement can be used to embed PIC assembly instructions into BASIC code.

Note that you cannot use numerals as absolute addresses for SFR or GPR variables

in assembly instructions. You may use symbolic names instead (listing will

display these names as well as addresses).

Be careful when embedding assembly code - BASIC will not check if assembly

instruction changed memory locations already used by BASIC variables.

Example asm
 movlw 67

 movwf TMR0

end asm

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc.

USA. Microchip logo and name are the registered tokens of the Microchip Technology. mikroBasic is a

registered trade mark of mikroElektronika. All other tokens mentioned in the book are the property of the

companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/04.htm (9 sur 9)05/11/2004 02:15:36

mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

Chapter 5: Built-in and Library Routines

● Introduction

● 5.1 Built-in Routines

● 5.1.1 SetBit

● 5.1.2 ClearBit

● 5.1.3 TestBit

● 5.1.4 Lo

● 5.1.5 Hi

● 5.1.6 Higher

● 5.1.7 Highest

● 5.1.8 Delay_us

● 5.1.9 Delay_ms

● 5.1.10 Inc

● 5.1.11 Dec

● 5.1.12 Length

● 5.2.6 EEPROM Library

● 5.2.6.1 EEPROM_Read

● 5.2.6.2 EEPROM_Write

● 5.2.7 Flash Memory Library

● 5.2.7.1 Flash_Read

● 5.2.7.2 Flash_Write

● 5.2.8 I2C Library

● 5.2.8.1 I2C_Init

● 5.2.8.2 I2C_Start

● 5.2.8.3 I2C_Repeated_Start

● 5.2.8.4 I2C_Rd

● 5.2.8.5 I2C_Wr

● 5.2.8.6 I2C_Stop

● 5.2.9 LCD Library

● 5.2.13 PWM Library

● 5.2.13.1 PWM_Init

● 5.2.13.2 PWM_Change_Duty

● 5.2.13.3 PWM_Start

● 5.2.13.4 PWM_Stop

● 5.2.14 RS485 Library

● 5.2.14.1 RS485Master_Init

● 5.2.14.2 RS485Master_Read

● 5.2.14.3 RS485Master_Write

● 5.2.14.4 RS485Slave_Init

● 5.2.14.5 RS485Slave_Read

● 5.2.14.6 RS485Slave_Write

● 5.2.15 SPI Library

● 5.2.15.1 SPI_Init

● 5.2.15.2 SPI_Init_Advanced
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (1 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

● 5.2 Library Routines

● 5.2.1 Numeric Formatting

● 5.2.1.1 ByteToStr

● 5.2.1.2 WordToStr

● 5.2.1.3 ShortToStr

● 5.2.1.4 IntToStr

● 5.2.1.5 Bcd2Dec

● 5.2.1.6 Dec2Bcd

● 5.2.1.7 Bcd2Dec16

● 5.2.1.8 Dec2Bcd16

● 5.2.2 ADC Library

● 5.2.2.1 ADC_read

● 5.2.3 CAN Library

● 5.2.3.1 CANSetOperationMode

● 5.2.3.2 CANGetOperationMode

● 5.2.3.3 CANInitialize

● 5.2.3.4 CANSetBaudRate

● 5.2.3.5 CANSetMask

● 5.2.3.6 CANSetFilter

● 5.2.3.7 CANWrite

● 5.2.3.8 CANRead

● 5.2.3.9 CAN Library Constants

● 5.2.9.1 LCD_Init

● 5.2.9.2 LCD_Config

● 5.2.9.3 LCD_Chr

● 5.2.9.4 LCD_Chr_CP

● 5.2.9.5 LCD_Out

● 5.2.9.6 LCD_Out_CP

● 5.2.9.7 LCD_Cmd

● 5.2.10 LCD8 Library

● 5.2.10.1 LCD8_Init

● 5.2.10.2 LCD8_Config

● 5.2.10.3 LCD8_Chr

● 5.2.10.4 LCD8_Chr_CP

● 5.2.10.5 LCD8_Out

● 5.2.10.6 LCD8_Out_CP

● 5.2.10.7 LCD8_Cmd

● 5.2.11 Graphic LCD Library

● 5.2.11.1 GLCD_Config

● 5.2.11.2 GLCD_Init

● 5.2.11.3 GLCD_Put_Ins

● 5.2.11.4 GLCD_Put_Data

● 5.2.11.5 GLCD_Put_Data2

● 5.2.11.6 GLCD_Select_Side

● 5.2.11.7 GLCD_Data_Read

● 5.2.15.3 SPI_Read

● 5.2.15.4 SPI_Write

● 5.2.16 USART Library

● 5.2.16.1 USART_Init

● 5.2.16.2 USART_Data_Ready

● 5.2.16.3 USART_Read

● 5.2.16.4 USART_Write

● 5.2.17 One-wire Library

● 5.2.17.1 OW_Reset

● 5.2.17.2 OW_Read

● 5.2.17.3 OW_Write

● 5.2.18 Software I2C Library

● 5.2.18.1 Soft_I2C_Config

● 5.2.18.2 Soft_I2C_Start

● 5.2.18.3 Soft_I2C_Write

● 5.2.18.4 Soft_I2C_Read

● 5.2.18.5 Soft_I2C_Stop

● 5.2.19 Software SPI Library

● 5.2.19.1 Soft_SPI_Config

● 5.2.19.2 Soft_SPI_Read

● 5.2.19.3 Soft_SPI_Write

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (2 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

● 5.2.4 CANSPI Library

● 5.2.4.1 CANSPISetOperationMode

● 5.2.4.2 CANSPIGetOperationMode

● 5.2.4.3 CANSPIInitialize

● 5.2.4.4 CANSPISetBaudRate

● 5.2.4.5 CANSPISetMask

● 5.2.4.6 CANSPISetFilter

● 5.2.4.7 CANSPIWrite

● 5.2.4.8 CANSPIRead

● 5.2.4.9 CANSPI Library Constants

● 5.2.5 Compact Flash Library

● 5.2.5.1 CF_Init_Port

● 5.2.5.2 CF_Detect

● 5.2.5.3 CF_Write_Init

● 5.2.5.4 CF_Write_Byte

● 5.2.5.5 CF_Write_Word

● 5.2.5.6 CF_Read_Init

● 5.2.5.7 CF_Read_Byte

● 5.2.5.8 CF_Read_Word

● 5.2.5.9 CF_File_Write_Init

● 5.2.5.10 CF_File_Write_Byte

● 5.2.5.11 CF_File_Write_Complete

● 5.2.11.8 GLCD_Clear_Dot

● 5.2.11.9 GLCD_Set_Dot

● 5.2.11.10 GLCD_Circle

● 5.2.11.11 GLCD_Line

● 5.2.11.12 GLCD_Invert

● 5.2.11.13 GLCD_Goto_XY

● 5.2.11.14 GLCD_Put_Char

● 5.2.11.15 GLCD_Clear_Screen

● 5.2.11.16 GLCD_Put_Text

● 5.2.11.17 GLCD_Rectangle

● 5.2.11.18 GLCD_Set_Font

● 5.2.12 Manchester Code

Library

● 5.2.12.1 Man_Receive_Init

● 5.2.12.2 Man_Receive_Config

● 5.2.12.3 Man_Receive

● 5.2.12.4 Man_Send_Init

● 5.2.12.5 Man_Send_Config

● 5.2.12.6 Man_Send

● 5.2.20 Software UART Library

● 5.2.20.1 Soft_UART_Init

● 5.2.20.2 Soft_UART_Read

● 5.2.20.3 Soft_UART_Write

● 5.2.21 Sound Library

● 5.2.21.1 Sound_Init

● 5.2.21.2 Sound_Play

● 5.2.22 Trigonometry Library

● 5.2.22.1 SinE3

● 5.2.22.2 CosE3

● 5.2.23 Utilities

● 5.2.23.1 Button

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (3 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Introduction

BASIC was designed with focus on simplicity of use. Great number of built-in and library routines are included to help you

develop your applications quickly and easily.

5.1 Built-in Routines

BASIC incorporates a set of built-in functions and procedures. They are provided to make writing programs faster and easier. You

can call built-in functions and procedures in any part of the program.

5.1.1 SetBit – Sets the specified bit

Prototype sub procedure SetBit(dim byref Reg as byte, dim Bit as byte)

Description Sets <Bit> of register <Reg>. Any SFR (Special Function Register) or variable of byte type can pass as valid

variable parameter, but constants should be in range [0..7].

Example SetBit(PORTB,2) ' set bit RB2

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (4 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.1.2 ClearBit – Clears the specified bit

Prototype sub procedure ClearBit(dim byref Reg as byte, dim Bit as byte)

Description Clears <Bit> of register <Reg>. Any SFR (Special Function Register) or variable of byte type can pass as valid

variable parameter, but constants should be in range [0..7].

Example ClearBit(PORTC,7) ' clear bit RC7

5.1.3 TestBit – Tests the specified bit

Prototype sub function TestBit(dim byref Reg as byte, dim Bit as byte) as byte

Description Tests <Bit> of register <Reg>. If set, returns 1, otherwise 0. Any SFR (Special Function Register) or variable of

byte type can pass as valid variable parameter, but constants should be in range [0..7].

Example TestBit(PORTA,2)

 ' returns 1 if PORTA bit RA2 is 1, returns 0 otherwise

5.1.4 Lo – Extract one byte from the specified parameter

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (5 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub function Lo(dim Par as byte..longint) as byte

Description Returns byte 0 of <Par>, assuming that word/integer comprises bytes 1 and 0, and longint comprises bytes 3, 2,

1, and 0.

Example Lo(A) ' returns lower byte of variable A

5.1.5 Hi – Extract one byte from the specified parameter

Prototype sub function Hi(dim arg as word..longint) as byte

Description Returns byte 1 of <Par>, assuming that word/integer comprises bytes 1 and 0, and longint comprises bytes 3, 2,

1, and 0.

Example Hi(Aa) ' returns hi byte of variable Aa

5.1.6 Higher – Extract one byte from the specified parameter

Prototype sub function Higher(dim Par as longint) as byte

Description Returns byte 2 of <Par>, assuming that longint comprises bytes 3, 2, 1, and 0.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (6 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example Higher(Aaaa) ' returns byte next to the highest byte of variable Aaaa

5.1.7 Highest – Extract one byte from the specified parameter

Prototype sub function Highest(dim arg as longint) as byte

Description Returns byte 3 of <Par>, assuming that longint comprises bytes 3, 2, 1, and 0.

Example Highest(Aaaa) ' returns the highest byte of variable Aaaa

5.1.8 Delay_us – Software delay in us

Prototype sub procedure Delay_us(const Count as word)

Description Routine creates a software delay in duration of <Count> microseconds.

Example Delay_us(100) ' creates software delay equal to 1s

5.1.9 Delay_ms – Software delay in ms
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (7 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure Delay_ms(const Count as word)

Description Routine creates a software delay in duration of <Count> milliseconds.

Example Delay_ms(1000) ' creates software delay equal to 1s

5.1.10 Inc – Increases variable by 1

Prototype sub procedure Inc(byref Par as byte..longint)

Description Routine increases <Par> by one.

Example Inc(Aaaa) ' increments variable Aaaa by 1

5.1.11 Dec – Decreases variable by 1

Prototype sub procedure Dec(byref Par as byte..longint)

Description Routine decreases <Par> by one.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (8 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example Dec(Aaaa) ' decrements variable Aaaa by 1

5.1.12 Length – Returns length of string

Prototype sub function Length(dim Text as string) as byte

Description Routine returns length of string <Text> as byte.

Example Length(Text) ' returns string length as byte

5.2 Library Routines

A comprehensive collection of functions and procedures is provided for simplifying the initialization and use of PIC MCU and its

hardware modules. Routines currently includes libraries for ADC, I2C, USART, SPI, PWM, driver for LCD, drivers for internal

and external CAN modules, flexible 485 protocol, numeric formatting routines…

5.2.1 Numeric Formatting Routines

Numeric formatting routines convert byte, short, word, and integer to string. You can get text representation of numerical value by

passing it to one of the routines listed below.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (9 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.1.1 ByteToStr – Converts byte to string

Prototype sub procedure ByteToStr(dim input as byte, dim byref txt as char[6])

Description Parameter <input> represents numerical value of byte type that should be converted to string; parameter <txt>

is passed by the address and contains the result of conversion.

Parameter <txt> has to be of sufficient size to fit the converted string.

Example ByteToStr(Counter, Message)

 ' Copies value of byte Counter into string Message

5.2.1.2 WordToStr – Converts word to string

Prototype sub procedure WordToStr(dim input as word, dim byref txt as char[6])

Description Parameter <input> represents numerical value of word type that should be converted to string; parameter <txt>

is passed by the address and contains the result of conversion.

Parameter <txt> has to be of sufficient size to fit the converted string.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (10 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example WordToStr(Counter, Message)

 ' Copies value of word Counter into string Message

5.2.1.3 ShortToStr – Converts short to string

Prototype sub procedure ShortToStr(dim input as short, dim byref txt as char[6])

Description Parameter <input> represents numerical value of short type that should be converted to string; parameter <txt>

is passed by the address and contains the result of conversion.

Parameter <txt> has to be of sufficient size to fit the converted string.

Example ShortToStr(Counter, Message)

 ' Copies value of short Counter into string Message

5.2.1.4 IntToStr – Converts integer to string

Prototype sub procedure IntToStr(dim input as integer, dim byref txt as char[6])

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (11 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Parameter <input> represents numerical value of integer type that should be converted to string; parameter

<txt> is passed by the address and contains the result of conversion.

Parameter <txt> has to be of sufficient size to fit the converted string.

Example IntToStr(Counter, Message)

 ' Copies value of integer Counter into string Message

5.2.1.5 Bcd2Dec – Converts 8-bit BCD value to decimal

Prototype sub procedure Bcd2Dec(dim bcd_num as byte) as byte

Description Function converts 8-bit BCD numeral to its decimal equivalent and returns the result as byte.

Example dim a as byte

dim b as byte

 ...

 a = 140

 b = Bcd2Dec(a) ' b equals 224 now

5.2.1.6 Bcd2Dec – Converts 8-bit decimal to BCD

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (12 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure Dec2Bcd(dim dec_num as byte) as byte

Description Function converts 8-bit decimal numeral to BCD and returns the result as byte.

Example dim a as byte

dim b as byte

 ...

 a = 224

 b = Dec2Bcd(a) ' b equals 140 now

5.2.1.7 Bcd2Dec – Converts 16-bit BCD value to decimal

Prototype sub procedure Bcd2Dec16(dim bcd_num as word) as word

Description Function converts 16-bit BCD numeral to its decimal equivalent and returns the result as byte.

Example dim a as word

dim b as word

 ...

 a = 1234

 b = Bcd2Dec16(a) ' b equals 4660 now

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (13 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.1.8 Bcd2Dec – Converts 16-bit BCD value to decimal

Prototype sub procedure Dec2Bcd16(dim dec_num as word) as word

Description Function converts 16-bit decimal numeral to BCD and returns the result as word.

Example dim a as word

dim b as word

 ...

 a = 4660

 b = Dec2Bcd16(a) ' b equals 1234 now

5.2.2 ADC Library

ADC (Analog to Digital Converter) module is available with a number of PIC MCU models. Library function ADC_Read is

included to provide you comfortable work with the module. The function is currently unsupported by the following PIC MCU

models: P18F2331, P18F2431, P18F4331, and P18F4431.

5.2.2.1 ADC_Read – Get the results of AD conversion

Prototype sub function ADC_Read(dim Channel as byte) as word

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (14 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Routine initializes ADC module to work with RC clock. Clock determines the time period necessary for

performing AD conversion (min 12TAD). RC sources typically have Tad 4uS. Parameter <Channel>

determines which channel will be sampled. Refer to the device data sheet for information on device channels.

Example res = ADC_Read(2) ' reads channel 2 and stores value in variable res

ADC HW connection

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (15 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.3 CAN Library

The Controller Area Network module (CAN) is serial interface, used for communicating with other peripherals or microcontrollers.

CAN module is available with a number of PIC MCU models. BASIC includes a set of library routines to provide you comfortable

work with the module. More details about CAN can be found in appropriate literature and on mikroElektronika Web site.

5.2.3.1 CANSetOperationMode – Sets CAN to requested mode

Prototype sub procedure CANSetOperationMode(dim Mode as byte, dim Wait as byte)

Description The procedure copies <Mode> to CANSTAT and sets CAN to requested mode.

Operation <Mode> code can take any of predefined constant values.

<Wait> takes values TRUE(255) or FALSE(0)

If Wait is true, this is a blocking call. It won't return until requested mode is set. If Wait is false, this is a non-

blocking call. It does not verify if CAN module is switched to requested mode or not. Caller must use

CANGetOperationMode() to verify correct operation mode before performing mode specific operation.

Example CANSetOperationMode(CAN_MODE_LISTEN, TRUE) ' Sets CAN to Listen mode

5.2.3.2 CANGetOperationMode – Returns the current operation mode of CAN

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (16 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub function CANGetOperationMode as byte

Description The function returns the current operation mode of CAN.

Example CANGetOperationMode

5.2.3.3 CANInitialize – Initializes CAN

Prototype sub procedure CANInitialize(dim SJW as byte, dim BRP as byte, dim PHSEG1

as byte, dim PHSEG2 as byte, dim PROPSEG as byte, dim CAN_CONFIG_FLAGS as

byte)

Description The procedure initializes CAN module. CAN must be in Configuration mode or else these values will be

ignored.

Parameters:

SJW value as defined in 18XXX8 datasheet (must be between 1 thru 4)

BRP value as defined in 18XXX8 datasheet (must be between 1 thru 64)

PHSEG1 value as defined in 18XXX8 datasheet (must be between 1 thru 8)

PHSEG2 value as defined in 18XXX8 datasheet (must be between 1 thru 8)

PROPSEG value as defined in 18XXX8 datasheet (must be between 1 thru 8)

CAN_CONFIG_FLAGS value is formed from constants (see below)

Output:

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (17 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

CAN bit rate is set. All masks registers are set to '0' to allow all messages.

Filter registers are set according to flag value:

If (CAN_CONFIG_FLAGS and CAN_CONFIG_VALID_XTD_MSG) <> 0

 Set all filters to XTD_MSG

Else if (config and CONFIG_VALID_STD_MSG) <> 0

 Set all filters to STD_MSG

Else

 Set half of the filters to STD, and the rest to XTD_MSG

Side Effects:

All pending transmissions are aborted.

Example dim aa as byte

aa = CAN_CONFIG_SAMPLE_THRICE and ' form value to be used

 CAN_CONFIG_PHSEG2_PRG_ON and ' with CANInitialize

 CAN_CONFIG_STD_MSG and

 CAN_CONFIG_DBL_BUFFER_ON and

 CAN_CONFIG_VALID_XTD_MSG and

 CAN_CONFIG_LINE_FILTER_OFF

CANInitialize(1, 1, 3, 3, 1, aa)

5.2.3.4 CANSetBaudRate – Sets CAN Baud Rate
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (18 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure CANSetBaudRate(dim SJW as byte, dim BRP as byte, dim PHSEG1

as byte, dim PHSEG2 as byte, dim PROPSEG as byte, dim CAN_CONFIG_FLAGS as

byte)

Description The procedure sets CAN Baud Rate. CAN must be in Configuration mode or else these values will be ignored.

Parameters:

SJW value as defined in 18XXX8 datasheet (must be between 1 thru 4)

BRP value as defined in 18XXX8 datasheet (must be between 1 thru 64)

PHSEG1 value as defined in 18XXX8 datasheet (must be between 1 thru 8)

PHSEG2 value as defined in 18XXX8 datasheet (must be between 1 thru 8)

PROPSEG value as defined in 18XXX8 datasheet (must be between 1 thru 8)

CAN_CONFIG_FLAGS - Value formed from constants (see section below)

Output:

Given values are bit adjusted to fit in 18XXX8 and BRGCONx registers and copied. CAN bit rate is set as per

given values.

Example CANSetBaudRate(1, 1, 3, 3, 1, aa)

5.2.3.5 CANSetMask – Sets the CAN message mask

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (19 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure CANSetMask(CAN_MASK as byte, val as longint, dim

CAN_CONFIG_FLAGS as byte)

Description The procedure sets the CAN message mask. CAN must be in Configuration mode. If not, all values will be

ignored.

Parameters:

CAN_MASK - One of predefined constant value

val - Actual mask register value

CAN_CONFIG_FLAGS - Type of message to filter, either CAN_CONFIG_XTD_MSG or

CAN_CONFIG_STD_MSG

Output:

Given value is bit adjusted to appropriate buffer mask registers.

Example CANSetMask(CAN_MASK_B2, -1, CAN_CONFIG_XTD_MSG)

5.2.3.6 CANSetFilter – Sets the CAN message filter

Prototype sub procedure CANSetFilter(dim CAN_FILTER as byte, dim val as longint, dim

CAN_CONFIG_FLAGS as byte)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (20 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description The procedure sets the CAN message filter. CAN must be in Configuration mode. If not, all values will be

ignored.

Parameters:

CAN_FILTER - One of predefined constant values

val - Actual filter register value.

CAN_CONFIG_FLAGS - Type of message to filter, either CAN_CONFIG_XTD_MSG or

CAN_CONFIG_STD_MSG

Output:

Given value is bit adjusted to appropriate buffer filter registers

Example CANSetFilter(CAN_FILTER_B1_F1, 3, CAN_CONFIG_XTD_MSG)

5.2.3.7 CANWrite – Queues message for transmission

Prototype sub function CANWrite(dim id as longint, dim byref Data : as byte[8], dim

DataLen as byte, dim CAN_TX_MSG_FLAGS as byte) as byte

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (21 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description If at least one empty transmit buffer is found, given message is queued for the transmission. If none found,

FALSE value is returned. CAN must be in Normal mode.

Parameters:

id - CAN message identifier. Only 11 or 29 bits may be used depending on message type (standard or extended)

Data - array of bytes up to 8 bytes in length

DataLen - Data length from 1 thru 8

CAN_TX_MSG_FLAGS - Value formed from constants (see section below)

Example aa1 = CAN_TX_PRIORITY_0 and ' form value to be used

 CAN_TX_XTD_FRAME and ' with CANWrite

 CAN_TX_NO_RTR_FRAME

CANWrite(-1, data, 1, aa1)

5.2.3.8 CANRead – Extracts and reads the message

Prototype sub function CANRead(dim byref id as longint, dim byref Data as byte[8],

dim byref DataLen as byte, dim byref CAN_RX_MSG_FLAGS as byte) as byte

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (22 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description If at least one full receive buffer is found, the function extracts and returns the message as byte. If none found,

FALSE value is returned. CAN must be in mode in which receiving is possible.

Parameters:

id - CAN message identifier

Data - array of bytes up to 8 bytes in length

DataLen - Data length from 1 thru 8

CAN_TX_MSG_FLAGS - Value formed from constants (see below)

Example res = CANRead(id, Data, 7, 0)

5.2.3.9 CAN Library Constants

You need to be familiar with constants that are provided for use with the CAN module. All of the following constants are

predefined in CAN library.

CAN_OP_MODE

These constant values define CAN module operation mode. CANSetOperationMode() routine requires this code. These values

must be used by itself, i.e. they cannot be ANDed to form multiple values.

const CAN_MODE_BITS = $E0 ' Use these to access opmode bits

const CAN_MODE_NORMAL = 0

const CAN_MODE_SLEEP = $20

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (23 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

const CAN_MODE_LOOP = $40

const CAN_MODE_LISTEN = $60

const CAN_MODE_CONFIG = $80

CAN_TX_MSG_FLAGS

These constant values define flags related to transmission of a CAN message. There could be more than one this flag ANDed

together to form multiple flags.

const CAN_TX_PRIORITY_BITS = $03

const CAN_TX_PRIORITY_0 = $FC ' XXXXXX00

const CAN_TX_PRIORITY_1 = $FD ' XXXXXX01

const CAN_TX_PRIORITY_2 = $FE ' XXXXXX10

const CAN_TX_PRIORITY_3 = $FF ' XXXXXX11

const CAN_TX_FRAME_BIT = $08

const CAN_TX_STD_FRAME = $FF ' XXXXX1XX

const CAN_TX_XTD_FRAME = $F7 ' XXXXX0XX

const CAN_TX_RTR_BIT = $40

const CAN_TX_NO_RTR_FRAME = $FF ' X1XXXXXX

const CAN_TX_RTR_FRAME = $BF ' X0XXXXXX

CAN_RX_MSG_FLAGS

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (24 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

These constant values define flags related to reception of a CAN message. There could be more than one this flag ANDed together

to form multiple flags. If a particular bit is set; corresponding meaning is TRUE or else it will be FALSE.

e.g.

if (MsgFlag and CAN_RX_OVERFLOW) <> 0 then

 ' Receiver overflow has occurred.

 ' We have lost our previous message.

const CAN_RX_FILTER_BITS = $07 ' Use these to access filter bits

const CAN_RX_FILTER_1 = $00

const CAN_RX_FILTER_2 = $01

const CAN_RX_FILTER_3 = $02

const CAN_RX_FILTER_4 = $03

const CAN_RX_FILTER_5 = $04

const CAN_RX_FILTER_6 = $05

const CAN_RX_OVERFLOW = $08 ' Set if Overflowed else cleared

const CAN_RX_INVALID_MSG = $10 ' Set if invalid else cleared

const CAN_RX_XTD_FRAME = $20 ' Set if XTD message else cleared

const CAN_RX_RTR_FRAME = $40 ' Set if RTR message else cleared

const CAN_RX_DBL_BUFFERED = $80 ' Set if this message was hardware double-buffered

CAN_MASK

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (25 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

These constant values define mask codes. Routine CANSetMask()requires this code as one of its arguments. These enumerations

must be used by itself i.e. it cannot be ANDed to form multiple values.

const CAN_MASK_B1 = 0

const CAN_MASK_B2 = 1

CAN_FILTER

These constant values define filter codes. Routine CANSetFilter() requires this code as one of its arguments. These enumerations

must be used by itself, i.e. it cannot be ANDed to form multiple values.

const CAN_FILTER_B1_F1 = 0

const CAN_FILTER_B1_F2 = 1

const CAN_FILTER_B2_F1 = 2

const CAN_FILTER_B2_F2 = 3

const CAN_FILTER_B2_F3 = 4

const CAN_FILTER_B2_F4 = 5

CAN_CONFIG_FLAGS

These constant values define flags related to configuring CAN module. Routines CANInitialize() and CANSetBaudRate() use

these codes. One or more these values may be ANDed to form multiple flags

const CAN_CONFIG_DEFAULT = $FF ' 11111111

const CAN_CONFIG_PHSEG2_PRG_BIT = $01
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (26 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

const CAN_CONFIG_PHSEG2_PRG_ON = $FF ' XXXXXXX1

const CAN_CONFIG_PHSEG2_PRG_OFF = $FE ' XXXXXXX0

const CAN_CONFIG_LINE_FILTER_BIT = $02

const CAN_CONFIG_LINE_FILTER_ON = $FF ' XXXXXX1X

const CAN_CONFIG_LINE_FILTER_OFF = $FD ' XXXXXX0X

const CAN_CONFIG_SAMPLE_BIT = $04

const CAN_CONFIG_SAMPLE_ONCE = $FF ' XXXXX1XX

const CAN_CONFIG_SAMPLE_THRICE = $FB ' XXXXX0XX

const CAN_CONFIG_MSG_TYPE_BIT = $08

const CAN_CONFIG_STD_MSG = $FF ' XXXX1XXX

const CAN_CONFIG_XTD_MSG = $F7 ' XXXX0XXX

const CAN_CONFIG_DBL_BUFFER_BIT = $10

const CAN_CONFIG_DBL_BUFFER_ON = $FF ' XXX1XXXX

const CAN_CONFIG_DBL_BUFFER_OFF = $EF ' XXX0XXXX

const CAN_CONFIG_MSG_BITS = $60

const CAN_CONFIG_ALL_MSG = $FF ' X11XXXXX

const CAN_CONFIG_VALID_XTD_MSG = $DF ' X10XXXXX

const CAN_CONFIG_VALID_STD_MSG = $BF ' X01XXXXX

const CAN_CONFIG_ALL_VALID_MSG = $9F ' X00XXXXX

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (27 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example of interfacing CAN transceiver with MCU and bus

5.2.4 CANSPI Library

The Controller Area Network module (CAN) is serial interface, used for communicating with other peripherals or microcontrollers.

CAN module is available with a number of PIC MCU models. MCP2515 or MCP2510 are modules that enable any chip with SPI

interface to communicate over CAN bus. BASIC includes a set of library routines to provide you comfortable work with the

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (28 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

module. More details about CAN can be found in appropriate literature and on mikroElektronika Web site.

Note: CANSPI routines are supported by any PIC MCU model that has SPI interface on PORTC. Also, CS pin of MCP2510 or

MCP2515 must be connected to RC0 pin.

5.2.4.1 CANSPISetOperationMode – Sets CAN to requested mode

Prototype sub procedure CANSPISetOperationMode(dim mode as byte, dim Wait as byte)

Description The procedure copies <mode> to CANSTAT and sets CAN to requested mode.

Operation <mode> code can take any of predefined constant values.

<Wait> takes values TRUE(255) or FALSE(0)

If Wait is true, this is a blocking call. It won't return until requested mode is set. If Wait is false, this is a non-

blocking call. It does not verify if CAN module is switched to requested mode or not. Caller must use

CANGetOperationMode() to verify correct operation mode before performing mode specific operation.

Example CANSPISetOperationMode(CAN_MODE_LISTEN, TRUE) ' Sets CAN to Listen mode

5.2.4.2 CANSPIGetOperationMode – Returns the current operation mode of CAN

Prototype sub function CANSPIGetOperationMode as byte

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (29 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description The function returns the current operation mode of CAN.

Example CANGetOperationMode

5.2.4.3 CANSPIInitialize – Initializes CANSPI

Prototype sub procedure CANSPIInitialize(dim SJW as byte, dim BRP as byte, dim

PHSEG1 as byte, dim PHSEG2 as byte, dim PROPSEG as byte, dim

CAN_CONFIG_FLAGS as byte)

Description The procedure initializes CAN module. CAN must be in Configuration mode or else these values will be

ignored.

Parameters:

SJW value as defined in 18XXX8 datasheet (must be between 1 thru 4)

BRP value as defined in 18XXX8 datasheet (must be between 1 thru 64)

PHSEG1 value as defined in 18XXX8 datasheet (must be between 1 thru 8)

PHSEG2 value as defined in 18XXX8 datasheet (must be between 1 thru 8)

PROPSEG value as defined in 18XXX8 datasheet (must be between 1 thru 8)

CAN_CONFIG_FLAGS value is formed from constants (see below)

Output:

CAN bit rate is set. All masks registers are set to '0' to allow all messages.

Filter registers are set according to flag value:

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (30 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

If (CAN_CONFIG_FLAGS and CAN_CONFIG_VALID_XTD_MSG) <> 0

 Set all filters to XTD_MSG

Else if (config and CONFIG_VALID_STD_MSG) <> 0

 Set all filters to STD_MSG

Else

 Set half of the filters to STD, and the rest to XTD_MSG

Side Effects:

All pending transmissions are aborted.

Example dim aa as byte

aa = CAN_CONFIG_SAMPLE_THRICE and ' form value to be used

 CAN_CONFIG_PHSEG2_PRG_ON and ' with CANSPIInitialize

 CAN_CONFIG_STD_MSG and

 CAN_CONFIG_DBL_BUFFER_ON and

 CAN_CONFIG_VALID_XTD_MSG and

 CAN_CONFIG_LINE_FILTER_OFF

CANInitialize(1, 1, 3, 3, 1, aa)

5.2.4.4 CANSPISetBaudRate – Sets CAN Baud Rate

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (31 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure CANSPISetBaudRate(dim SJW as byte, dim BRP as byte, dim

PHSEG1 as byte, dim PHSEG2 as byte, dim PROPSEG as byte, dim

CAN_CONFIG_FLAGS as byte)

Description The procedure sets CAN Baud Rate. CAN must be in Configuration mode or else these values will be ignored.

Parameters:

SJW value as defined in 18XXX8 datasheet (must be between 1 thru 4)

BRP value as defined in 18XXX8 datasheet (must be between 1 thru 64)

PHSEG1 value as defined in 18XXX8 datasheet (must be between 1 thru 8)

PHSEG2 value as defined in 18XXX8 datasheet (must be between 1 thru 8)

PROPSEG value as defined in 18XXX8 datasheet (must be between 1 thru 8)

CAN_CONFIG_FLAGS - Value formed from constants (see section below)

Output:

Given values are bit adjusted to fit in 18XXX8 and BRGCONx registers and copied. CAN bit rate is set as per

given values.

Example CANSPISetBaudRate(1, 1, 3, 3, 1, aa)

5.2.4.5 CANSPISetMask – Sets the CAN message mask

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (32 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure CANSPISetMask(CAN_MASK as byte, val as longint, dim

CAN_CONFIG_FLAGS as byte)

Description The procedure sets the CAN message mask. CAN must be in Configuration mode. If not, all values will be

ignored.

Parameters:

CAN_MASK - One of predefined constant value

val - Actual mask register value

CAN_CONFIG_FLAGS - Type of message to filter, either CAN_CONFIG_XTD_MSG or

CAN_CONFIG_STD_MSG

Output:

Given value is bit adjusted to appropriate buffer mask registers.

Example CANSPISetMask(CAN_MASK_B2, -1, CAN_CONFIG_XTD_MSG)

5.2.4.6 CANSPISetFilter – Sets the CAN message filter

Prototype sub procedure CANSPISetFilter(dim CAN_FILTER as byte, dim val as longint,

dim CAN_CONFIG_FLAGS as byte)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (33 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description The procedure sets the CAN message filter. CAN must be in Configuration mode. If not, all values will be

ignored.

Parameters:

CAN_FILTER - One of predefined constant values

val - Actual filter register value.

CAN_CONFIG_FLAGS - Type of message to filter, either CAN_CONFIG_XTD_MSG or

CAN_CONFIG_STD_MSG

Output:

Given value is bit adjusted to appropriate buffer filter registers

Example CANSPISetFilter(CAN_FILTER_B1_F1, 3, CAN_CONFIG_XTD_MSG)

5.2.4.7 CANSPIWrite – Queues message for transmission

Prototype sub function CANSPIWrite(dim id as longint, dim byref Data : as byte[8],

dim DataLen as byte, dim CAN_TX_MSG_FLAGS as byte) as byte

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (34 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description If at least one empty transmit buffer is found, given message is queued for the transmission. If none found,

FALSE value is returned. CAN must be in Normal mode.

Parameters:

id - CAN message identifier. Only 11 or 29 bits may be used depending on message type (standard or extended)

Data - array of as bytes up to 8 as bytes in length

DataLen - Data length from 1 thru 8

CAN_TX_MSG_FLAGS - Value formed from constants (see section below)

Example aa1 = CAN_TX_PRIORITY_0 and ' form value to be used

 CAN_TX_XTD_FRAME and ' with CANSPIWrite

 CAN_TX_NO_RTR_FRAME

CANSPIWrite(-1, data, 1, aa1)

5.2.4.8 CANSPIRead – Extracts and reads the message

Prototype sub function CANSPIRead(dim byref id as longint, dim byref Data as byte

[8], dim byref DataLen as byte, dim byref CAN_RX_MSG_FLAGS as byte) as byte

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (35 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description If at least one full receive buffer is found, the function extracts and returns the message as byte. If none found,

FALSE value is returned. CAN must be in mode in which receiving is possible.

Parameters:

id - CAN message identifier

Data - array of bytes up to 8 bytes in length

DataLen - Data length from 1 thru 8

CAN_TX_MSG_FLAGS - Value formed from constants (see below)

Example res = CANSPIRead(id, Data, 7, 0)

5.2.4.9 CANSPI Library Constants

You need to be familiar with constants that are provided for use with the CAN module. All of the following constants are

predefined in CANSPI library.

CAN_OP_MODE

These constant values define CAN module operation mode. CANSetOperationMode() routine requires this code. These values

must be used by itself, i.e. they cannot be ANDed to form multiple values.

const CAN_MODE_BITS = $E0 ' Use these to access opmode bits

const CAN_MODE_NORMAL = 0

const CAN_MODE_SLEEP = $20

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (36 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

const CAN_MODE_LOOP = $40

const CAN_MODE_LISTEN = $60

const CAN_MODE_CONFIG = $80

CAN_TX_MSG_FLAGS

These constant values define flags related to transmission of a CAN message. There could be more than one this flag ANDed

together to form multiple flags.

const CAN_TX_PRIORITY_BITS = $03

const CAN_TX_PRIORITY_0 = $FC ' XXXXXX00

const CAN_TX_PRIORITY_1 = $FD ' XXXXXX01

const CAN_TX_PRIORITY_2 = $FE ' XXXXXX10

const CAN_TX_PRIORITY_3 = $FF ' XXXXXX11

const CAN_TX_FRAME_BIT = $08

const CAN_TX_STD_FRAME = $FF ' XXXXX1XX

const CAN_TX_XTD_FRAME = $F7 ' XXXXX0XX

const CAN_TX_RTR_BIT = $40

const CAN_TX_NO_RTR_FRAME = $FF ' X1XXXXXX

const CAN_TX_RTR_FRAME = $BF ' X0XXXXXX

CAN_RX_MSG_FLAGS

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (37 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

These constant values define flags related to reception of a CAN message. There could be more than one this flag ANDed together

to form multiple flags. If a particular bit is set; corresponding meaning is TRUE or else it will be FALSE.

e.g.

if (MsgFlag and CAN_RX_OVERFLOW) <> 0 then

 ' Receiver overflow has occurred.

 ' We have lost our previous message.

const CAN_RX_FILTER_BITS = $07 ' Use these to access filter bits

const CAN_RX_FILTER_1 = $00

const CAN_RX_FILTER_2 = $01

const CAN_RX_FILTER_3 = $02

const CAN_RX_FILTER_4 = $03

const CAN_RX_FILTER_5 = $04

const CAN_RX_FILTER_6 = $05

const CAN_RX_OVERFLOW = $08 ' Set if Overflowed else cleared

const CAN_RX_INVALID_MSG = $10 ' Set if invalid else cleared

const CAN_RX_XTD_FRAME = $20 ' Set if XTD message else cleared

const CAN_RX_RTR_FRAME = $40 ' Set if RTR message else cleared

const CAN_RX_DBL_BUFFERED = $80 ' Set if this message was hardware double-buffered

CAN_MASK

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (38 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

These constant values define mask codes. Routine CANSetMask()requires this code as one of its arguments. These enumerations

must be used by itself i.e. it cannot be ANDed to form multiple values.

const CAN_MASK_B1 = 0

const CAN_MASK_B2 = 1

CAN_FILTER

These constant values define filter codes. Routine CANSetFilter() requires this code as one of its arguments. These enumerations

must be used by itself, i.e. it cannot be ANDed to form multiple values.

const CAN_FILTER_B1_F1 = 0

const CAN_FILTER_B1_F2 = 1

const CAN_FILTER_B2_F1 = 2

const CAN_FILTER_B2_F2 = 3

const CAN_FILTER_B2_F3 = 4

const CAN_FILTER_B2_F4 = 5

CAN_CONFIG_FLAGS

These constant values define flags related to configuring CAN module. Routines CANInitialize() and CANSetBaudRate() use

these codes. One or more these values may be ANDed to form multiple flags

const CAN_CONFIG_DEFAULT = $FF ' 11111111

const CAN_CONFIG_PHSEG2_PRG_BIT = $01
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (39 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

const CAN_CONFIG_PHSEG2_PRG_ON = $FF ' XXXXXXX1

const CAN_CONFIG_PHSEG2_PRG_OFF = $FE ' XXXXXXX0

const CAN_CONFIG_LINE_FILTER_BIT = $02

const CAN_CONFIG_LINE_FILTER_ON = $FF ' XXXXXX1X

const CAN_CONFIG_LINE_FILTER_OFF = $FD ' XXXXXX0X

const CAN_CONFIG_SAMPLE_BIT = $04

const CAN_CONFIG_SAMPLE_ONCE = $FF ' XXXXX1XX

const CAN_CONFIG_SAMPLE_THRICE = $FB ' XXXXX0XX

const CAN_CONFIG_MSG_TYPE_BIT = $08

const CAN_CONFIG_STD_MSG = $FF ' XXXX1XXX

const CAN_CONFIG_XTD_MSG = $F7 ' XXXX0XXX

const CAN_CONFIG_DBL_BUFFER_BIT = $10

const CAN_CONFIG_DBL_BUFFER_ON = $FF ' XXX1XXXX

const CAN_CONFIG_DBL_BUFFER_OFF = $EF ' XXX0XXXX

const CAN_CONFIG_MSG_BITS = $60

const CAN_CONFIG_ALL_MSG = $FF ' X11XXXXX

const CAN_CONFIG_VALID_XTD_MSG = $DF ' X10XXXXX

const CAN_CONFIG_VALID_STD_MSG = $BF ' X01XXXXX

const CAN_CONFIG_ALL_VALID_MSG = $9F ' X00XXXXX

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (40 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example of interfacing CAN transceiver MCP2551, and MCP2510 with MCU and bus

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (41 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.5 Compact Flash Library

Compact Flash Library provides routines for accessing data on Compact Flash card (abbrev. CF further in text). CF cards are

widely used memory elements, commonly found in digital cameras. Great capacity (8MB ~ 2GB, and more) and excellent access

time of typically few microseconds make them very attractive for microcontroller applications.

In CF card, data is divided into sectors, one sector usually comprising 512 bytes (few older models have sectors of 256B). Read

and write operations are not performed directly, but successively through 512B buffer. Following routines can be used for CF with

FAT16 and FAT32 file system.

Note: routines for file handling (CF_File_Write_Init, CF_File_Write_Byte, CF_File_Write_Complete) can

be used only with FAT16 file system, and only with PIC18 family!

Before write operation, make sure you don’t overwrite boot or FAT sector as it could make your card on PC or digital cam

unreadable. Drive mapping tools, such as Winhex, can be of a great assistance.

5.2.5.1 CF_Init_Port – Initializes ports appropriately

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (42 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure CF_INIT_PORT(dim byref CtrlPort as byte, dim byref DataPort

as byte)

Description The procedure initializes ports appropriately:

<CtrlPort> is control port, and <DataPort> is data port to which CF is attached.

Example CF_Init_Port(PORTB, PORTD) ' Control port is PORTB, Data port is PORTD

5.2.5.2 CF_Detect – Checks for presence of CF

Prototype sub function CF_DETECT(dim byref CtrlPort as byte) as byte

Description The function checks if Compact Flash card is present. Returns true if present, otherwise returns false.

<CtrlPort> must be initialized (call CF_INIT_PORT first).

Example do
 nop

loop until CF_Detect(PORTB) = true ' wait until CF card is inserted

5.2.5.3 CF_Write_Init – Initializes CF card for writing

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (43 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure CF_WRITE_INIT(dim byref CtrlPort as byte, dim byref DataPort as

byte, dim Adr as longint, dim SectCnt as byte)

Description The procedure initializes CF card for writing. Ports need to be initialized.

Parameters:

CtrlPort - control port,

DataPort - data port,

k - specifies sector address from where data will be written,

SectCnt - parameter is total number of sectors prepared for write.

Example CF_Write_Init(PORTB, PORTD, 590, 1) ' Initialize write at sector address 590

 ' of 1 sector (512 bytes)

5.2.5.4 CF_Write_Byte – Writes 1 byte to CF

Prototype sub procedure CF_WRITE_BYTE(dim byref CtrlPort as byte, dim byref DataPort as

byte, dim BData as byte)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (44 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description The procedure writes 1 byte to Compact Flash. The procedure has effect only if CF card is initialized for writing.

Parameters:

CtrlPort - control port,

DataPort - data port,

dat - data byte written to CF

Example CF_Write_Init(PORTB, PORTD, 590, 1) ' Initialize write at sector address 590

 ' of 1 sector (512 bytes)

for i = 0 to 511 ' Write 512 bytes to sector at address

590
 CF_Write_Byte(PORTB, PORTD, i)

next i

5.2.5.5 CF_Write_Word – Writes 1 word to CF

Prototype sub procedure CF_WRITE_WORD(dim byref CtrlPort as byte, dim byref DataPort

as byte, dim WData as word)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (45 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description The procedure writes 1 word to Compact Flash. The procedure has effect only if CF card is initialized for

writing.

Parameters:

CtrlPort - control port,

DataPort - data port,

Wdata - data word written to CF

Example CF_Write_Word(PORTB, PORTD, Data)

5.2.5.6 CF_Read_Init – Initializes CF card for reading

Prototype sub procedure CF_READ_INIT(dim byref CtrlPort as byte, dim byref DataPort as

byte, dim Adr as longint, dim SectCnt as byte)

Description Parameters:

CtrlPort - control port,

DataPort - data port,

Adr - specifies sector address from where data will be read,

SectCnt - total number of sectors prepared for read operations.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (46 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example CF_Read_Init(PORTB, PORTD, 590, 1) ' Initialize write at sector address

590

 ' of 1 sector (512 bytes)

5.2.5.7 CF_Read_Byte – Reads 1 byte from CF

Prototype sub function CF_READ_BYTE(dim byref CtrlPort as byte, dim byref DataPort

as byte) as byte

Description Function reads 1 byte from Compact Flash. Ports need to be initialized, and CF must be initialized for reading.

Parameters:

CtrlPort - control port,

DataPort - data port

Example PORTC = CF_Read_Byte(PORTB, PORTD) ' read byte and display on PORTC

5.2.5.8 CF_Read_Word – Reads 1 word from CF

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (47 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub function CF_READ_WORD(dim byref CtrlPort as byte, dim byref DataPort

as byte) as word

Description Function reads 1 word from Compact Flash. Ports need to be initialized, and CF must be initialized for reading.

Parameters:

CtrlPort - control port,

DataPort - data port

Example PORTC = CF_Read_Word(PORTB, PORTD) ' read word and display on PORTC

5.2.5.9 CF_File_Write_Init – Initializes CF card for file writing operation (FAT16 only, PIC18
only)

Prototype sub procedure CF_File_Write_Init(dim byref CtrlPort as byte, dim byref

DataPort as byte)

Description This procedure initializes CF card for file writing operation (FAT16 only, PIC18 only).

Parameters:

CtrlPort - control port,

DataPort - data port

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (48 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example CF_File_Write_Init(PORTB, PORTD)

5.2.5.10 CF_File_Write_Byte – Adds one byte to file (FAT16 only, PIC18 only)

Prototype sub procedure CF_File_Write_Byte(dim byref CtrlPort as byte, dim byref

DataPort as byte,dim Bdata as byte)

Description This procedure adds one byte (Bdata) to file (FAT16 only, PIC18 only).

Parameters:

CtrlPort - control port,

DataPort - data port,

Bdata - data byte to be written.

Example while i < 50000

 CF_File_Write_Byte(PORTB, PORTD, 48 + index)

 ' demonstration: writes 50000 bytes to file

 inc(i)

wend

5.2.5.11 CF_File_Write_Complete – Closes file and makes it readable (FAT16 only, PIC18
only)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (49 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure CF_File_Write_Complete(dim byref CtrlPort as byte, dim byref

DataPort as byte,dim byref Filename as char[9])

Description Upon all data has be written to file, use this procedure to close the file and make it readable by Windows

(FAT16 only, PIC18 only).

Parameters:

CtrlPort - control port,

DataPort - data port,

Filename (must be in uppercase and must have exactly 8 characters).

Example CF_File_Write_Complete(PORTB, PORTD, "example1", "txt")

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (50 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Pin diagram of CF memory card

5.2.6 EEPROM Library

EEPROM data memory is available with a number of PIC MCU models. Set of library procedures and functions is listed below to

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (51 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

provide you comfortable work with EEPROM.

Notes:

Be aware that all interrupts will be disabled during execution of EEPROM_Write routine (GIE bit of INTCON register will be

cleared). Routine will set this bit on exit.

Ensure minimum 20ms delay between successive use of routines EEPROM_Write and EEPROM_Read. Although EEPROM will

write the correct value, EEPROM_Read might return undefined result.

5.2.6.1 EEPROM_Read – Reads 1 byte from EEPROM

Prototype sub function EEprom_Read(dim Address as byte) as byte

Description Function reads byte from <Address>. <Address> is of byte type, which means it can address only 256

locations. For PIC18 MCU models with more EEPROM data locations, it is programmer's responsibility to set

SFR EEADRH register appropriately.

Ensure minimum 20ms delay between successive use of routines EEPROM_Write and EEPROM_Read.

Although EEPROM will write the correct value, EEPROM_Read might return undefined result.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (52 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example TRISB = 0

Delay_ms(30)

for i = 0 to 20

 PORTB = EEPROM_Read(i)

 for j = 0 to 200

 Delay_us(500)

 next j

next i

5.2.6.2 EEPROM_Write – Writes 1 byte to EEPROM

Prototype sub procedure EEprom_Write(dim Address as byte, dim Data as byte)

Description Function writes byte to <Address>. <Address> is of byte type, which means it can address only 256 locations.

For PIC18 MCU models with more EEPROM data locations, it is programmer's responsibility to set SFR

EEADRH register appropriately.

All interrupts will be disabled during execution of EEPROM_Write routine (GIE bit of INTCON register will be

cleared). Routine will set this bit on exit

Ensure minimum 20ms delay between successive use of routines EEPROM_Write and EEPROM_Read.

Although EEPROM will write the correct value, EEPROM_Read might return undefined result.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (53 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example for i = 0 to 20

 EEPROM_Write(i, i + 6)

 next i

5.2.7 Flash Memory Library

This library provides routines for accessing microcontroller Flash memory.

Note: Routines differ for PIC16 and PIC18 families.

5.2.7.1 Flash_Read – Reads data from microcontroller Flash memory

Prototype sub function Flash_Read(dim Address as longint) as byte ' for PIC18

sub function Flash_Read(dim Address as word) as word ' for PIC16

Description Procedure reads data from the specified <Address>.

Example for i = 0 to 63

 toRead = Flash_Read($0D00 + i)

 ' read 64 consecutive locations starting from 0x0D00

next i

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (54 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.7.2 Flash_Write – Writes data to microcontroller Flash memory

Prototype sub procedure Flash_Write(dim Address as longint, dim byref Data as byte

[64]) ' for PIC18

sub procedure Flash_Write(dim Address as word, dim Data as word) ' for

PIC16

Description Procedure writes chunk of data to Flash memory (for PIC18, data needs to exactly 64 bytes in size). Keep in

mind that this function erases target memory before writing <Data> to it. This means that if write was

unsuccessful, your previous data will be lost.

Example for i = 0 to 63 ' initialize array

 toWrite[i] = i

next i

Flash_Write($0D00, toWrite) ' write contents of the array to the address

0x0D00

5.2.8 I2C Library

I2C interface is serial interface used for communicating with peripheral or other microcontroller devices. Routines below are

intended for PIC MCUs with MSSP module. By using these, you can configure and use PIC MCU as master in I2C communication.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (55 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.8.1 I2C_Init – Initializes I2C module

Prototype sub procedure I2C_Init(const Clock as longint)

Description Initializes I2C module. Parameter <Clock> is a desired I2C clock (refer to device data sheet for correct values in

respect with Fosc).

Example I2C_Init(100000)

5.2.8.2 I2C_Start – Issues start condition

Prototype sub function I2C_Start as byte

Description Determines if I2C bus is free and issues START condition; if there is no error, function returns 0.

Example I2C_Start

5.2.8.3 I2C_Repeated_Start – Performs repeated start

Prototype sub procedure I2C_Repeated_Start

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (56 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Performs repeated start condition.

Example I2C_Repeated_Start

5.2.8.4 I2C_Rd – Receives byte from slave

Prototype sub function I2C_Rd(dim Ack as byte) as byte

Description Receives 1 byte from slave and sends not acknowledge signal if <Ack> is 0; otherwise, it sends acknowledge.

Example Data = I2C_Rd(1) ' read data w/ acknowledge

5.2.8.5 I2C_Wr – Sends data byte via I2C bus

Prototype sub function I2C_Wr(dim Data as byte) as byte

Description After you have issued a start or repeated start you can send <Data> byte via I2C bus. The function returns 0 if

there are no errors.

Example I2C_Wr($A2) ' send byte via I2C(command to 24cO2)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (57 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.8.6 I2C_Stop – Issues STOP condition

Prototype sub procedure I2C_Stop as byte

Description Issues STOP condition.

Example I2C_Stop

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (58 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example of I2C communication with 24c02 EEPROM

5.2.9 LCD Library

BASIC provides a set of library procedures and functions for communicating with commonly used 4-bit interface LCD (with

Hitachi HD44780 controller). Be sure to designate port with LCD as output, before using any of the following library procedures

or functions.

5.2.9.1 LCD_Init – Initializes LCD with default pin settings

Prototype sub procedure LCD_Init(dim byref Port as byte)

Description Initializes LCD at <Port> with default pin settings (see the figure below).

Example LCD_Init(PORTB)

 ' Initializes LCD on PORTB (check pin settings in the figure below)

5.2.9.2 LCD_Config – Initializes LCD with custom pin settings

Prototype sub procedure LCD_Config(dim byref Port as byte, const RS, const EN, const

WR, const D7, const D6, const D5, const D4)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (59 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Initializes LCD at <Port> with pin settings you specify: parameters <RS>, <EN>, <WR>, <D7> .. <D4> need

to be a combination of values 0..7 (e.g. 3,6,0,7,2,1,4).

Example LCD_Config(PORTD, 1, 2, 0, 3, 5, 4, 6)

 ' Initializes LCD on PORTD with our custom pin settings

5.2.9.3 LCD_Chr – Prints char on LCD at specified row and col

Prototype sub procedure LCD_Chr(dim Row as byte, dim Column as byte, dim Character

as byte)

Description Prints <Character> at specified <Row> and <Column> on LCD.

Example LCD_Chr(1, 2, "e")

 ' Prints character "e" on LCD (1st row, 2nd column)

5.2.9.4 LCD_Chr_CP – Prints char on LCD at current cursor position

Prototype sub procedure LCD_Chr_CP(dim Character as byte)

Description Prints <Character> at current cursor position.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (60 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example LCD_Chr_CP("k")

 ' Prints character "k" at current cursor position

5.2.9.5 LCD_Out – Prints string on LCD at specified row and col

Prototype sub procedure LCD_Out(dim Row as byte, dim Column as byte, dim byref Text

as char[255])

Description Prints <Text> (string variable) at specified <Row> and <Column> on LCD. Both string variables and string

constants can be passed.

Example LCD_Out(1, 3, Text)

 ' Prints string variable Text on LCD (1st row, 3rd column)

5.2.9.6 LCD_Out_CP – Prints string on LCD at current cursor position

Prototype sub procedure LCD_Out_CP(dim byref Text as char[255])

Description Prints <Text> (string variable) at current cursor position. Both string variables and string constants can be

passed.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (61 sur 112)05/11/2004 02:20:52

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example LCD_Out_CP("Some text")

 ' Prints "Some text" at current cursor position

5.2.9.7 LCD_Cmd – Sends command to LCD

Prototype sub procedure LCD_Cmd(dim Command as byte)

Description Sends <Command> to LCD.

List of available commands follows:

LCD_First_Row

 ' Moves cursor to 1st row

LCD_Second_Row

 ' Moves cursor to 2nd row

LCD_Third_Row

 ' Moves cursor to 3rd row

LCD_Fourth_Row

 ' Moves cursor to 4th row

LCD_Clear
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (62 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

 ' Clears display

LCD_Return_Home

 ' Returns cursor to home position,

 ' returns a shifted display to original position.

 ' Display data RAM is unaffected.

LCD_Cursor_Off

 ' Turn off cursor

LCD_Underline_On

 ' Underline cursor on

LCD_Blink_Cursor_On

 ' Blink cursor on

LCD_Move_Cursor_Left

 ' Move cursor left without changing display data RAM

LCD_Move_Cursor_Right

 ' Move cursor right without changing display data RAM

LCD_Turn_On

 ' Turn LCD display on

LCD_Turn_Off

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (63 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

 ' Turn LCD display off

LCD_Shift_Left

 ' Shift display left without changing display data RAM

LCD_Shift_Right

 ' Shift display right without changing display data RAM

Example LCD_Cmd(LCD_Clear) ' Clears LCD display

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (64 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

LCD HW connection

LCD HW connection

5.2.10 LCD8 Library (8-bit interface LCD)

BASIC provides a set of library procedures and functions for communicating with commonly used 8-bit interface LCD (with

Hitachi HD44780 controller). Be sure to designate Control and Data ports with LCD as output, before using any of the following

library procedures or functions.

5.2.10.1 LCD8_Init – Initializes LCD with default pin settings
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (65 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure LCD8_Init(dim byref Port_Ctrl as byte, dim byref Port_Data

as byte)

Description Initializes LCD at <Port_Ctrl> and <Port_Data> with default pin settings (see the figure below).

Example LCD8_Init(PORTB, PORTC)

 ' Initializes LCD on PORTB and PORTC with default pin settings

 ' (check pin settings in the figure below)

5.2.10.2 LCD8_Config – Initializes LCD with custom pin settings

Prototype sub procedure LCD8_Config(dim byref Port_Ctrl as byte, dim byref Port_Data

as byte, const RS, const EN, const WR, const D7, const D6, const D5, const

D4, const D3, const D2, const D1, const D0)

Description Initializes LCD at <Port_Ctrl> and <Port_Data> with pin settings you specify: parameters <RS>, <EN>,

<WR> need to be in range 0..7; parameters <D7>..<D0> need to be a combination of values 0..7 (e.g.

3,6,5,0,7,2,1,4).

Example LCD8_Config(PORTC, PORTD, 0, 1, 2, 6, 5, 4, 3, 7, 1, 2, 0)

 ' Initializes LCD on PORTC and PORTD with our custom pin settings

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (66 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.10.3 LCD8_Chr – Prints char on LCD at specified row and col

Prototype sub procedure LCD8_Chr(dim Row as byte, dim Column as byte, dim Character

as byte)

Description Prints <Character> at specified <Row> and <Column> on LCD.

Example LCD8_Chr(1, 2, "e")

 ' Prints character "e" on LCD (1st row, 2nd column)

5.2.10.4 LCD8_Chr_CP – Prints char on LCD at current cursor position

Prototype sub procedure LCD8_Chr_CP(dim Character as byte)

Description Prints <Character> at current cursor position.

Example LCD8_Chr_CP("k")

 ' Prints character "k" at current cursor position

5.2.10.5 LCD8_Out – Prints string on LCD at specified row and col

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (67 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure LCD8_Out(dim Row as byte, dim Column as byte, dim byref Text

as char[255])

Description Prints <Text> (string variable) at specified <Row> and <Column> on LCD. Both string variables and string

constants can be passed.

Example LCD8_Out(1, 3, Text)

 ' Prints string variable Text on LCD (1st row, 3rd column)

5.2.10.6 LCD8_Out_CP – Prints string on LCD at current cursor position

Prototype sub procedure LCD8_Out_CP(dim byref Text as char[255])

Description Prints <Text> (string variable) at current cursor position. Both string variables and string constants can be

passed.

Example LCD8_Out_CP("Test")

 ' Prints "Test" at current cursor position

5.2.10.7 LCD8_Cmd – Sends command to LCD

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (68 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure LCD8_Cmd(dim Command as byte)

Description Sends <Command > to LCD.

List of available commands follows:

LCD_First_Row

 ' Moves cursor to 1st row

LCD_Second_Row

 ' Moves cursor to 2nd row

LCD_Third_Row

 ' Moves cursor to 3rd row

LCD_Fourth_Row

 ' Moves cursor to 4th row

LCD_Clear

 ' Clears display

LCD_Return_Home

 ' Returns cursor to home position,

 ' returns a shifted display to original position.

 ' Display data RAM is unaffected.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (69 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

LCD_Cursor_Off

 ' Turn off cursor

LCD_Underline_On

 ' Underline cursor on

LCD_Blink_Cursor_On

 ' Blink cursor on

LCD_Move_Cursor_Left

 ' Move cursor left without changing display data RAM

LCD_Move_Cursor_Right

 ' Move cursor right without changing display data RAM

LCD_Turn_On

 ' Turn LCD display on

LCD_Turn_Off

 ' Turn LCD display off

LCD_Shift_Left

 ' Shift display left without changing display data RAM

LCD_Shift_Right

 ' Shift display right without changing display data RAM

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (70 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example LCD8_Cmd(LCD_Clear) ' Clears LCD display

LCD HW connection

LCD HW connection

5.2.11 Graphic LCD Library

mikroPascal provides a set of library procedures and functions for drawing and writing on Graphical LCD. Also it is possible to
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (71 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

convert bitmap (use menu option Tools > BMP2LCD) to constant array and display it on GLCD. These routines works with

commonly used GLCD 128x64, and work only with the PIC18 family.

5.2.11.1 GLCD_Config – Initializes GLCD with custom pin settings

Prototype sub procedure GLCD_Config(dim byref Ctrl_Port as byte, dim byref Data_Port

as byte, dim Reset as byte, dim Enable as byte,dim RS as byte, dim RW as

byte, dim CS1 as byte, dim CS2 as byte)

Description Initializes GLCD at <Ctrl_Port> and <Data_Port> with custom pin settings.

Example GLCD_LCD_Config(PORTB, PORTC, 1,7,4,6,0,2)

5.2.11.2 GLCD_Init – Initializes GLCD with default pin settings

Prototype sub procedure GLCD_Init(dim Ctrl_Port as byte, dim Data_Port as byte)

Description Initializes LCD at <Ctrl_Port> and <Data_Port>. With default pin settings Reset=7, Enable=1, RS=3, RW=5,

CS1=2, CS2=0.

Example GLCD_LCD_Init(PORTB, PORTC)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (72 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.11.3 GLCD_Put_Ins – Sends instruction to GLCD.

Prototype sub procedure GLCD_Put_Ins(dim Ins as byte)

Description Sends instruction <Ins> to GLCD. Available instructions include:

X_ADRESS = $B8 ' Adress base for Page 0

Y_ADRESS = $40 ' Adress base for Y0

START_LINE = $C0 ' Adress base for line 0

DISPLAY_ON = $3F ' Turn display on

DISPLAY_OFF = $3E ' Turn display off

Example GLCD_Put_Ins(DISPLAY_ON)

5.2.11.4 GLCD_Put_Data – Sends data byte to GLCD.

Prototype sub procedure GLCD_Put_Data(dim data as byte)

Description Sends data byte to GLCD.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (73 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example GLCD_Put_Data(temperature)

5.2.11.5 GLCD_Put_Data2 – Sends data byte to GLCD.

Prototype sub procedure GLCD_Put_Data2(dim data as byte, dim side as byte)

Description Sends data to GLCD at specified <side> (<side> can take constant value LEFT or RIGHT) .

Example GLCD_Put_Data2(temperature, 1)

5.2.11.6 GLCD_Select_Side- Selects the side of the GLCD.

Prototype sub procedure GLCD_Select_Side(dim LCDSide as byte)

Description Selects the side of the GLCD:

' const RIGHT = 0

' const LEFT = 1

Example GLCD_Select_Side(1)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (74 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.11.7 GLCD_Data_Read – Reads data from GLCD.

Prototype sub function GLCD_Data_Read as byte

Description Reads data from GLCD.

Example GLCD_Data_Read

5.2.11.8 GLCD_Clear_Dot – Clears a dot on the GLCD.

Prototype sub procedure GLCD_Clear_Dot(dim x as byte, dim y as byte)

Description Clears a dot on the GLCD at specified coordinates.

Example GLCD_Clear_Dot(20, 32)

5.2.11.9 GLCD_Set_Dot – Draws a dot on the GLCD.

Prototype sub procedure GLCD_Set_Dot(dim x as byte, dim y as byte)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (75 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Draws a dot on the GLCD at specified coordinates.

Example GLCD_Set_Dot(20, 32)

5.2.11.10 GLCD_Circle – Draws a circle on the GLCD.

Prototype sub procedure GLCD_Circle(dim CenterX as integer, dim CenterY as integer,

dim Radius as integer)

Description Draws a circle on the GLCD, centered at <CenterX, CenterY> with <Radius>.

Example GLCD_Circle(30, 42, 6)

5.2.11.11 GLCD_Line – Draws a line

Prototype sub procedure GLCD_Line(dim x1 as integer, dim y1 as integer, dim x2 as

integer, dim y2 as integer)

Description Draws a line from (x1,y1) to (x2,y2).

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (76 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example GLCD_Line(0, 0, 120, 50)

GLCD_Line(0,63, 50, 0)

5.2.11.12 GLCD_Invert – Inverts display

Prototype sub procedure GLCD_Invert(dim Xaxis as byte, dim Yaxis as byte)

Description Procedure inverts display (changes dot state on/off) in the specified area, X pixels wide starting from 0 position,

8 pixels high. Parameter Xaxis spans 0..127, parameter Yaxis spans 0..7 (8 text lines).

Example GLCD_Invert(60, 6)

5.2.11.13 GLCD_Goto_XY – Sets cursor to dot(x,y)

Prototype sub procedure GLCD_Goto_XY(dim x as byte, dim y as byte)

Description Sets cursor to dot (x,y). Procedure is used in combination with GLCD_Put_Data, GLCD_Put_Data2, and

GLCD_Put_Char.

Example GLCD_Goto_XY(60, 6)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (77 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.11.14 GLCD_Put_Char – Prints <Character> at cursor position

Prototype sub procedure GLCD_Put_Char(dim Character as byte)

Description Prints <Character> at cursor position.

Example GLCD_Put_Char(k)

5.2.11.15 GLCD_Clear_Screen – Clears the GLCD screen

Prototype sub procedure GLCD_Clear_Screen

Description Clears the GLCD screen.

Example GLCD_Clear_Screen

5.2.11.16 GLCD_Put_Text – Prints text at specified position

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (78 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure GLCD_Put_Text(dim x_pos as word, dim y_pos as word, dim

byref text as char[25], dim invert as byte)

Description Prints <text> at specified position; y_pos spans 0..7.

Example GLCD_Put_Text(0, 7, My_text, NONINVERTED_TEXT)

5.2.11.17 GLCD_Rectangle – Draws a rectangle

Prototype sub procedure GLCD_Rectangle(dim X1 as byte, dim Y1 as byte, dim X2 as

byte, dim Y2 as byte)

Description Draws a rectangle on the GLCD. (x1,y1) sets the upper left corner, (x2,y2) sets the lower right corner.

Example GLCD_Rectangle(10, 0, 30, 35)

5.2.11.18 GLCD_Set_Font – Sets font for GLCD

Prototype sub procedure GLCD_Set_Font(dim font_index as byte)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (79 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Sets font for GLCD. Parameter <font_index> spans from 1 to 4, and determines which font will be used:

1: 5x8 dots

2: 5x7

3: 3x6

4: 8x8

Example GLCD_Set_Font(2)

5.2.12 Manchester Code Library

mikroBasic provides a set of library procedures and functions for handling Manchester coded signal. Manchester code is a code in

which data and clock signals are combined to form a single self-synchronizing data stream; each encoded bit contains a transition

at the midpoint of a bit period, the direction of transition determines whether the bit is a 0 or a 1; second half is the true bit value

and the first half is the complement of the true bit value (as shown in the figure below).

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (80 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Note: Manchester receive routines are blocking calls (Man_Receive_Config, Man_Receive_Init, Man_Receive).

This means that PIC will wait until the task is performed (e.g. byte is received, synchronization achieved, etc).

Note: Routines for receiving are limited to a baud rate scope from 340 ~ 560 bps.

5.2.12.1 Man_Receive_Init – Initialization with default pin

Prototype sub procedure Man_Receive_Init(dim byref Port as byte)

Description Procedure works same as Man_Receive_Config, but with default pin setting (pin 6).

Example Man_Receive_Init(PORTD)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (81 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.12.2 Man_Receive_Config – Initialization with custom pin

Prototype sub procedure Man_Receive_Config(dim byref Port as byte, dim RXpin as byte)

Description This procedure needs to be called in order to receive signal by procedure Man_Receive. You need to specify

the <Port> and <RXpin> of input signal. In case of multiple errors on reception, you should call

Man_Receive_Init once again to enable synchronization.

Example Man_Receive_Config(PORTD, 5)

5.2.12.3 Man_Receive – Receives a byte

Prototype sub function Man_Receive(dim byref Error as byte) as byte

Description Function extracts one byte from signal. If format does not match the expected, <Error> flag will be set True.

Example dim ErrorFlag as byte

temp = Man_Receive(ErrorFlag) ' Attempt byte receive

5.2.12.4 Man_Send_Init – Initialization with default pin

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (82 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure Man_Send_Init(dim byref Port as byte)

Description Procedure works same as Man_Send_Config, but with default pin setting (pin 0).

Example Man_Send_Init(PORTB)

5.2.12.5 Man_Send_Config – Initialization with custom pin

Prototype sub procedure Man_Send_Config(dim byref Port as byte, dim TXpin as byte)

Description Procedure needs to be called in order to send signals via procedure Man_Send. Procedure specifies <Port> and

<TXpin> for outgoing signal (const baud rate).

Example Man_Send_Config(PORTB, 4)

5.2.12.6 Man_Send – Sends a byte

Prototype sub procedure Man_Send(dim Data as byte)

Description Procedure sends one <Data> byte.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (83 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example for i = 1 to Length(s1)

Man_Send(s1[i]) ' Send char

Delay_ms(90)

next i

5.2.13 PWM Library

CCP (Capture/ Compare/ PWM) module is available with a number of PIC MCU models. Set of library procedures and functions is

listed below to provide comfortable work with PWM (Pulse Width Modulation).

Note that these routines support module on PORTC pin RC2, and won't work with modules on other ports. Also, BASIC doesn't

support enhanced PWM modules.

5.2.13.1 PWM_Init – Initializes PWM module

Prototype sub procedure PWM_Init(const PWM_Freq)

Description Initializes PWM module with (duty ratio) 0%. <PWM_Freq> is a desired PWM frequency (refer to device data

sheet for correct values in respect with Fosc).

Example PWM_Init(5000) ' initializes PWM module, freq = 5kHz

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (84 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.13.2 PWM_Change_Duty – Changes duty ratio

Prototype sub procedure PWM_Change_Duty(dim New_Duty as byte)

Description Routine changes duty ratio. <New_Duty> takes values from 0 to 255, where 0 is 0% duty ratio, 127 is 50% duty

ratio, and 255 is 100% duty ratio. Other values for specific duty ratio can be calculated as (Percent*255)/100.

Example while true

 Delay_ms(100)

 j = j + 1

 PWM_Change_Duty(j)

wend

5.2.13.3 PWM_Start – Starts PWM

Prototype sub procedure PWM_Start

Description Starts PWM.

Example PWM_Start

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (85 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.13.4 PWM_Stop – Stops PWM

Prototype sub procedure PWM_Stop

Description Stops PWM.

Example PWM_Stop

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (86 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

PWM demonstration

5.2.14 RS485 Library

RS485 is a multipoint communication which allows multiple devices to be connected to a single signal cable. BASIC provides a set

of library routines to provide you comfortable work with RS485 system using Master/Slave architecture.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (87 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Master and Slave devices interchange packets of information, each of these packets containing synchronization bytes, CRC byte,

address byte, and the data. In Master/Slave architecture, Slave can never initiate communication. Each Slave has its unique address

and receives only the packets containing that particular address. It is programmer's responsibility to ensure that only one device

transmits data via 485 bus at a time.

RS485 routines require USART module on port C. Pins of USART need to be attached to RS485 interface transceiver, such as

LTC485 or similar. Pins of transceiver (Receiver Output Enable and Driver Outputs Enable) should be connected to port C, pin 2

(see the figure at end of the chapter).

Note: Address 50 is a common address for all Slave devices: packets containing address 50 will be received by all Slaves. The only

exceptions are Slaves with addresses 150 and 169, which require their particular address to be specified in the packet.

5.2.14.1 RS485Master_Init – Initializes MCU as Master in RS485 communication

Prototype sub procedure RS485master_init

Description Initializes MCU as Master in RS485 communication. USART needs to be initialized.

Example RS485Master_Init

5.2.14.2 RS485Master_Read – Receives message from Slave

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (88 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure RS485master_read(dim byref data as byte[5])

Description Master receives any message sent by Slaves. As messages are multi-byte, this procedure must be called for each

byte received (see the example at the end of the chapter). Upon receiving a message, buffer is filled with the

following values:

● data[0..2] is actual data

● data[3] is number of bytes received, 1..3

● data[4] is set to 255 when message is received

● data[5] is set to 255 if error has occurred

● data[6] is the address of the Slave which sent the message

Procedure automatically sets data[4] and data[5] upon every received message. These flags need to be cleared

repeatedly from the program.

Note: MCU must be initialized as Master in 485 communication to assign an address to MCU

Example RS485Master_Read(dat)

5.2.14.3 RS485Master_Write – Sends message to Slave

Prototype sub procedure RS485Master_Write(dim byref data as byte[2], dim datalen as

byte, dim address as byte)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (89 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Routine sends number of bytes (1 < datalen <= 3) from buffer via 485, to slave specified by <address>.

MCU must be initialized as Master in 485 communication. It is programmer's responsibility to ensure (by

protocol) that only one device sends data via 485 bus at a time.

Example RS485Master_Write(dat, 1)

5.2.14.4 RS485Slave_Init – Initializes MCU as Slave in RS485 communication

Prototype sub procedure RS485Slave_Init(dim address as byte)

Description Initializes MCU as Slave in RS485 communication. USART needs to be initialized.

<address> can take any value between 0 and 255, except 50, which is common address for all slaves.

Example RS485Slave_Init(160) ' initialize MCU as Slave with address 160

5.2.14.5 RS485Slave_Read – Receives message from Master

Prototype sub procedure RS485Slave_Read(dim byref data as byte[5])

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (90 sur 112)05/11/2004 02:20:53

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Only messages that appropriately address Slaves will be received. As messages are multi-byte, this procedure

must be called for each byte received (see the example at the end of the chapter). Upon receiving a message,

buffer is filled with the following values:

● data[0..2] is actual data

● data[3] is number of bytes received, 1..3

● data[4] is set to 255 when message is received

● data[5] is set to 255 if error has occurred

● rest of the buffer is undefined

Procedure automatically sets data[4] and data[5] upon every received message. These flags need to be cleared

repeatedly from the program.

MCU must be initialized as Master in 485 communication to assign an address to MCU.

Example RS485Slave_Read(dat)

5.2.14.6 RS485Slave_Write – Sends message to Master

Prototype sub procedure RS485Slave_Write(dim byref data as byte[2], dim datalen as

byte)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (91 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Description Sends number of bytes (1 < datalen <= 3) from buffer via 485 to Master.

MCU must be initialized as Slave in 485 communication. It is programmer's responsibility to ensure (by

protocol) that only one device sends data via 485 bus at a time.

Example RS485Slave_Write(dat, 1)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (92 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example of interfacing PC to PIC MCU via RS485 bus
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (93 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.15 SPI Library

SPI (Serial Peripheral Interface) module is available with a number of PIC MCU models. You can easily communicate with other

devices via SPI - A/D converters, D/A converters, MAX7219, LTC1290 etc. You need PIC MCU with hardware integrated SPI

(for example, PIC16F877). Then, simply use the following functions and procedures.

5.2.15.1 SPI_Init – Standard initialization of SPI

Prototype sub procedure SPI_Init

Description Routine initializes SPI with default parameters:

● Master mode,

● clock Fosc/4,

● clock idle state low,

● data transmitted on low to high edge,

● input data sampled at the middle of interval.

Example SPI_Init

5.2.15.2 SPI_Init_Advanced – does smt
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (94 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure SPI_Init_Advanced(dim Master as byte, dim Data_Sample as

byte, dim Clock_Idle as byte, dim Low_To_High as byte)

Description For advanced settings, configure and initialize SPI using the procedure SPI_Init_Advanced.

Allowed values of parameters:

<Master> determines the work mode for SPI:

● Master_OSC_div4 : Master clock=Fosc/4

● Master_OSC_div16 : Master clock=Fosc/16

● Master_OSC_div64 : Master clock=Fosc/64

● Master_TMR2 : Master clock source TMR2

● Slave_SS_ENABLE : Master Slave select enabled

● Slave_SS_DIS : Master Slave select disabled

<Data_Sample> determines when data is sampled:

● Data_SAMPLE_MIDDLE : input data sampled in middle of interval

● Data_SAMPLE_END : input data sampled at the end of interval

<Clock_Idle> determines idle state for clock:

● CLK_Idle_HIGH : clock idle HIGH

● CLK_Idle_LOW : clock idle LOW
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (95 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

<Low_To_High> determines transmit edge for data:

● LOW_2_HIGH : data transmit on low to high edge

● HIGH_2_LOW : data transmit on high to low edge

Example SPI_Init_Advanced(Master_OSC_div4, Data_SAMPLE_MIDDLE, CLK_Idle_LOW,

LOW_2_HIGH)

 ' This will set SPI to:

 ' master mode,

 ' clock = Fosc/4,

 ' data sampled at the middle of interval,

 ' clock idle state low,

 ' data transmitted at low to high edge.

5.2.15.3 SPI_Read – Reads the received data

Prototype sub function SPI_Read(dim Buffer as byte) as byte

Description Routine provides clock by sending <Buffer> and reads the received data at the end of the period.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (96 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example dim rec as byte

...

SPI_Read(rec)

5.2.15.4 SPI_Write – Sends data via SPI

Prototype sub procedure SPI_Write(dim Data as byte)

Description Routine writes <Data> to SSPBUF and immediately starts the transmission.

Example SPI_Write(7)

5.2.16 USART Library

USART (Universal Synchronous Asynchronous Receiver Transmitter) hardware module is available with a number of PIC MCU

models. You can easily communicate with other devices via RS232 protocol (for example with PC, see the figure at the end of this

chapter - RS232 HW connection). You need a PIC MCU with hardware integrated USART (for example, PIC16F877). Then,

simply use the functions and procedures described below.

Note: Some PIC micros that have two USART modules, such as P18F8520, require you to specify the module you want to use.

Simply append the number 1 or 2 to procedure or function name, e.g. USART_Write2(Dat).

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (97 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.16.1 USART_Init – Initializes USART

Prototype sub procedure USART_Init(const Baud_Rate)

Description Initializes PIC MCU USART hardware and establishes communication at specified <Baud_Rate>.

Refer to the device data sheet for baud rates allowed for specific Fosc. If you specify the unsupported baud rate,

compiler will report an error.

Example USART_Init(2400)

5.2.16.2 USART_Data_Ready – Checks if data is ready

Prototype sub function USART_Data_Ready as byte

Description Function checks if data is ready. Returns 1 if so, returns 0 otherwise.

Example USART_Data_Ready

5.2.16.3 USART_Read – Receives a byte

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (98 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub function USART_Read as byte

Description Receives a byte; if byte is not received returns 0.

Example USART_Read

5.2.16.4 USART_Write – Transmits a byte

Prototype sub procedure USART_Write(dim Data as byte)

Description Procedure transmits byte <Data>.

Example USART_Write(dat)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (99 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

RS232 HW connection

5.2.17 One-Wire Library

1-wire library provides routines for communicating via 1-wire bus, for example with DS1820 digital thermometer. Note that

oscillator frequency Fosc needs to be at least 4MHz in order to use the routines with Dallas digital thermometers.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (100 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.17.1 OW_Reset – Issues 1-wire reset signal for DS1820

Prototype sub function OW_Reset(dim byref PORT as byte, dim Pin as byte) as byte

Description Issues 1-wire reset signal for DS1820. Parameters <PORT> and <Pin> specify the location of DS1820; return

value of the function is 0 if DS1820 is present, and 1 otherwise.

Example OW_Reset(PORTA, 5)

5.2.17.2 OW_Read – Reads one byte via 1-wire bus

Prototype sub function OW_Read(dim byref PORT as byte, Pin as byte) as byte

Description Reads one byte via 1-wire bus.

Example temp = OW_Read(PORTA, 5) ' get result from PORTA

5.2.17.3 OW_Write – Writes one byte via 1-wire bus

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (101 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure OW_Write(dim byref PORT as byte, dim Pin as byte, dim par as

byte)

Description Writes one byte (<par>) via 1-wire bus

Example OW_Write(PORTA, 5, $44)

5.2.18 Software I2C

BASIC provides routines which implement software I2C. These routines are hardware independent and can be used with any

MCU. Software I2C enables you to use MCU as Master in I2C communication. Multi-master mode is not supported.

5.2.18.1 Soft_I2C_Config – Configure the I2C master mode

Prototype sub procedure Soft_I2C_Config(dim byref Port as byte, const SDA,const SCL)

Description Configure the I2C master mode.

Parameter <Port> specifies port of MCU on which SDA and SCL pins will be located;

parameters <SCL> and <SDA> need to be in range 0..7 and cannot point at the same pin;

Example Soft_I2C_Config(PORTD, 3, 4)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (102 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.18.2 Soft_I2C_Start – Issues START condition

Prototype sub procedure Soft_I2C_Start

Description Issues START condition.

Example Soft_I2C_Start

5.2.18.3 Soft_I2C_Write – Send data byte via I2C bus

Prototype sub function Soft_I2C_Write(dim Data as byte) as byte

Description After you have issued a start signal you can send <Data> byte via I2C bus. The function returns 0 if there are no

errors.

Example Soft_I2C_Write($A3)

5.2.18.4 Soft_I2C_Read – Receives byte from slave

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (103 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub function Soft_I2C_Read(dim Ack as byte) as byte

Description Receives 1 byte from slave and sends not acknowledge signal if <Ack> is 0; otherwise, it sends acknowledge.

Example EE_data = Soft_I2C_Read(0)

5.2.18.5 Soft_I2C_Stop – Issues STOP condition

Prototype sub procedure Soft_I2C_Stop

Description Issues STOP condition.

Example Soft_I2C_Stop

5.2.19 Software SPI Library

BASIC provides routines which implement software SPI. These routines are hardware independent and can be used with any

MCU. You can easily communicate with other devices via SPI - A/D converters, D/A converters, MAX7219, LTC1290 etc.

Simply use the following functions and procedures.

5.2.19.1 Soft_SPI_Config – Configure MCU for SPI communication
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (104 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure Soft_SPI_Config(dim byref Port as byte, const SDI, const

SD0, const SCK)

Description Routine configures and initializes software SPI with the following defaults:

● Set MCU to master mode,

● Clock = 50kHz,

● Data sampled at the middle of interval,

● Clock idle state low

● Data transmitted at low to high edge.

SDI pin, SDO pin, and SCK pin are specified by the appropriate parameters.

Example Soft_SPI_Config(PORTB, 1, 2, 3)

 ' SDI pin is RB1, SDO pin is RB2, and SCK pin is RB3.

5.2.19.2 Soft_SPI_Read – Reads the received data

Prototype sub function Soft_SPI_read(dim Buffer as byte) as byte

Description Routine provides clock by sending <Buffer> and reads the received data at the end of the period.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (105 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Example Soft_SPI_Read(dat)

5.2.19.3 Soft_SPI_Write – Sends data via SPI

Prototype sub procedure Soft_SPI_Write(dim Data as byte)

Description Routine writes <Data> to SSPBUF and immediately starts the transmission.

Example Soft_SPI_Write(dat)

5.2.20 Software UART Library

BASIC provides routines which implement software UART. These routines are hardware independent and can be used with any

MCU. You can easily communicate with other devices via RS232 protocol . Simply use the functions and procedures described

below.

5.2.20.1 Soft_UART_Init – Initializes UART

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (106 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure Soft_UART_Init(dim byref Port as byte, const RX, const TX,

const Baud_Rate)

Description Initializes PIC MCU UART at specified pins establishes communication at <Baud_Rate>.

If you specify the unsupported baud rate, compiler will report an error.

Example Soft_UART_Init(PORTB, 1, 2, 9600)

5.2.20.2 Soft_UART_Read – Receives a byte

Prototype sub function Soft_UART_Read(dim byref Msg_received as byte) as byte

Description Function returns a received byte. Parameter <Msg_received> will take true if transfer was succesful.

Soft_UART_Read is a non-blocking function call, so you should test <Msg_received> manually (check the

example below).

Example Received_byte = Soft_UART_Read(Rec_ok)

5.2.20.4 Soft_UART_Write – Transmits a byte

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (107 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub procedure Soft_USART_Write(dim Data as byte)

Description Procedure transmits byte <Data>.

Example Soft_UART_Write(Received_byte)

5.2.21 Sound Library

BASIC provides a sound library which allows you to use sound signalization in your applications.

5.2.21.1 Sound_Init – Initializes sound engine

Prototype sub procedure Sound_Init(dim byref Port, dim Pin as byte)

Description Procedure Sound_Init initializes sound engine and prepares it for output at specified <Port> and <Pin>.

Parameter <Pin> needs to be within range 0..7.

Example PORTB = 0 ' Clear PORTB

TRISB = 0 ' PORTB is output

Sound_Init(PORTB, 2) ' Initialize sound on PORTB.RB2

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (108 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

5.2.21.2 Sound_Play – Plays sound at specified port

Prototype sub procedure Sound_Play(dim byref Port, dim Pin as byte)

Description Procedure Sound_Play plays the sound at the specified port pin. <Period_div_10> is a sound period given in

MCU cycles divided by ten, and generated sound lasts for a specified number of periods (<Num_of_Periods>).

For example, if you want to play sound of 1KHz: T = 1/f = 1ms = 1000 cycles @ 4MHz<.

code>. This gives us our first parameter: 1000/10 = 100. Then, we could

play 150 periods like this: Sound_Play(100, 150).

Example ...

Sound_Init(PORTB,2) ' Initialize sound on PORTB.RB2

while true

 adcValue = ADC_Read(2) ' Get lower byte from ADC

 Sound_Play(adcValue, 200) ' Play the sound

wend

5.2.22 Trigonometry Library
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (109 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

BASIC provides a trigonometry library for applications which involve angle calculations. Trigonometric routines take an angle (in

degrees) as parameter of type word and return sine and cosine multiplied by 1000 and rounded up (as integer).

5.2.22.1 SinE3 – Returns sine of angle

Prototype sub function sinE3(dim Angle as word) as integer

Description Function takes a word-type number which represents angle in degrees and returns the sine of <Angle> as

integer, multiplied by 1000 (1E3) and rounded up to nearest integer: result = round_up(sin(Angle)

*1000). Thus, the range of the return values for these functions is from -1000 to 1000.

Note that parameter <Angle> cannot be negative. Function is implemented as lookup table, and the maximum

error obtained is ±1.

Example dim angle as word

dim result as integer

angle = 45

result = sinE3(angle) ' result is 707

5.2.22.2 CosE3 – Returns cosine of angle

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (110 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub function cosE3(dim Angle as word) as integer

Description Function takes a word-type number which represents angle in degrees and returns the cosine of <Angle> as

integer, multiplied by 1000 (1E3) and rounded up to nearest integer: result = round_up(cos(Angle)

*1000). Thus, the range of the return values for these functions is from -1000 to 1000.

Note that parameter <Angle> cannot be negative. Function is implemented as lookup table, and the maximum

error obtained is ±1.

Example dim angle as word

dim result as integer

angle = 90

result = cosE3(angle) ' result is 0

5.2.23 Utilities

BASIC provides a utility set of procedures and functions for faster development of your applications.

5.2.23.1 Button – Debounce

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (111 sur 112)05/11/2004 02:20:55

Programming PIC Microcontrollers in BASIC - mikroElektronika

Prototype sub function Button(dim byref PORT as byte, dim Pin as byte, dim Time as

byte, dim Astate as byte) as byte

Description Function eliminates the influence of contact flickering due to the pressing of a button (debouncing).

Parameters <PORT> and <Pin> specify the location of the button; parameter <Time> represents the minimum

time interval that pin must be in active state in order to return one; parameter <Astate> can be only zero or one,

and it specifies if button is active on logical zero or logical one.

Example if Button(PORTB, 0, 1, 1) then

 flag = 255

end if

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc. USA. Microchip logo and name

are the registered tokens of the Microchip Technology. mikroBasic is a registered trade mark of mikroElektronika. All other tokens mentioned

in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/05.htm (112 sur 112)05/11/2004 02:20:55

mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

Chapter 6: Examples with PIC Integrated Peripherals

● Introduction

● 6.1 Interrupt Mechanism

● 6.2 Internal AD Converter

● 6.3 TMR0 Timer

● 6.4 TMR1 Timer

● 6.5 PWM Module

● 6.6 Hardware UART module (RS-232 Communication)

Introduction

It is commonly said that microcontroller is an “entire computer on a single chip”, which implies that it has more to offer

than a single CPU (microprocessor). This additional functionality is actually located in microcontroller’s subsystems, also

called the “integrated peripherals”. These (sub)devices basically have two major roles: they expand the possibilities of the

MCU making it more versatile, and they take off the burden for some repetitive and “dumber” tasks (mainly

communication) from the CPU.

Every microcontroller is supplied with at least a couple of integrated peripherals – commonly, these include timers,

interrupt mechanisms and AD converters. More powerful microcontrollers can command a larger number of more diverse

peripherals. In this chapter, we will cover some common systems and the ways to utilize them from BASIC programming

language.

6.1 Interrupt Mechanism

Interrupts are mechanisms which enable instant response to events such as counter overflow, pin change, data received,

etc. In normal mode, microcontroller executes the main program as long as there are no occurrences that would cause an

interrupt. Upon interrupt, microcontroller stops the execution of main program and commences the special part of the

program which will analyze and handle the interrupt. This part of program is known as the interrupt (service) routine.

In BASIC, interrupt service routine is defined by procedure with reserved name interrupt. Whatever code is stored in

that procedure, it will be executed upon interrupt.

First, we need to determine which event caused the interrupt, as PIC microcontroller calls the same interrupt routine

regardless of the trigger. After that comes the interrupt handling, which is executing the appropriate code for the trigger

event.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (1 sur 12)05/11/2004 02:26:24

Programming PIC Microcontrollers in BASIC - mikroElektronika

Here is a simple example:

In the main loop, program keeps LED_run diode on and LED_int diode off. Pressing the button T causes the interrupt –

microcontroller stops executing the main program and starts the interrupt procedure.

program testinterrupt

symbol LED_run = PORTB.7 ' LED_run is connected to PORTB pin

7

symbol LED_int = PORTB.6 ' LED_int is connected to PORTB pin

6

sub procedure interrupt ' Interrupt service routine

 if INTCON.RBIF = 1 then ' Changes on RB4-RB7 ?

 INTCON.RBIF = 0

 else if INTCON.INTF = 1 then ' External interupt (RB0 pin) ?

 LED_run = 0

 LED_int = 1

 Delay_ms(500)

 INTCON.INTF = 0

 else if INTCON.T0IF = 1 then ' TMR0 interrupt occurred ?

 INTCON.T0IF = 0

 else if INTCON.EEIF = 1 then ' Is EEPROM write cycle finished ?

 INTCON.EEIF = 0

 end if

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (2 sur 12)05/11/2004 02:26:24

Programming PIC Microcontrollers in BASIC - mikroElektronika

 end if

 end if

 end if

end sub

main:

 TRISB = %00111111 ' Pins RB6 and RB7 are output

 OPTION_REG = %10000000 ' Turn off pull-up resistors

 ' and set interrupt on falling edge

 ' of RB0 signal

 INTCON = %10010000 ' Enable external interrupts

 PORTB = 0 ' Initial value on PORTB

eloop: ' While there is no interrupt, program runs in

endless loop:

 LED_run = 1 ' LED_run is on

 LED_int = 0 ' LED_int is off

goto eloop

end.

Now, what happens when we push the button? Our interrupt routine first analyzes the interrupt by checking flag bits with

couple of if..then instructions, because there are several possible interrupt causes. In our case, an external interrupt

took place (pin RB0/INT state changes) and therefore bit INTF in INTCON register is set. Microcontroller will change

LED states, and provide a half second delay for us to actually see the change. Then it will clear INTF bit in order to

enable interrupts again, and return to executing the main program.

In situations where microcontroller must respond to events unrelated to the main program, it is very useful to have an

interrupt service routine. Perhaps, one of the best examples is multiplexing the seven-segment display – if multiplexing

code is tied to timer interrupt, main program will be much less burdened because display refreshes in the background.

6.2 Internal AD Converter

A number of microcontrollers have built in Analog to Digital Converter (ADC). Commonly, these AD converters have 8-

bit or 10-bit resolution allowing them voltage sensitivity of 19.5mV or 4.8mV, respectively (assuming that default 5V

voltage is used).

The simplest AD conversion program would use 8-bit resolution and 5V of microcontroller power as referent voltage

(value which the value "read" from the microcontroller pin is compared to). In the following example we measure voltage

on RA0 pin which is connected to the potentiometer (see the figure below).

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (3 sur 12)05/11/2004 02:26:24

Programming PIC Microcontrollers in BASIC - mikroElektronika

Potentiometer gives 0V in one terminal position and 5V in the other – since we use 8-bit conversion, our digitalized

voltage can have 256 steps. The following program reads voltage on RA0 pin and displays it on port B diodes. If not one

diode is on, result is zero and if all of diodes are on, result is 255.

program ADC_8

main:

TRISA = %111111 ' Port A is input

PORTD = 0

TRISD = %00000000

ADCON1 = %1000010 ' Port A is in analog mode,

 ' 0 and 5V are referent voltage values,

 ' and the result is aligned right

 ' (higher 6 bits of ADRESH are zero).

ADCON0 = %11010001 ' ADC clock is generated by internal RC

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (4 sur 12)05/11/2004 02:26:24

Programming PIC Microcontrollers in BASIC - mikroElektronika

 ' circuit; voltage is measured on RA2 and

 ' allows the use of AD converter

Delay_ms (500) ' 500 ms pause

eloop:

 ADCON0.2 = 1 ' Conversion starts

wait:

' wait for ADC to finish

Delay_ms(5)

if ADCON0.2 = 1 then

 goto wait

end if

PORTD = ADRESH ' Set lower 8 bits on port D

Delay_ms(500) ' 500 ms pause

goto eloop ' Repeat all

end. ' End of program.

First, we need to properly initialize registers ADCON1 and ADCON0. After that, we set ADCON0.2 bit which initializes

the conversion and then check ADCON0.2 to determine if conversion is over. If over, the result is stored into ADRESH

and ADRESL where from it can be copied.

Former example could also be carried out via ADC_Read instruction. Our following example uses 10-bit resolution:

program ADC_10

dim AD_Res as word

main:

TRISA = %11111111 ' PORTA is input

TRISD = %00000000 ' PORTD is output

ADCON1 = %1000010 ' PORTA is in analog mode,

 ' 0 and 5V are referent voltage values,

 ' and the result is aligned right

eloop:

 AD_Res = ADC_read(2) ' Execute conversion and store result

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (5 sur 12)05/11/2004 02:26:25

Programming PIC Microcontrollers in BASIC - mikroElektronika

 ' in variable AD_Res.

PORTD = Lo(AD_Res) ' Display lower byte of result on PORTD

Delay_ms(500) ' 500 ms pause

goto eloop ' Repeat all

end. ' End of program

As one port is insufficient, we can use LCD for displaying all 10 bits of result. Connection scheme is below and the

appropriate program follows. For more information on LCD routines, check Chapter 5.2: Library Routines.

program ADC_on_LCD

dim AD_Res as word

dim dummyCh as char[6]

main:

TRISA = %1111111 ' PORTA is input

TRISB = 0 ' PORTB is output (for LCD)

ADCON1 = %10000010 ' PORTA is in analog mode,

 ' 0 and 5V are referent voltage values,

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (6 sur 12)05/11/2004 02:26:25

Programming PIC Microcontrollers in BASIC - mikroElektronika

 ' and the result is aligned right.

Lcd_Init(PORTB) ' Initialize LCD

Lcd_Cmd(LCD_CLEAR) ' Clear LCD

Lcd_Cmd(LCD_CURSOR_OFF) ' and turn the cursor off

eloop:

AD_Res = ADC_Read(2) ' Execute conversion and store result

 ' to variable AD_Res

LCD_Out(1, 1, " ") ' Clear LCD from previous result

WordToStr(AD_Res, dummyCh) ' Convert the result in text,

LCD_Out(1, 1, dummyCh) ' and print it in line 1, char 1

Delay_ms(500) ' 500 ms pause

goto eloop ' Repeat all

end. ' End of program

6.3 TMR0 Timer

TMR0 timer is an 8-bit special function register with working range of 256. Assuming that 4MHz oscillator is used,

TMR0 can measure 0-255 microseconds range (at 4MHz, TMR0 increments by one microsecond). This period can be

increased if prescaler is used. Prescaler divides clock in a certain ratio (prescaler settings are made in OPTION_REG

register).

Our following program example shows how to generate 1 second using TMR0 timer. For visual purposes, program

toggles LEDs on PORTB every second.

Before the main program, TMR0 should have interrupt enabled (bit 2) and GIE bit (bit 7) in INTCON register should be

set. This will enable global interrupts.

program Timer0_1sec

dim cnt as byte

dim a as byte

dim b as byte

sub procedure interrupt

 cnt = cnt + 1 ' Increment value of cnt on every interrupt

 TMR0 = 96

 INTCON = $20 ' Set T0IE, clear T0IF

end sub

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (7 sur 12)05/11/2004 02:26:25

Programming PIC Microcontrollers in BASIC - mikroElektronika

main:

a = 0

b = 1

OPTION_REG = $84 ' Assign prescaler to TMR0

TRISB = 0 ' PORTB as output

PORTB = $FF ' Initialize PORTB

cnt = 0 ' Initialize cnt

TMR0 = 96

INTCON = $A0 ' Enable TMRO interrupt

' If cnt is 200, then toggle PORTB LEDs and reset cnt
do

 if cnt = 200 then

 PORTB = not(PORTB)

 cnt = 0

 end if

loop until 0 = 1

end.

Prescaler is set to 32, so that internal clock is divided by 32 and TMR0 increments every 31 microseconds. If TMR0 is

initialized at 96, overflow occurs in (256-96)*31 us = 5 ms. We increase cnt every time interrupt takes place, effectively

measuring time according to the value of this variable. When cnt reaches 200, time will total 200*5 ms = 1 second.

6.4 TMR1 Timer

TMR1 timer is a 16-bit special function register with working range of 65536. Assuming that 4MHz oscillator is used,

TMR1 can measure 0-65535 microseconds range (at 4MHz, TMR1 increments by one microsecond). This period can be

increased if prescaler is used. Prescaler divides clock in a certain ratio (prescaler settings are made in T1CON register).

Before the main program, TMR1 should be enabled by setting the zero bit in T1CON register. First bit of the register

defines the internal clock for TMR1 – we set it to zero. Other important registers for working with TMR1 are PIR1 and

PIE1. The first contains overflow flag (zero bit) and the other is used to enable TMR1 interrupt (zero bit). With TMR1

interrupt enabled and its flag cleared, we only need to enable global interrupts and peripheral interrupts in the INTCON

register (bits 7 and 6, respectively).

Our following program example shows how to generate 10 seconds using TMR1 timer. For visual purposes, program

toggles LEDs on PORTB every 10 seconds.

program Timer1_10sec

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (8 sur 12)05/11/2004 02:26:25

Programming PIC Microcontrollers in BASIC - mikroElektronika

dim cnt as byte

sub procedure interrupt

 cnt = cnt + 1

 pir1.0 = 0 ' Clear TMR1IF

end sub

main:

TRISB = 0

T1CON = 1

PIR1.TMR1IF = 0 ' Clear TMR1IF

PIE1 = 1 ' Enable interrupts

PORTB = $F0

cnt = 0 ' Initialize cnt

INTCON = $C0

' If cnt is 152, then toggle PORTB LEDs and reset cnt
 do

 if cnt = 152 then

 PORTB = not(PORTB)

 cnt = 0

 end if

 loop until 0 = 1

end.

Prescaler is set to 00 so there is no dividing the internal clock and overflow occurs every 65.536 ms. We increase cnt

every time interrupt takes place, effectively measuring time according to the value of this variable. When cnt reaches 152,

time will total 152*65.536 ms = 9.96 seconds.

6.5 PWM Module

Microcontrollers of PIC16F87X series have one or two built-in PWM outputs (40-pin casing allows 2, 28-pin casing

allows 1). PWM outputs are located on RC1 and RC2 pins (40-pin MCUs), or on RC2 pin (28-pin MCUs). Refer to PWM

library (Chapter 5.2: Library Routines) for more information.

The following example uses PWM library for getting various light intensities on LED connected to RC2 pin. Variable

which represents the ratio of on to off signals is continually increased in the loop, taking values from 0 to 255. This results

in continual intensifying of light on LED diode. After value of 255 has been reached, process begins anew.

program PWM_LED_Test

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (9 sur 12)05/11/2004 02:26:25

Programming PIC Microcontrollers in BASIC - mikroElektronika

dim j as byte

main:

TRISB = 0 ' PORTB is output

PORTB = 0 ' Set PORTB to 0

j = 0

TRISC = 0 ' PORTC is output

PORTC = $FF ' Set PORTC to $FF

PWM_Init(5000) ' Initialize PWM module

PWM_Start ' Start PWM

while true ' Endless loop

 Delay_ms(10) ' Wait 10ms

 j = j + 1 ' Increment j

 PWM_Change_Duty(j) ' Set new duty ratio

 PORTB = CCPR1L ' Send value of CCPR1L to PORTB

wend

end.

6.6 Hardware UART module (RS-232 Communication)

The easiest way to transfer data between microcontroller and some other device, e.g. PC or other microcontroller, is the

RS-232 communication (also referred to as EIA RS-232C or V.24). RS232 is a standard for serial binary data interchange

between a DTE (Data terminal equipment) and a DCE (Data communication equipment), commonly used in personal

computer serial ports. It is a serial asynchronous 2-line (Tx for transmitting and Rx for receiving) communication with

effective range of 10 meters.

Microcontroller can establish communication with serial RS-232 line via hardware UART (Universal Asynchronous

Receiver Transmitter) which is an integral part of PIC16F87X microcontrollers. UART contains special buffer registers

for receiving and transmitting data as well as a Baud Rate generator for setting the transfer rate.

This example shows data transfer between the microcontroller and PC connected by RS-232 line interface MAX232

which has role of adjusting signal levels on the microcontroller side (it converts RS-232 voltage levels +/- 10V to TTL

levels 0-5V and vice versa).

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (10 sur 12)05/11/2004 02:26:25

Programming PIC Microcontrollers in BASIC - mikroElektronika

Our following program example illustrates use of hardware serial communication. Data received from PC is stored into

variable dat and sent back to PC as confirmation of successful transfer. Thus, it is easy to check if communication works

properly. Transfer format is 8N1 and transfer rate is 2400 baud.

program USART_Echo

dim dat as byte

main:

USART_Init(2400) ' Initialize USART module

while true

 if USART_Data_Ready = 1 then ' If data is received

 dat = USART_Read ' Read the received data

 USART_Write(dat) ' Send data via USART

 end if

wend

end.

In order to establish the communication, PC must have a communication software installed. One such communication

terminal is part of mikroBasic IDE. It can be accessed by clicking Tools > Terminal from the drop-down menu. Terminal

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (11 sur 12)05/11/2004 02:26:25

Programming PIC Microcontrollers in BASIC - mikroElektronika

allows you to monitor transfer and to set all the necessary transfer settings. First of all, we need to set the transfer rate to

2400 to match the microcontroller's rate. Then, select the appropriate communication port by clicking one of the 4

available (check where you plugged the serial cable).

After making these adjustments, clicking Connect starts the communication. Type your message and click Send Message

– message will be sent to the microcontroller and back, where it will be displayed on the screen.

Note that serial communication can also be software based on any of 2 microcontroller pins – for more information, check

the Chapter 9: Communications.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc. USA. Microchip logo

and name are the registered tokens of the Microchip Technology. mikroBasic is a registered trade mark of mikroElektronika. All

other tokens mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/06.htm (12 sur 12)05/11/2004 02:26:25

mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

Chapter 7: Examples with Displaying Data

● Introduction

● 7.1 LED Diode

● 7.2 Seven-Segment Display

● 7.3 LCD Display, 4-bit and 8-bit Interface

● 7.4 Graphical LCD

● 7.5 Sound Signalization

Introduction

Microcontrollers deal very well with 0’s and 1’s, but humans do not. We need indicator lights, numbers, letters, charts,

beepers… In order to comprehend the information presented quicker and better, we need that information to be displayed

to us in many different ways. In practice, human - machine communication can require substantial (machine) resources,

so it is sometimes better to dedicate an entire microcontroller to that task. This device is then called the Human -

Machine Interface or simply HMI. The second microcontroller is then required to get the human wishes from HMI, “do

the job” and put the results back to HMI, so that operator can see it.

Clearly, the most important form of communication between the microcontroller system and a man is the visual

communication. In this chapter we will discuss various ways of displaying data, from the simplest to more elaborate

ones. You’ll see how to use LED diodes, Seven-Segment Displays, character- and graphic LCDs. We will also consider

using BASIC for sound signalization necessary in certain applications.

Just remember: the more profound communication you wish to be, the more MCU resources it’ll take.

7.1 LED Diode

One of the most frequently used components in electronics is surely the LED diode (LED stands for Light Emitting

Diode). Some of common LED diode features include: size, shape, color, working voltage (Diode voltage) Ud and

electric current Id. LED diode can be round, rectangular or triangular in shape, although manufacturers of these

components can produce any shape needed for specific purposes. Size i.e. diameter of round LED diodes ranges from 3

to 12 mm, with 3 - 5 mm sizes most commonly used. Common colors include red, yellow, green, orange, blue, etc.

Working voltage is 1.7V for red, 2.1V for green and 2.3 for orange color. This voltage can be higher depending on the

manufacturer. Normal current Id through diode is 10 mA, while maximal current reaches 25 mA. High current

consumption can present problem to devices with battery power supply, so in that case low current LED diode (Id ~ 1-2

mA) should be used. For LED diode to emit light with maximum capacity, it is necessary to connect it properly or it

might get damaged.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (1 sur 16)05/11/2004 02:27:45

Programming PIC Microcontrollers in BASIC - mikroElektronika

The positive pole is connected to anode, while ground is connected to cathode. For matter of differentiating the two,

cathode is marked by mark on casing and shorter pin. Diode will emit light only if current flows from anode to cathode;

in the other case there will be no current. Resistor is added serial to LED diode, limiting the maximal current through

diode and protecting it from damage. Resistor value can be calculated from the equation on the picture above, where Ur

represents voltage on resistor. For +5V power supply and 10 mA current resistor used should have value of 330•.

LED diode can be connected to microcontroller in two ways. One way is to have microcontroller "turning on" LED

diode with logical one and the other way is with logical zero. The first way is not so frequent (which doesn't mean it

doesn't have applications) because it requires the microcontroller to be diode current source. The second way works with

higher current LED diodes.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (2 sur 16)05/11/2004 02:27:45

Programming PIC Microcontrollers in BASIC - mikroElektronika

The following example toggles LEDs of PORTB every second.

program LED_Blinking

main:

 TRISB = 0 ' PORTB is output

 PORTB = %11111111 ' Turn ON diodes on PORTB

 Delay_ms(1000) ' Wait for 1 second

 PORTB = %00000000 ' Turn OFF diodes on PORTB

 Delay_ms(1000) ' Wait for 1 second

 goto main ' Endless loop

end.

7.2 Seven-Segment Displays

Seven-segment digits represent more advanced form of visual communication. The name comes from the seven diodes

(there is an eighth diode for a dot) arranged to form decimal digits from 0 to 9. Appearance of a seven-segment digit is

given on a picture below.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (3 sur 16)05/11/2004 02:27:45

Programming PIC Microcontrollers in BASIC - mikroElektronika

As seven-segment digits have better temperature tolerance and visibility than LCD displays, they are very common in

industrial applications. Their use satisfies all criteria including the financial one. They are commonly used for displaying

value read from sensors, etc.

One of the ways to connect seven-segment display to the microcontroller is given in the figure below. System is

connected to use seven-segment digits with common cathode. This means that segments emit light when logical one is

brought to them, and that output of all segments must be a transistor connected to common cathode, as shown on the

picture. If transistor is in conducting mode any segment with logical one will emit light, and if not no segment will emit

light, regardless of its pin state.

Bases of transistors T1 and T2 are connected to pin0 and pin1 of PORTA. Setting those pins turns on the transistor,

allowing every segment from "a" to "h", with logical one on it, to emit light. If zero is on transistor base, none of the

segments will emit light, regardless of the pin state.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (4 sur 16)05/11/2004 02:27:45

Programming PIC Microcontrollers in BASIC - mikroElektronika

Using the previous scheme, we could display a sequence of nine digits like this:

program seven_seg_onedigit

dim i as byte

' Function mask returns mask of parameter 'num'

' for common cathode 7-seg. display

sub function mask(dim num as byte) as byte

 select case num

 case 0 result = $3F

 case 1 result = $06

 case 2 result = $5B

 case 3 result = $4F

 case 4 result = $66

 case 5 result = $6D

 case 6 result = $7D

 case 7 result = $07

 case 8 result = $7F

 case 9 result = $6F

 end select

end sub

main:

INTCON = 0 ' Disable PEIE, INTE, RBIE, T0IE

TRISA = 0

TRISB = 0

PORTB = 0

PORTA = 2

do

 for i = 0 to 9

 PORTB = mask(i)

 Delay_ms(1000)

 next i

loop until false ' Endless loop

end.

Purpose of the program is to display numbers 0 to 9 on the ones digit, with 1 second delay. In order to display a number,

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (5 sur 16)05/11/2004 02:27:45

Programming PIC Microcontrollers in BASIC - mikroElektronika

its mask must be sent to PORTB. For example, if we need to display "1", segments b and c must be set to 1 and the rest

must be zero. If (according to the scheme above) segments b and c are connected to the first and the second pin of

PORTB, values 0000 and 0110 should be set to PORTB. Thus, mask for number "1" is value 0000 0110 or 06

hexadecimal. The following table contains corresponding mask values for numbers 0-9:

Digit Seg. h Seg. g Seg. f Seg. e Seg. d Seg. c Seg. b Seg. a HEX

0 0 0 1 1 1 1 1 1 $3F

1 0 0 0 0 0 1 1 0 $06

2 0 1 0 1 1 0 1 1 $5B

3 0 1 0 0 1 1 1 1 $4F

4 0 1 1 0 0 1 1 0 $66

5 0 1 1 0 1 1 0 1 $6D

6 0 1 1 1 1 1 0 1 $7D

7 0 0 0 0 0 1 1 1 $07

8 0 1 1 1 1 1 1 1 $7F

9 0 1 1 0 1 1 1 1 $6F

You are not, however, limited to displaying digits. You can use 7seg Display Decoder, a built-in tool of mikroBasic, to

get hex code of any other viable combination of segments you would like to display.

But what do we do when we need to display more than one digit on two or more displays? We have to put a mask on one

digit quickly enough and activate its transistor, then put the second mask and activate the second transistor (of course, if

one of the transistors is in conducting mode, the other should not work because both digits will display the same value).

The process is known as “multiplexing”: digits are displayed in a way that human eye gets impression of simultaneous

display of both digits – actually only one display emits at any given moment.

Now, let’s say we need to display number 38. First, the number should be separated into tens and ones (in this case,

digits 3 and 8) and their masks sent to PORTB. The rest of the program is very similar to the last example, except for

having one transition caused by displaying one digit after another:

program seven_seg_twodigits

dim v as byte

dim por1 as byte

dim por2 as byte

sub procedure interrupt

begin

 if v = 0 then

 PORTB = por2 ' Send mask of tens to PORTB

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (6 sur 16)05/11/2004 02:27:45

Programming PIC Microcontrollers in BASIC - mikroElektronika

 PORTA = 1 ' Turn on 1st 7seg, turn off 2nd

 v = 1

 else

 PORTB = por1 ' Send mask of ones to PORTB

 PORTA = 2 ' Turn on 2nd 7seg, turn off 1st

 v = 0

 end if

 TMR0 = 0 ' Clear TMRO

 INTCON = $20 ' Clear TMR0IF and set TMR0IE

end sub

main:

OPTION_REG = $80 ' Pull-up resistors

TRISA = 0 ' PORTA is output

TRISB = 0 ' PORTB is output

PORTB = 0 ' Clear PORTB (make sure LEDs are off)

PORTA = 0 ' Clear PORTA (make sure both displays are off)

TMR0 = 0 ' Clear TMRO

por1 = $7F ' Mask for '8' (check the table above)

por2 = $4F ' Mask for '3' (check the table above)

INTCON = $A0 ' Enable T0IE

while true ' Endless loop, wait for interrupt

 nop

wend

end.

The multiplexing problem is solved for now, but your program probably doesn’t have a sole purpose of printing constant

values on 7seg display. It is usually just a subroutine for displaying certain information. However, this approach to

printing data on display has proven sto be very convenient for more complicated programs. You can also move part of

the program for refreshing the digits (handling the masks) to the interrupt routine.

The following example increases variable i from 0 to 99 and prints it on displays. After reaching 99, counter begins anew.

program seven_seg_counting

dim i as byte

dim j as byte

dim v as byte

dim por1 as byte

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (7 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

dim por2 as byte

' This function returns masks

' for common cathode 7-seg display

sub function mask(dim num as byte) as byte

 select case num

 case 0 result = $3F

 case 1 result = $06

 case 2 result = $5B

 case 3 result = $4F

 case 4 result = $66

 case 5 result = $6D

 case 6 result = $7D

 case 7 result = $07

 case 8 result = $7F

 case 9 result = $6F

 end select

end sub

sub procedure interrupt

 if v = 0 then

 PORTB = por2 ' Prepare mask for digit

 PORTA = 1 ' Turn on 1st, turn off 2nd 7seg

 v = 1

 else

 PORTB = por1 ' Prepare mask for digit

 PORTA = 2 ' Turn on 2nd, turn off 1st 7seg

 v = 0

 end if

 TMR0 = 0

 INTCON = $20

end sub

main:

OPTION_REG = $80

por2 = $3F

j = 0

TMR0 = 0

INTCON = $A0 ' Disable PEIE, INTE, RBIE, T0IE

TRISA = 0

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (8 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

TRISB = 0

PORTB = 0

PORTA = 0

do

 for i = 0 to 99 ' Count from 0 to 99

 ' Prepare ones digit

 j = i mod 10

 por1 = mask(j)

 ' Prepare tens digit

 j = (i div 10) mod 10

 por2 = mask(j)

 Delay_ms(1000)

 next i

loop until false

end.

In the course of the main program, programmer doesn’t need to worry of refreshing the display. Just call the subroutine

mask every time display needs to change.

7.3 LCD Display, 4-bit and 8-bit Interface

One of the best solutions for devices that require visualizing the data is the “smart” Liquid Crystal Display (LCD). This

type of display consists of 7x5 dot segments arranged in rows. One row can consist of 8, 16, 20, or 40 segments, and

LCD display can have 1, 2, or 4 rows.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (9 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

LCD connects to microcontroller via 4-bit or 8-bit bus (4 or 8 lines). R/W signal is on the ground, because

communication is one-way (toward LCD). Some displays have built-in backlight that can be turned on with RD1 pin via

PNP transistor BC557.

Our following example prints text on LCD via 4-bit interface. Assumed pin configuration is default.

program LCD_default_test

dim Text as char[20]

main:

TRISB = 0 ' PORTB is output

LCD_Init(PORTB) ' Initialize LCD at PORTB

LCD_Cmd(LCD_CURSOR_OFF) ' Turn off cursor

Text = "mikroelektronika"

LCD_Out(1, 1, Text) ' Print text at LCD

end.

Our second example prints text on LCD via 8-bit interface, with custom pin configuration.

program LCD8_test

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (10 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

dim Text as char[20]

main:

 TRISB = 0 ' PORTB is output

 TRISD = 0 ' PORTD is output

 ' Initialize LCD at PORTB and PORTD with custom pin settings

 LCD8_Config(PORTB,PORTD,2,3,0,7,6,5,4,3,2,1,0)

 LCD8_Cmd(LCD_CURSOR_OFF) ' Turn off cursor

 Text = "mikroElektronika"

 LCD8_Out(1, 1, Text) ' Print text at LCD

end.

7.4 Graphical LCD (PIC18 only)

Most commonly used Graphical LCD (GLCD) has screen resolution of 128x64 pixels. This allows creating more

elaborate visual messages than usual LCD can provide, involving drawings and bitmaps.

The following figure shows GLCD HW connection by default initialization (using GLCD_LCD_Init routine); if you

need different pin settings, refer to GLCD_LCD_Config.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (11 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

BASIC offers a comprehensive library for GLCD – refer to Chapter 5: Built-in and Library Routines for more

information. Our following example demonstrates the possibilities of GLCD and the mentioned library. Note that the

library works with PIC18 only.

program GLCD_test

 ' For PIC18

include "GLCD_128x64.pbas" ' You need to include GLCD_128x64 library

dim text as string[25]

main:

 PORTC = 0

 PORTB = 0

 PORTD = 0

 TRISC = 0

 TRISD = 0

 TRISB = 0

 GLCD_LCD_Init(PORTC, PORTD) ' default settings

 GLCD_Set_Font(FONT_NORMAL1)

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (12 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

 while true

 GLCD_Clear_Screen

 ' Draw Circles

 GLCD_Clear_Screen

 text = "Circle"

 GLCD_Put_Text(0, 7, text, NONINVERTED_TEXT)

 GLCD_Circle(63,31,10)

 Delay_Ms(4000)

 ' Draw Rectangles

 GLCD_Clear_Screen

 text = "Rectangle"

 GLCD_Put_Text(0, 7, text, NONINVERTED_TEXT)

 GLCD_Rectangle(10, 0, 30, 35)

 Delay_Ms(4000)

 GLCD_Clear_Screen

 ' Draw Lines

 GLCD_Clear_Screen

 text = "Line"

 GLCD_Put_Text(55, 7, text, NONINVERTED_TEXT)

 GLCD_Line(0, 0, 127, 50)

 GLCD_Line(0,63, 50, 0)

 Delay_Ms(5000)

 ' Fonts Demo

 GLCD_Clear_Screen

 text = "Fonts DEMO"

 GLCD_Set_Font(FONT_TINY)

 GLCD_Put_Text(0, 4, text, NONINVERTED_TEXT)

 GLCD_Put_Text(0, 5, text, INVERTED_TEXT)

 GLCD_Set_Font(FONT_BIG)

 GLCD_Put_Text(0, 6, text, NONINVERTED_TEXT)

 GLCD_Put_Text(0, 7, text, INVERTED_TEXT)

 Delay_ms(5000)

 wend

end.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (13 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

7.5 Sound Signalization

Some applications require sound signalization in addition to visual or instead of it. It is commonly used to alert or

announce the termination of some long, time-consuming process. The information presented by such means is fairly

simple, but relieves the user from having to constantly look into displays and dials.

BASIC’s Sound library facilitates generating sound signals and output on specified port. We will present a simple

demonstration using piezzo speaker connected to microcontroller’s port.

program Sound

' The following three tones are calculated for 4MHz crystal
sub procedure Tone1

 Sound_Play(200, 200) ' Period = 2ms <=> 500Hz, Duration = 200 periods

end sub

sub procedure Tone2

 Sound_Play(180, 200) ' Period = 1.8ms <=> 555Hz

end sub

sub procedure Tone3

 Sound_Play(160, 200) ' Period = 1.6ms <=> 625Hz

end sub

sub procedure Melody ' Plays the melody "Yellow house"

 Tone1

 Tone2

 Tone3

 Tone3

 Tone1

 Tone2

 Tone3

 Tone3

 Tone1

 Tone2

 Tone3

 Tone1

 Tone2

 Tone3

 Tone3

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (14 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

 Tone1

 Tone2

 Tone3

 Tone3

 Tone3

 Tone2

 Tone1

end sub

main:

 TRISB = $F0

 Sound_Init(PORTB, 2) ' Connect speaker on pins RB2 and

GND
 Sound_Play(50, 100)

 while true

 if Button(PORTB,7,1,1) then ' RB7 plays Tone1

 Tone1

 end if

 while TestBit(PORTB,7) = 1 ' Wait for button to be released

 nop

 wend

 if Button(PORTB,6,1,1) then ' RB6 plays Tone2

 Tone2

 end if

 while TestBit(PORTB,6) = 1 ' Wait for button to be released

 nop

 wend

 if Button(PORTB,5,1,1) then ' RB5 plays Tone3

 Tone3

 end if

 while TestBit(PORTB,5) = 1 ' Wait for button to be released

 nop

 wend

 if Button(PORTB,4,1,1) then ' RB4 plays Melody

 Melody

 end if

 while TestBit(PORTB,4) = 1 ' Wait for button to be released

 nop

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (15 sur 16)05/11/2004 02:27:46

Programming PIC Microcontrollers in BASIC - mikroElektronika

 wend

 wend

end.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc. USA. Microchip logo

and name are the registered tokens of the Microchip Technology. mikroBasic is a registered trade mark of mikroElektronika. All

other tokens mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/07.htm (16 sur 16)05/11/2004 02:27:46

mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollers in BASIC - mikroElektronika

Chapter 8: Examples with Memory and Storage
Media

● Introduction

● 8.1 EEPROM Memory

● 8.2 Flash Memory

● 8.3 Compact Flash

Introduction

There is no program on this world that doesn’t interact with memory in some way. First, during its

execution, it retains the operational data from, uses or alters it, and puts it back into the program

memory. Second, it is often necessary to store and handle large amount of data that can be obtained

from various sources, whether it is the car engine temperature acquisition data or some bitmap image

to be displayed on the GLCD. In this chapter we will focus on the latter problem, i.e. we’ll go through

the techniques of manipulating data on the so-called memory storage devices and systems.

8.1 EEPROM Memory

Data used by microcontroller is stored in the RAM memory as long as there is a power supply present.

If we need to keep the data for later use, it has to be stored in a permanent memory. An EEPROM

(E²PROM), or Electrically-Erasable Programmable Read-Only Memory is a non-volatile storage chip,

commonly used with PIC microcontrollers for this purpose. An EEPROM can be programmed and

erased multiple times electrically – it may be erased and reprogrammed only a certain number of

times, ranging from 100,000 to 1,000,000, but it can be read an unlimited number of times.

8.1.1 Internal EEPROM

Some PIC microcontrollers have internal EEPROM allowing you to store information without any

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (1 sur 12)05/11/2004 02:28:29

Programming PIC Microcontrollers in BASIC - mikroElektronika

external hardware.

BASIC has a library for working with internal EEPROM which makes writing and reading data very

easy. Library function EEPROM_Read reads data from a specified address, while library procedure

EEPROM_Write writes data to the specified address.

Note: Be aware that all interrupts will be disabled during execution of EEPROM_Write routine (GIE

bit of INTCON register will be cleared). Routine will set this bit on exit. Ensure minimum 20ms delay

between successive use of routines EEPROM_Write and EEPROM_Read. Although EEPROM will

write the correct value, EEPROM_Read might return undefined result.

In our following example, we will write a sequence of numbers to successive locations in EEPROM.

Afterwards, we’ll read these and output to PORTB to verify the process.

program EEPROM_test

dim i as byte

dim j as byte

main:

 TRISB = 0

 for i = 0 to 20

 EEPROM_Write(i, i + 6)

 next i

 Delay_ms(30)

 for i = 0 to 20

 PORTB = EEPROM_Read(i)

 for j = 0 to 200

 Delay_us(500)

 next j

 next i

end.

8.1.2 Serial EEPROM
http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (2 sur 12)05/11/2004 02:28:29

Programming PIC Microcontrollers in BASIC - mikroElektronika

Occasionally, our needs will exceed the capacity of PIC’s internal EEPROM. When we need to store a

larger amount of data obtained by PIC, we have an option of using external serial EEPROM. Serial

means that EEPROM uses one of the serial protocols (I2C, SPI, microwire) for communication with

microcontroller. In our example, we will work with EEPROM from 24Cxx family which uses two

lines and I2C protocol for communication with MCU.

Serial EEPROM connects to microcontroller via SCL and SDA lines. SCL line is a clock for

synchronizing the transfer via SDA line, with frequency going up to 1MHz.

I2C communication allows connecting multiple devices on a single line. Therefore, bits A1 and A0

have an option of assigning addresses to certain I2C devices by connecting the pins A1 and A0 to the

ground and +5V (one I2C line could be EEPROM on address $A2 and, say, real time clock PCF8583

on address $A0). R/W bit of address byte selects the operation of reading or writing data to memory.

More detailed data on I2C communication can be found in the technical documentation of any I2C

device.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (3 sur 12)05/11/2004 02:28:29

Programming PIC Microcontrollers in BASIC - mikroElektronika

Our following program sends data to EEPROM at address 2. To verify transfer, we’ll read data via

I2C from EEPROM and send its value to PORTD. For more information on I2C Library consult

Chapter 5: Built-in and Library Routines.

program EEPROM_test

dim EE_adr as byte

dim EE_data as byte

dim jj as word

main:

 I2C_init(100000) ' Initialize full master mode

 TRISD = 0 ' PORTD is output

 PORTD = $ff ' Initialize PORTD

 I2C_Start ' Issue I2C start signal

 I2C_Wr($a2) ' Send byte via I2C(command to 24cO2)

 EE_adr = 2

 I2C_Wr(EE_adr) ' Send byte(address of EEPROM)

 EE_data = $aa

 I2C_Wr(EE_data) ' Send data(data that will be written)

 I2C_Stop ' Issue I2C stop signal

 for jj = 0 to 65500 ' Pause while EEPROM writes data

 nop

 next jj

 I2C_Start ' Issue I2C start signal

 I2C_Wr($a2) ' Send byte via I2C

 EE_adr = 2

 I2C_Wr(EE_adr) ' Send byte(address for EEPROM)

 I2C_Repeated_Start ' Issue I2C repeated start signal

 I2C_Wr($a3) ' Send byte(request data from EEPROM)

 EE_data = I2C_Rd(1) ' Read the data

 I2C_Stop ' Issue I2C_Stop signal

 PORTD = EE_data ' Print data on PORTD

noend: ' Endless loop

 goto noend

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (4 sur 12)05/11/2004 02:28:29

Programming PIC Microcontrollers in BASIC - mikroElektronika

end.

8.2 Flash Memory

Flash memory is a form of EEPROM that allows multiple memory locations to be erased or written in

one programming operation. Normal EEPROM only allows one location at a time to be erased or

written, meaning that Flash can operate at higher effective speeds when the systems using it read and

write to different locations at the same time.

Flash memory stores information on a silicon chip in a way that does not need power to maintain the

information in the chip. This means that if you turn off the power to the chip, the information is

retained without consuming any power. In addition, Flash offers fast read access times and solid-state

shock resistance. These characteristics make it very popular for microcontroller applications and for

applications such as storage on battery-powered devices like cell phones.

Many modern PIC microcontrollers utilize Flash memory, usually in addition to normal EEPROM

storage chip. Therefore, BASIC provides a library for direct accessing and working with MCU’s

Flash. Note: Routines differ for PIC16 and PIC18 families, please refer to Chapter 5: Built-in and

Library Routines.

The following code demonstrates use of Flash Memory library routines:

' for PIC18

program flash_pic18_test

const FLASH_ERROR = $FF

const FLASH_OK = $AA

dim toRead as byte

dim i as byte

dim toWrite as byte[64]

main:

 TRISB = 0 ' PORTB is output

 for i = 0 to 63 ' initialize array

 toWrite[i] = i

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (5 sur 12)05/11/2004 02:28:30

Programming PIC Microcontrollers in BASIC - mikroElektronika

 next i

 Flash_Write($0D00, toWrite) ' write contents of the

array to the address 0x0D00

 ' verify write

 PORTB = 0 ' turn off PORTB

 toRead = FLASH_ERROR ' initialize error state

 for i = 0 to 63

 toRead = Flash_Read($0D00+i) ' read 64 consecutive

locations starting from 0x0D00

 if toRead <> toWrite[i] then ' stop on first error

 PORTB = FLASH_ERROR ' indicate error

 Delay_ms(500)

 else

 PORTB = FLASH_OK ' indicate there is no error

 end if

 next i

end.

For PIC16 family, the corresponding code looks like this:

' for PIC16

program flash_pic16_test

const FLASH_ERROR = $FF

const FLASH_OK = $AA

dim toRead as word

dim i as word

main:

 TRISB = 0 ' PORTB is output

 for i = 0 to 63

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (6 sur 12)05/11/2004 02:28:30

Programming PIC Microcontrollers in BASIC - mikroElektronika

 Flash_Write(i+$0A00, i) ' write the value of i

starting from the address 0x0A00
 next i

 ' verify write

 PORTB = 0 ' turn off PORTB

 toRead = FLASH_ERROR ' initialize error state

 for i = 0 to 63

 toRead = Flash_Read($0A00+i) ' Read 64 consecutive

locations starting from 0x0A00

 if toRead <> i then ' Stop on first error

 i = i + $0A00 ' i contains the address of

the erroneous location

 PORTB = FLASH_ERROR ' indicate error

 Delay_ms(500)

 else

 PORTB = FLASH_OK ' indicate there is no error

 end if

 next i

end.

8.3 Compact Flash

Compact Flash (CF) was originally a type of data storage device, used in portable electronic devices.

As a storage device, it typically uses Flash memory in a standardized enclosure. At present, the

physical format is used in handheld and laptop computers, digital cameras, and a wide variety of other

devices, including desktop computers. Great capacity (8MB ~ 8GB, and more) and excellent access

time of typically few microseconds make them very attractive for microcontroller applications.

Flash memory devices are non-volatile and solid state, and thus are more robust than disk drives,

consuming only about 5% of the power required by small disk drives. They operate at 3.3 volts or 5

volts, and can be swapped from system to system. CF cards are able to cope with extremely rapid

changes in temperature – industrial versions of flash memory cards can operate at a range of -45°C to

+85°C.

BASIC includes a library for accessing and handling data on Compact Flash card. In CF card, data is

divided into sectors, one sector usually comprising 512 bytes (few older models have sectors of 256B).

Read and write operations are not performed directly, but successively through 512B buffer. These

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (7 sur 12)05/11/2004 02:28:30

Programming PIC Microcontrollers in BASIC - mikroElektronika

routines are intented for use with CF that have FAT16 and FAT32 file system. Note: routines for file

handling (CF_File_Write_Init, CF_File_Write_Byte,

CF_File_Write_Complete) can only be used with FAT16 file system, and only with PIC18

family!

File accessing routines can write file. File names must be exactly 8 characters long and written in

uppercase. User must ensure different names for each file, as CF routines will not check for possible

match. Before write operation, make sure you don't overwrite boot or FAT sector as it could make

your card on PC or digital cam unreadable. Drive mapping tools, such as Winhex, can be of a great

assistance.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (8 sur 12)05/11/2004 02:28:30

Programming PIC Microcontrollers in BASIC - mikroElektronika

Here’s an example for using Compact Flash card from BASIC. A set of files is written on CF card.

This can be checked later by plugging the CF card on a PC or a digital camera. Observe the way the

file is being written:

● First, write-to-file is initialized, telling to PIC that all consecutive CF_File_Write_Byte

instructions will write to a new file;

● Then, actual write of data is performed (with CF_File_Write_Byte);

● Finally, finish of write-to-file cycle is signallized with call to CF_File_Write_Complete

routine. At that moment, the newly created file is given its name.

program CompactFlash_File

' for PIC18

dim i1 as word

dim index as byte

dim fname as char[9]

dim ext as char[4]

sub procedure Init

 TRISC = 0 ' PORTC is output. We'll

use it only to signal

 ' end of our program.

 CF_Init_Port(PORTB, PORTD) ' Initialize ports

do
 nop

loop until CF_DETECT(PORTB) = true ' Wait until CF card is

inserted

Delay_ms(50) ' Wait for a while until

the card is stabilized

end sub ' i.e. its power supply

is stable and CF card

 ' controller is on

main:

 ext = "txt" ' File extensions will be

"txt"

 index = 0 ' Index of file to be

written

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (9 sur 12)05/11/2004 02:28:30

Programming PIC Microcontrollers in BASIC - mikroElektronika

 while index < 5

 PORTC = 0

 Init

 PORTC = index

 CF_File_Write_Init(PORTB, PORTD) '

Initialization for writing to new file
 i1 = 0

 while i1 < 50000

 CF_File_Write_Byte(PORTB,PORTD,48+index) ' Writes 50000

bytes to file
 inc(i1)

 wend

 fname = "RILEPROX" ' Must be 8

character long in upper case

 fname[8] = 48 + index ' Ensure that

files have different name

 CF_File_Write_Complete(PORTB,PORTD, fname, ext) ' Close

the file
 Inc(index)

 wend

 PORTC = $FF

end.

If you do not wish to use your CF card in PCs and digicams but ruther as a simple storage device for

your PIC MCU only, you can then ignore the entire FAT system and store data directly to CF memory

sectors:

program cf_test

dim i as word

main:

 TRISC = 0 ' PORTC is output

 CF_Init_Port(PORTB,PORTD) ' Initialize ports

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (10 sur 12)05/11/2004 02:28:30

Programming PIC Microcontrollers in BASIC - mikroElektronika

 do

 nop

 loop until CF_Detect(PORTB) = true ' Wait until CF

card is inserted

 Delay_ms(500)

 CF_Write_Init(PORTB, PORTD, 590, 1) ' Initialize write

at sector address 590

 ' of 1 sector

(512 bytes)

 for i = 0 to 511 ' Write 512 bytes

to sector (590)
 CF_Write_Byte(PORTB, PORTD, i + 11)

 next i

 PORTC = $FF

 Delay_ms(1000)

 CF_Read_Init(PORTB, PORTD, 590, 1) ' Initialize write

at sector address 590

 ' of 1 sector

(512 bytes)

 for i = 0 to 511 ' Read 512 bytes

from sector (590)

 PORTC = CF_Read_Byte(PORTB, PORTD) ' and display

it on PORTC
 Delay_ms(1000)

 next i

end.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc.

USA. Microchip logo and name are the registered tokens of the Microchip Technology. mikroBasic is a

registered trade mark of mikroElektronika. All other tokens mentioned in the book are the property of the

companies to which they belong.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (11 sur 12)05/11/2004 02:28:30

Programming PIC Microcontrollers in BASIC - mikroElektronika

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/08.htm (12 sur 12)05/11/2004 02:28:30

mailto:office@mikroelektronika.co.yu

	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr12E.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr133.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr138.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr13C.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr140.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr146.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr14A.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr14E.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

