Programming PIC Microcontrollersin BASIC - mikroElektronika

Table of Contents

. Preface

. Chapter 1. The Basics

. Chapter 2: Elements of BASIC Language

. Chapter 3: Operators

. Chapter 4: Control Structures

. Chapter 5: Built-in and Library Routines

. Chapter 6: Exampleswith PIC Integrated Peripherals

. Chapter 7. Exampleswith Displaying Data

. Chapter 8: Exampleswith Memory and Storage M edia

« Chapter 9: Communications Examples (under construction)
. Appendix A: mikroBasic IDE

Preface

In order to simplify things and crash some prejudices, | will allow myself to give you
some advice before reading this book. Y ou should start reading it from the chapter that
interests you the most, in any order you find suitable. As the time goes by, read the
parts you may need at that exact moment. If something starts functioning without you
knowing exactly how, it shouldn’t bother you too much. Anyway, it is better that your
program works than that it doesn’t. Always stick to the practical side of life. Better to
finish the application on time, make it reliable and, of course, get paid for it aswell as
possible.

In other words, it doesn’t matter if the exact manner in which the e ectrons move

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/00.htm (1 sur 4)05/11/2004 02:02:31


http://www.mikroelektronika.co.yu/english/product/books/picbasicbook/0a.htm

Programming PIC Microcontrollersin BASIC - mikroElektronika

within the PN junctions escapes your knowledge. Y ou are not supposed to know the
whole history of electronicsin order to assure the income for you or your family. Do
not expect that you will find everything you need in a single book, though. The
information are dispersed literally everywhere around us, so it is necessary to collect
them diligently and sort them out carefully. If you do so, the successisinevitable.

With al my hopes of having done something worthy investing your time in.

Yours,
NebojsaMatic

mikroElektronika Recommends

EasyPIC 2

#7 Development system for PIC MCUs

USB programmer on board! System supports 18, 28 and
40-pin microcontrol Iers (it isdelivered with PIC16F877). With the system also comes
the programmer. Y ou can test many different industrial applications on the system:
temperature controllers, counters, timers... [mor €]

—=a—1 MmikroBasic

Advanced BASIC compiler for PIC

A beginner? Worry not. Easy-to-learn BASIC syntax, advanced
compiler features, built-in routines, source-level debugger, and
many practical examples we have provided allow quick start in programming PIC.
Highly intuitive, user-friendly IDE and comprehensive help guarantee success! [mor €]

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/00.htm (2 sur 4)05/11/2004 02:02:31


http://www.mikroelektronika.co.yu/english/product/tools/easypic2.htm
http://www.mikroelektronika.co.yu/english/product/tools/easypic2.htm
http://www.mikroelektronika.co.yu/english/product/compilers/mikrobasic/index.htm
http://www.mikroelektronika.co.yu/english/product/compilers/mikrobasic/index.htm

Programming PIC Microcontrollersin BASIC - mikroElektronika

USB PIC Flash

4 Programmer for PIC18 family

: :v PIC Flash isthe USB In-System programmer for Flash
family of Microchip’s MCUs. Beside standard FLASH
MCUSs, it can also program the latest models of PIC18 family. [mor €]

To Reader’'s Knowledge

The contents published in the book “Programming PIC microcontrollersin BASIC” is
subject to copyright and it must not be reproduced in any form without an explicit
written permission released from the editorial of mikroElektronika. The contact
address for the authorization regarding contents of this book:
office@mikroelektronika.co.yu.

The book was prepared with due care and attention, however the publisher does not
accept any responsibility neither for the exactness of the information published
therein, nor for any consequences of its application.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/00.htm (3 sur 4)05/11/2004 02:02:31


http://www.mikroelektronika.co.yu/english/product/tools/picflashusb.htm
http://www.mikroelektronika.co.yu/english/product/tools/picflashusb.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/picbook.htm
http://www.mikroelektronika.co.yu/english/product/books/PICbook/picbook.htm
mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip
Technology Inc. USA. Microchip logo and name are the registered tokens of the Microchip
Technology. mikroBasic is aregistered trade mark of mikroElektronika. All other tokens
mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please
contact our office.

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/00.htm (4 sur 4)05/11/2004 02:02:31


mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

Chapter 1: The Basics

. Introduction

. 1.1Why BASIC?

. 1.2 Choosingtheright PIC for the task
. 1.3 A word about code writing

. 1.4 Writing and compiling your program

. 1.5 L oading program to microcontroller

. 1.6 Runningthe program
. 1.7 Troubleshooting

Introduction

Simplicity and ease which higher programming languages bring in, as well as broad
application of microcontrollers today, were reasons to incite some companies to adjust and
upgrade BASIC programming language to better suit needs of microcontroller
programming. What did we thereby get? First of al, developing applicationsis faster and
easier with all the predefined routines which BASIC brings in, whose programming in
assembly would take the largest amount of time. This allows programmer to concentrate on
solving the important tasks without wasting his time on, say, code for printing on LCD

display.

To avoid any confusion in the further text, we need to clarify several termswe will be using
frequently throughout the book:

Programming language is a set of commands and rules according to which we write the
program. There are various programming languages such as BASIC, C, Pascal, etc. Thereis
plenty of resources on BASIC programming language out there, so we will focus our

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (1 sur 11)05/11/2004 02:10:07



http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (2 sur 11)05/11/2004 02:10:07

Programming PIC Microcontrollersin BASIC - mikroElektronika

attention particularly to programming of microcontrollers.

Program consists of a sequence of commands written in programming language that

microcontroller executes one after another. Chapter 2 deals with the structure of BASIC
program in details.

Compiler isaprogram run on computer and its task isto trandate the original BASIC code
into language of zeros and ones that can be fed to microcontroller. The process of trandation
of BASIC program into executive HEX code is shown in the figure below. The program
written in BASIC and saved asfile pr ogr am pbas is converted by compiler into

assembly code (pr ogr am asm). The generated assembly code is further translated into
executive HEX code which can be written to microcontroller memory.

Programmer is adevice which we use to transfer our HEX files from computer to
microcontroller memory.

Project file Mm";le

mikroBasic
| ™ ' I|
/ Once you have \ |
written your | |
program, ' |
mikroBasic 'I |
can complle | |
each unit file | |
and create mcl \ |

| files '

Def file

-
o
; '\.I\Iil o
| 2

I
I
I
I
I
O
I \
| H"""jrnikn:l Basic
| links mcl files
[ and creates
| asmi, list and
I
I

L1

hex files
|
\_ _;-"I
§ \
e

Ea o R T Bl ok LR T e Tl el iR e Vg R



Programming PIC Microcontrollersin BASIC - mikroElektronika

________________________________

[ 3. )
", i 5 L J
[ Finally, vou can |
pad hax file to
programirmer
and program
the
device

Programmer

1.1 Why BASIC?

Originally devised as an easy-to-use tool, BASIC became widespread on home
microcomputersin the 1980s, and remains popular to this day in a handful of heavily
evolved dialects. BASIC' s name, coined in classic, computer science tradition to produce a
nice acronym, stands for Beginner’s All-purpose Symbolic Instruction Code.

BASIC isstill considered by many PC users to be the easiest programming language to use.
Nowadays, this reputation is being shifted to the world of microcontrollers. BASIC allows
faster and much easier development of applications for PIC compared to the Microchip’s
assembly language MPASM. When writing the code for MCUSs, programmers frequently
deal with the same issues, such as serial communication, printing on LCD display,
generating PWM signals, etc. For the purpose of facilitating programming, BASIC provides
anumber of built-in and library routines intended for solving these problems.

Asfar asthe execution and program size are in question, MPASM has a small advantage in
respect with BASIC. Thisiswhy there is an option of combining BASIC and assembly code
— assembly is commonly used for parts of program in which execution time is critical or
same commands are executed great number of times. Modern microcontrollers, such as PIC,
execute instructions in asingle cycle. If microcontroller clock is 4MHz, then one assembly
Instruction requires 250ns x 4 = 1us. As each BASIC command is technically a sequence of
assembly instructions, the exact time necessary for its execution can be calculated by simply
summing up the execution times of constituent assembly instructions.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (3 sur 11)05/11/2004 02:10:07



Programming PIC Microcontrollersin BASIC - mikroElektronika

1.2 Choosing the right PIC for the task

Currently, the best choice for application development using BASIC are: the famous
PIC16F84, PIC16F87x, PIC16F62x, PIC18Fxxx. These controllers have program memory
built on FLASH technology which provides fast erasing and reprogramming, thus allowing
fast debugging. By a single mouse click in the programming software, microcontroller
program can be instantly erased and then reloaded without removing chip from device. Also,
program loaded in FLASH memory can be stored after the power is off. Beside FLASH
memory, microcontrollers of PIC16F87x and PIC16F84 series also contain 64-256 bytes of
internal EEPROM memory, which can be used for storing program data and other
parameters when power is off. BASIC features built-in EEPROM_Read and

EEPROM _Write instructions that can be used for loading and saving data to EEPROM.

Older PIC microcontroller families (12C67x, 14C000, 16C55x, 16C6xx, 16C7xx, and
16C92x) have program memory built on EPROM/ROM technology, so they can either be
programmed only once (OTP version with ROM memory) or have a glass window (JW
version with EPROM memory) which alows erasing by few minutes exposure to UV light.
OTP versions are usually cheaper and are a natural choice for manufacturing large series of
products.

In order to have compl ete information about specific microcontroller in the application, you
should get the appropriate Data Sheet or Microchip CD-ROM.

lf” ?)D The program examples worked out throughout the book are mostly to be run on
% the microcontrollers PIC16F84 or PIC6F877, but with minor adjustments, can

be run on any other PIC microcontroller.

1.3 A word about code writing

Technically, any text editor that can save program file as pure ASCI| text (without specia
symbols for formatting) can be used for writing your BASIC code. Still, thereis no need to
do it “by hand” — there are specialized environments that take care of the code syntax, free
the memory and provide all the necessary tools for writing a program.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (4 sur 11)05/11/2004 02:10:07



Programming PIC Microcontrollersin BASIC - mikroElektronika

mikroBasic | DE includes highly adaptable Code Editor, fashioned to satisfy needs of both
novice users and experienced programmers. Syntax Highlighting, Code Templates, Code &
Parameter Assistant, Auto Correct for common typos, and other features provide
comfortable environment for writing a program.

If you had no previous experience with advanced IDEs, you may wonder what Code and
Parameter Assistants do. These are utilities which facilitate the code writing. For example, if
you type first few letter of aword in Code Editor and then press CTRL+SPACE, al valid
identifiers matching the letters you typed will be prompted to you in afloating panel. Now
you can keep typing to narrow the choice, or you can select one from the list using keyboard
arrows and Enter.

In combination with comprehensive help, integrated tools, extensive libraries, and Code
Explorer which alows you to easily monitor program items, all the necessary tools are at
hand.

1.4 Writing and compiling your program

Thefirst step isto write our code. Every sourcefileis saved in asingletext file with
extension . pbas. Hereis an example of one ssimple BASIC program, bl i nk. pbas.

program LED Bl i nk

mai n
TRISB = 0 " Configure pins of PORTB as
out put
el oop:
PORTB = $FF " Turn on di odes on PORTB
Del ay _ns(1000) " Wit 1 second
PORTB = 0 " Turn off di odes on PORTB
Del ay _ns(1000) " Wit 1 second

goto el oop Stay in | oop

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (5 sur 11)05/11/2004 02:10:07



Programming PIC Microcontrollersin BASIC - mikroElektronika

end.

When the program is completed and saved as . pbas file, it can be compiled by clicking on

Compile Icon (or just hit CTRL+F9) in mikroBasic IDE. The compiling procedure takes
place in two consecutive steps.

1. Compiler will convert . pbas fileto assembly code and saveit asbl i nk. asmfile.
2. Then, compiler automatically calls assembly, which converts . asmfileinto
executable HEX code ready for feeding to microcontroller.

Y ou cannot actually make the difference between the two steps, as the process is completely
automated and indivisible. In case of syntax error in program code, program will not be
compiled and HEX file will not be generated. Errors need to be corrected in the original .

pbas file and then the source file may be compiled again. The best approach is to write and
test small, logical parts of the program to make debugging easier.

1.5 Loading program to microcontroller

Asaresult of successful compiling of our previous code, mikroBasic will generate
following files:

. blink.asm - assembly file

. blink.Ist - program listing

. blink.mcl - mikro compile library

. blink.hex - executable file which is written into the programming memory

MCL file (mikro compile library) is created for each module you have included in the
project. In the process of compiling, .mcl fileswill be linked together to output asm, Ist and
hex files. If you want to distribute your module without disclosing the source code, you can
send your compiled library (file extension .mcl). User will be able to use your library as if
he had the source code. Although the compiler is able to determine which routines are
implemented in the library, it isa common practice to provide routine prototypesin a
separate text file.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (6 sur 11)05/11/2004 02:10:07



Programming PIC Microcontrollersin BASIC - mikroElektronika

HEX fileisthe one you need to program the microcontroller. Commonly, generated HEX
will be standard 8-bit Merged Intel HEX format, accepted by the vast majority of the
programming software. The programming device (programmer) with accessory software
installed on PC isin charge of writing the physical contents of HEX file into the internal
memory of a microcontroller. The contents of afile bl i nk. hex isgiven below:

: 100000000428FF3FFF3FFF3F031383168601FF30AS5
: 10001000831286000630FO00FF30F100FF30F2005E
: 10002000F00B13281A28F10B16281928F20B1628A2
: 10003000132810281A30FO00FF30F100FO00B2128AF
: 100040002428F10B21281E284230F000F00B26282E
: 1000500086010630FO000FF30F100FF30F200F00BBY
: 1000600032283928F10B35283828F20B3528322868
: 100070002F281A30FO00FF30F100F00B4028432801
: 10008000F10B40283D284230F000F00B45280428B1
: 100090004828FF3FFF3FFF3FFF3FFF3FFF3FFF3F3E
: 02400E007A3FF7

: 00000001FF

Beside loading a program code into programming memory, programmer also configures the
target microcontroller, including the type of oscillator, protection of memory against
reading, watchdog timer, etc. The following figure shows the connection between PC,
programming device and the MCU.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (7 sur 11)05/11/2004 02:10:07



Programming PIC Microcontrollersin BASIC - mikroElektronika

413 0 1 L 12
[Jre Rai ]
z 1T
[res ron (]
1 1
3 Poser [[FaT oK o5c1 []
O Bamy 4 15,
;::: |—|5 MCLR pc ©s5c2 :1|4
“’*—5[ vss  JGFB4  vdd :1|17

Laa [|rE0anT RET [ ——

M T 1z
[]rE1 REG | }—

a 11
Frogamda [|rEz RES[]
o 1
[rez |

Note that the programming software should be used only for the communication with the
programming device — it is not suitable for code writing.

1.6 Running the program

For proper functioning of microcontroller, it is necessary to provide power supply,
oscillator, and areset circuit. The supply can be set with the ssmple rectifier with Gretz
junction and LM 7805 circuit as shown in the figure below.

o
Transformer @ E

~ | BEOC1000 H‘i

L1
+_5_'-._.-'

220 rs Qyira — + Ll m7aod’

1 2 cal| o3
- [ == |- HR
-

©1=22pF, 2= 100xF,
0% = 10pF, B=1K

Oscillator can be 4AMHz crystal and either two 22pF capacitors or the ceramic resonator of
the same frequency (ceramic resonator already contains the mentioned capacitors, but unlike
oscillator has three termination instead of only two). The rate at which the microcontroller
operates, i.e. the speed at which the program runs, depends heavily on the oscillator
frequency. During the application devel opment, the easiest thing to do is to use the internal

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (8 sur 11)05/11/2004 02:10:07



Programming PIC Microcontrollersin BASIC - mikroElektronika

reset circuit — MCLR pin is connected to +5V through a 10K resistor. Below is the scheme
of arectifier with LM 7805 circuit which gives the output of stable +5V, and the minimal
configuration relevant for the operation of a PIC microcontroller.

o

1 s 12
[[rez Rid []
E [] £ T
[rez rao [ .
1 e
[JraaTockl  05c [] ' |_|
4 15 =
b——|MILR o5ce [J————H
- ‘ 5 PIC T +§F
o— | 16F84 |
& 1} 1 AR M
[JrecanT RETF————p—+
T 1z
L [{re1 REG [ =
= 2 1
[|rez RES [] To se=e the effect of
o 1 BLIMNK program, the
[rEs RE<4[] resistor and the LED
diode are conmect=d o

T pin of the port B

After the supply is brought to the circuit previously shown, PIC microcontroller should look
animated, and the LED diode should blink once every second. If the signal is completely
missing (LED diode does not blink), then check if +5V is present at all the relevant pins of
PIC.

1.7 Troubleshooting

There are several commonly encountered problems of bringing PIC microcontroller to
working conditions. Y ou need to check afew external components and test whether their
values correspond to the desired ones, and finally to see whether all the connections are
done right. We will present afew notes you may find useful.

. Check whether the MCLR pin is connected to +5V, over reset circuit, or ssimply with
10K resistor. If the pin remains disconnected, its level will be “floating” and it may
work sometimes, but it usually won't. Chip has power-on-reset circuit, so the
appropriate external pull-up resistor on MCLR pin should be sufficient.

. Check whether the connection with the resonator is stable. For most PIC
microcontrollers to begin with 4AMHz resonator iswell enough.

. Check the supply. PIC microcontroller consumes very little energy but the supply
needs to be well filtrated. At the rectifier output, the current is direct but pulsating,

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (9 sur 11)05/11/2004 02:10:07



Programming PIC Microcontrollersin BASIC - mikroElektronika

and as such is not suitable for the supply of microcontroller. To avoid the pulsating,
the electrolytic capacitor of high capacitance (e.g. 470 mF) is placed at the rectifier
output.

. If PIC microcontroller supervises devices that pull alot of energy, they may provoke
enough malfunctioning on the supply lines to cause the microcontroller start behaving
somewhat strangely. Even seven-segmented LED display may well induce tension
drops (the worst scenario iswhen all the digits are 8, when LED display needs the
most power), if the source itself is not capable to procure enough current (e.g. 9V
battery).

. Some PIC microcontrollers feature multi-functional 1/0 pins, for example
PIC16C62x family (PIC16C620, 621 and 622). Controllers of this family are
provided with analog comparators on port A. After putting those chips to work, port
A is set to analog mode, which brings about the unexpected behavior of the pin
functions on the port. Upon reset, any PIC with analog inputs will show itself in
analog mode (if the same pins are used as digital lines they need to be set to digital
mode). One possible source of troublesisthat the fourth pin of port A exhibits
singular behavior when it is used as output, because the pin has open collectors output
instead of usual bipolar state. Thisimplies that clearing this pin will nevertheless set
it to low level, while setting the pin will let it float somewhere in between, instead of
setting it to high level. To make the pin behave as expected, the pull-up resistor was
placed between RA4 and 5V. Its magnitude is between 4.7K and 10K, depending on
the current necessary for the input. In thisway, the pin functions as any other input
pin (all pins are output after reset).

More problems are to be expected if you plan to be seriously working with PIC. Sometimes
the thing seems likeit is going to work, but it just won't, regardless of the effort. Just
remember that there is always more than one way to solve the problem, and that a different
approach may bring solution.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip
Technology Inc. USA. Microchip logo and name are the registered tokens of the Microchip
Technology. mikroBasic is aregistered trade mark of mikroElektronika. All other tokens mentioned
in the book are the property of the companies to which they belong.

http://lwww.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (10 sur 11)05/11/2004 02:10:07



Programming PIC Microcontrollersin BASIC - mikroElektronika

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our
office.

http://lwww.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/01.htm (11 sur 11)05/11/2004 02:10:07


mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

Chapter 2: Elements of BASIC Language

. Introduction
. 2.1ldentifiers

. 2.20perators
. 2.3 EXxpressions

. 2.4 1nstructions

. 2.5DataTypes
. 2.6 Constants
. 27 Variables
. 2.8 Symbols

. 2.9 Directives

. 2.10 Comments

. 211 Labes

. 2.12 Procedures and Functions
. 2.13Modules

Introduction

This chapter deals with the elements of BASIC language and the ways to use them efficiently. Learning how to
program is not complicated, but it requires skill and experience to write code that is efficient, legible, and easy to
handle. First of all, program is supposed to be comprehensible, so that the programmer himself, or somebody else
working on the application, could make necessary corrections and improvements. We have provided a code sample
written in a clear and manifest way to give you an idea how programs could be written:

L R 2k 2k I b S S I b S S S S S S S S I I b S R S S S R S b kI R kb S I R R e e i b S b kb i b S

" mcrocontroller : P16F877A

" Project: Led_blinking
This project is designed to work with PIC 16F877A,

with mnor adjustnments, it should work with any other PIC MCU.

' The code denonstrates blinking of diodes connected to PORTB.
" Diodes go on and off each second.

L R I Ik b b S I S S S S S S I S S S S S I i b S

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (1 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

program LED Bl i nki ng

mai n: " Begi nning of program
TRISB = 0 " Configure pins of PORTB as out put
PORTB = 941111111 " Turn ON di odes on PORTB
Del ay_ns(1000) " Wit for 1 second
PORTB = 990000000 " Turn OFF di odes on PORTB
Del ay_ns(1000) " Wait for 1 second
goto main " Endl ess | oop
end. " End of program

Through clever use of comments, symbols, labels and other elements supported by BASIC, program can be rendered
considerably clearer and more understandabl e, offering programmer a great dea of help.

Also, it isadvisable to divide larger programs into separate logical entities (such as routines and modules, see below)
which can be addressed when needed. This also increases reusability of code.

Names of routines and labels indicating a program segment should make some obvious sense. For example, program
segment that swaps values of 2 variables, could be named " Swap", etc.

2.1 ldentifiers

Identifiers are names used for referencing the stored values, such as variables and constants. Every program, module,
procedure, and function must be identified (hence the term) by an identifier.

Valid identifier:

1. Must begin with aletter of English alphabet or possibly the underscore ()
2. Consists of aphanumeric characters and the underscore ()
3. May not contain specia characters:
~1 @# S %N &* () + -={}Y[]1:"; " <>2, .1\
4. Can be written in mixed case as BASIC iscase insensitive; eg. Fi r st , FI RST,and f1r ST arean

equivalent identifier.

Elementsignored by the compiler include spaces, new lines, and tabs. All these elements are collectively known as
the “white space’. White space serves only to make the code more legible — it does not affect the actual compiling.

Severa identifiers are reserved in BASIC, meaning that you cannot use them as your own identifiers (e.g. words
function, byte,if,etc). For moreinformation, please refer to the list of reserved words. Also, BASIC hasa

number of predefined identifiers which are listed in Chapter 4: Instructions.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (2 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

2.2 Operators

BASIC language possesses set of operators which is used to assign values, compare values, and perform other
operations. The objects manipulated for that purpose are called operands (which themselves can be variables,
constants, or other elements).

Operatorsin BASIC must have at |east two operands, with an exception of two unary operators. They serve to create
expressions and instructions that in effect compose the program.

There are four types of operatorsin BASIC:

1. Arithmetic Operators

2. Boolean Operators

3. Logical (Bitwise) Operators

4. Relation Operators (Comparison Operators)

Operators are covered in detail in chapter 3.

2.3 Expressions

Expression is a construction that returns avalue. BASIC syntax restricts you to single line expressions, where
carriage return character marks the end of the expression. The simplest expressions are variables and constants,
while more complex can be constructed from simpler ones using operators, function calls, indexes, and typecasts.
Here is one simple expression:

A=B+ C ' This expression suns up the values of variables B and C

and stores the result into variable A

Y ou need to pay attention that the sum must be within the range of variable A in order to avoid the overflow and
therefore the evident computational error. If the result of the expression amounts to 428, and the variable A is of
byt e type (having range between 0 and 255), the result accordingly obtained will be 172, which is obviously wrong.

2.4 Instructions

Each instruction determines an action to be performed. As arule, instructions are being executed in an exact order in
which they are written in the program. However, the order of their execution can be changed by means of jump,
routine call, or an interrupt.

if Time = 60 then

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (3 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

goto M nute " If variable Tinme equals 60 junp to | abel M nute
end if

Instructioni f . . t hen contains the conducting expression Ti ne = 60 composed of two operands, variable
Ti e, constant 60 and the comparison operator (=). Generally, instructions may be divided into conditional
instructions (decision making), loops (repeating blocks), jumps, and specific built-in instructions (e.g. for
accessing the peripherals of microcontroller). Instruction set is explained in detail in Chapter 4: Instructions.

2.5 Data Types

Type determines the allowed range of values for variable, and which operations may be performed on it. It also
determines the amount of memory used for one instance of that variable.

Simple data types include:

Type Size Range of values
byte 8-hit 0..255
char* 8-bit 0..255
word 16-bit 0.. 65535
short 8-hit -128 .. 127
integer 16-bit -32768 .. 32767
longint 32-hit -2147483648 .. 2147483647

* char type can be treated as byte type in every aspect
Structured types include:

Array, which represent an indexed collection of elements of the same type, often called the base type. Base type can
be any simple type.

String represents a sequence of characters. It is an array that holds characters and the first element of string holds
the number of characters (max number is 255).

Sign isimportant attribute of data types, and affects the way variable is treated by the compiler.

Unsigned can hold only positive numbers:

byt e 0 .. 255
wor d 0 .. 65535

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (4 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Signed can hold both positive and negative numbers:

short -128 .. 127
i nt eger -32768 .. 32767
| ongi nt -2147483648 .. 214748364

2.6 Constants

Constant is data whose value cannot be changed during the runtime. Every constant is declared under unique name
which must be avalid identifier. It isagood practice to write constant names in uppercase.

If you frequently use the same fixed value throughout the program, you should declare it a constant (for example,
maximum number alowed is 1000). Thisisagood practice since the value can be changed simply by modifying the
declaration, instead of going trough the entire program and adjusting each instance manually. As simple asthis:

const MAX = 1000

Constants can be declared in decimal, hex, or binary form. Decimal constants are written without any prefix.
Hexadecimal constants begin with asign $, while binary begin with %.

const A = 56 ' 56 deci nal
const B = $0OF ' 15 hexadeci mal
const C = %40001100 ' 140 binary

It isimportant to understand why constants should be used and how this affects the MCU. Using a constant in a
program consumes no RAM memory. Thisisvery important due to the limited RAM space (PIC16F877 has 368
locationg/bytes).

2.7 Variables

Variableis data whose value can be changed during the runtime. Each variable is declared under unigue name which
hasto be avalid identifier. This name is used for accessing the memory location occupied by the variable. Variable
can be seen as a container for data and because it is typed, it instructs the compiler how to interpret the data it holds.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (5 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

In BASIC, variable needs to be declared before it can be used. Specifying a data type for each variable is mandatory.
Variableis declared like this:

dimidentifier as type

where identifier isany valid identifier and type can be any given data type.

For example:
di mtenperature as byte " Declare variable tenperature of byte type
di mvol tage as word ' Declare variable voltage of word type

Individual bits of byte variables (including SFR registers such as PORTA, etc) can be accessed by means of dot,
both on left and right side of the expression. For example:

Data Port.3 =1 " Set third bit of byte variable Data_ Port

2.8 Symbols

Symbol makes possible to replace a certain expression with asingle identifier alias. Use of symbols can increase
readability of code.

BASIC syntax restricts you to single line expressions, allowing shortcuts for constants, simple statements, function
calls, etc. Scope of symbol identifier is awhole sourcefile in which it is declared.

For example:
synmbol MaxAl | onwed = 234 " Synbol as alias for nunmeric val ue
synmbol PORT = PORTC " Synmbol as alias for Special Function
Regi st er
synbol DELAY1S = Del ay_ns(1000) " Synbol as alias for procedure call

if teA > MaxAll owed t hen
teA = teA - 100

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (6 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

end if
PORT.1 =0
DELAY1S

Note that using a symbol in a program technically consumes no RAM memory — compiler smply replaces each
instance of a symbol with the appropriate code from the declaration.

2.9 Directives

Directives are words of special significance for BASIC, but unlike other reserved words, appear only in contexts
where user-defined identifiers cannot occur. Y ou cannot define an identifier that looks exactly like a directive.

Directive Meaning
Absol ute specify exact location of variablein RAM
Og specify exact location of routinein ROM

Absol ut e specifiesthe starting address in RAM for variable (if variable is multi-byte, higher bytes are stored at
consecutive locations).

Directive absol ut e isappended to the declaration of variable:

dimrem as byte absolute $22

Variable will occupy 1 byte at address $22

dimdot as word absol ute $23
" Variable will occupy 2 bytes at addresses $23 and $24

O g specifiesthe starting address of routinein ROM. For PIC16 family, routine must fit in one page — otherwise,
compiler will report an error. Directive or g is appended to the declaration of routine:

sub procedure test org $200
" Procedure will start at address $200

end sub

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (7 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

2.10 Comments

Comments are text that is added to the code for purpose of description or clarification, and are completely ignored
by the compiler.

Any text between an apostrophe and the end of the

| ine constitutes a comment. May span one |ine only.

It isagood practice to comment your code, so that you or anybody else can later reuseit. On the other hand, itis
often useful to comment out a troublesome part of the code, so it could be repaired or modified later. Comments
should give purposeful information on what the program is doing. Comment such as Set Pin0 simply explains the
syntax but fails to state the purpose of instruction. Something like Turn Relay on might prove to be much more
useful.

Specialized editors feature syntax highlighting — it is easy to distinguish comments from code due to different color,
and comments are usually italicized.

2.11 Labels

L abels represent the most direct way of controlling the program flow. When you mark a certain program line with
label, you can jump to that line by means of instructions got o and gosub. It is convenient to think of labels as

bookmarks of sort. Note that the label mai n must be declared in every BASIC program because it marks the

beginning of the main module.

Label name needsto be avalid identifier. Y ou cannot declare two labels with same name within the same routine.
The scope of label (Iabel visibility) istied to the routine where it is declared. This ensures that got o cannot be used

for jumping between routines.

Got o isan unconditional jump statement. It jJumps to the specified label and the program execution continues
normally from that point on.

Gosub isajump statement similar to got o, except it istied to amatching word r et ur n. Upon jumping to a

specified label, previous address is saved on the stack. Program will continue executing normally from the label,
until it reachesr et ur n statement — thiswill exit the subroutine and return to the first program line following the

caller gosub instruction.

Hereisasimple example:

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (8 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

program t est

' sone instructions...
" sinple endl ess | oop using a | abel
my_| oop:

' sone instructions...

" now junp back to | abel _Ioop

goto ny_I| oop

end.

Note: Although it might seem like a good idea to beginners to program by means of jumps and labels, you should
try not to depend on it. Thisway of thinking strays from the procedural programming and can teach you bad
programming habits. It isfar better to use procedures and functions where applicable, making the code structure
more legible and easier to maintain.

2.12 Procedures and Functions

Procedures and functions, referred to as routines, are self-contained statement blocks that can be called from
different locations in a program. Function is aroutine that returns a value upon execution. Procedure is a routine that
does not return avalue.

Once routines have been defined, you can call them any number of times. Procedure is called upon to perform a
certain task, while function is called to compute a certain value.

Procedure declaration has the form:

sub procedure procedureNane(paraneterlList)
| ocal Decl arati ons
statenments

end sub

where procedureName is any valid identifier, statements is a sequence of statements that are executed upon the

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (9 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

calling the procedure, and (parameterList), and local Declarations are optional declaration of variables and/or
constants.

sub procedure prl procedure(dimparl as byte, dimpar2 as byte,
di m byref vpl as byte, dimbyref vp2 as byte)
dimlocS as byte
parl = locS + parl + par2
vpl = parl or par?2
vp2 = locS xor parl
end sub

par1 and par2 are passed to the procedure by the value, but variables marked by keyword byr ef are passed by the
address.

This means that the procedure call

prl procedure(tA tB, tC tD)

passes tA and tB by the value: creates parl = tA; and par2 = tB; then manipulates par1 and par2 so that tA and tB
remain unchanged;

passes tC and tD by the address: whatever changes are made upon vpl and vp2 are also made upon tC and tD.

Function declaration is similar to procedure declaration, except it has a specified return type and areturn value.
Function declaration has the form:

sub function functi onNane(paraneterList) as returnType
| ocal Decl ar ati ons
statenments

end sub

where functionName is any valid identifier, returnType is any simple type, statements is a sequence of statements to
be executed upon calling the function, and (parameterList), and local Declarations are optional declaration of
variables and/or constants.

In BASIC, we use the keyword Resul t to assign return value of afunction. For example:

sub function Calc(dimparl as byte, dimpar2 as wrd) as word
dimlocS as word

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (10 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

locS = parl * (par2 + 1)
Result = 1o0cS
end sub

Asfunctions return values, function calls are technically expressions. For example, if you have defined afunction
called Calc, which collects two integer arguments and returns an integer, then the function call Cal c(24, 47) is

an integer expression. If | and Jare integer variables, thenl + Cal c(J, 8) isalsoaninteger expression.

2.13 Modules

Large programs can be divided into modules which allow easier maintenance of code. Each module is an actual file,
which can be compiled separately; compiled modules are linked to create an application. Note that each source file
must end with keyword end followed by adot.

Modules allow you to:

1. Break large code into segments that can be edited separately,
2. Create libraries that can be used in different programs,
3. Distribute libraries to other devel opers without disclosing the source code.

In mikroBasic IDE, all source code including the main program is stored in . pbas files. Each project consists of a

single project file, and one or more module files. To build a project, compiler needs either a source file or a compiled
file for each module.

Every BASIC application has one main module file and any number of additional module files. All source files have
same extension (pbas). Main fileisidentified by keyword pr ogr amat the beginning, while other files have
keyword nodul e instead. If you want to include a module, add the keyword i ncl ude followed by a quoted name
of thefile.

For example:

programtest_project
i ncl ude "mat h2. pbas"
dimtA as word
dimtB as word

mai n:

tA = sqrt(th)
end.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (11 sur 12)05/11/2004 02:12:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Keyword i ncl ude instructs the compiler which file to compile. The example above includes module mat h2.
pbas inthe program file. Obviously, routine sqr t used in the example is declared in module mat h2. pbas.

If you want to distribute your module without disclosing the source code, you can send your compiled library (file
extension .mcl). User will be able to use your library asif he had the source code. Although the compiler isableto
determine which routines are implemented in the library, it is a common practice to provide routine prototypesin a
separate text file.

Module files should be organized in the following manner:

nodul e unit _nane " Modul e nane

i nclude ... " Include other nodules if necessary
synbol ... " Synbol s decl aration

const ... " Constants decl aration

dim... " Vari abl es decl aration

sub procedure procedure_nanme ' Procedures declaration

end sub

sub function function_nane " Functions decl aration

end sub

end. " End of nodul e

Note that thereis no “body” section in the module — module files serve to declare functions, procedures, constants
and global variables.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc. USA. Microchip
logo and name are the registered tokens of the Microchip Technology. mikroBasic is aregistered trade mark of
mikroElektronika. All other tokens mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/02.htm (12 sur 12)05/11/2004 02:12:53


mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

Chapter 3: Operators

. Introduction
« 3.1 Arithmetic Operators
. 3.2 Boolean Operators

. 3.3 Logical (Bitwise) Operators

. 3.4 Relation Operators (Comparison Operators)

Introduction

In complex expressions, operators with higher precedence are evaluated before the
operators with lower precedence; operators of equal precedence are evaluated
according to their position in the expression starting from the | eft.

Operator Priority
not first (highest)
*, div, mod, and, <<, >> second
+, -, Or, Xor third
= <>,5,>, <5, 3= fourth (lowest)

3.1 Arithmetic Operators

Overview of arithmetic operatorsin BASIC:

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/03.htm (1 sur 6)05/11/2004 02:14:47



Programming PIC Microcontrollersin BASIC - mikroElektronika

Operator Operation Operand types Result type

+ addition byte, short, byte, short,
integer, words,  integer, words,
longint longint

- subtraction byte, short, byte, short,
integer, words,  integer, words,
longint longint

* multiplication byte, short, integer, words,
integer, words long

div division byte, short, byte, short,
integer, words integer, words

mod remainder byte, short, byte, short,
integer, words integer, words

A div B isthevalueof A divided by B rounded down to the nearest integer. The
nod operator returns the remainder obtained by dividing its operands. In other words,

XmdY=X- (Xdivy *V.

If O (zero) isused explicitly as the second operand (i.e. X di v 0), compiler will
report an error and will not generate code. But in case of implicit division by zero : X
div Y ,whereY isO (zero), result will be the maximum value for the appropriate
type (for example, if X and Y arewords, the result will be $FFFF).

If number is converted from less complex to more complex datatype, upper bytes are
filled with zeros. If number is converted from more complex to less complex data
type, datais simply truncated (upper bytes are lost).

If number is converted from less complex to more complex datatype, upper bytes are
filled with onesif sign bit equals 1 (number is negative). Upper bytes are filled with
zeros if sign bit equals O (number is positive). If number is converted from more
complex to less complex data type, datais simply truncated (upper bytes are lost).

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/03.htm (2 sur 6)05/11/2004 02:14:47



Programming PIC Microcontrollersin BASIC - mikroElektronika

BASIC aso has two unary arithmetic operators:

Operator Operation Operand types Result type
+ (unary) sign identity short, integer, short, integer,
longint longint
- (unary) sign negation short, integer, short, integer,
longint longint

Unary arithmetic operators can be used to change sign of variables:

a =3
b = -a

assign value -3 to b

3.2 Boolean Operators

Boolean operators are not true operators, because there is no boolean data type defined
in BASIC. These operators conform to standard Boolean logic. They cannot be used
with any datatype, but only to build complex conditional expression.

Operator Operation
not negation
and conjunction
or digunction

For example:

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/03.htm (3 sur 6)05/11/2004 02:14:47



Programming PIC Microcontrollersin BASIC - mikroElektronika

I f (astr > 10) and (astr < 20) then

PORTB = OxFF

end if

3.3 Logical (Bitwise) Operators

Overview of logical operatorsin BASIC:

not

and

or

Xor

<<

>>

<< : shift left the operand for a number of bit places specified in the right operand

Operator

Operation

Operand types

bitwise negation  byte, word,

bitwise and

bitwise or

bitwise xor

bit shift left

bit shift right

short, integer,
long

byte, word,
short, integer,
long

byte, word,
short, integer,
long

byte, word,
short, integer,
long

byte, word,
short, integer,
long

byte, word,
short, integer,
long

Result type

byte, word,
short, integer,
long

byte, word,
short, integer,
long

byte, word,
short, integer,
long

byte, word,
short, integer,
long

byte, word,
short, integer,
long

byte, word,
short, integer,
long

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/03.htm (4 sur 6)05/11/2004 02:14:47



Programming PIC Microcontrollersin BASIC - mikroElektronika

(must be positive and less then 255).

>> : shift right the operand for a number of bit places specified in the right operand
(must be positive and less then 255).

For example, if you need to extract the higher byte, you can do it like this:

dimtenp as word

mai n:
TRI SA = word(tenp >> 8)
end.

3.4 Relation Operators (Comparison
Operators)

Relation operators (Comparison operators) are commonly used in conditional and loop
statements for controlling the program flow. Overview of relation operatorsin BASIC:

Operator Operation Operand types Result type
= equality All smpletypes  Trueor False

<> Inequality All smpletypes  Trueor False

< less-than All smpletypes  Trueor False

> greater-than All smpletypes  Trueor False

<= less-than-or-equal-to ~ All simpletypes  Trueor False

>= greater-than-or-equal-  All smpletypes  True or False

to

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/03.htm (5 sur 6)05/11/2004 02:14:47



Programming PIC Microcontrollersin BASIC - mikroElektronika

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip
Technology Inc. USA. Microchip logo and name are the registered tokens of the Microchip
Technology. mikroBasic is aregistered trade mark of mikroElektronika. All other tokens
mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please
contact our office.

http://www.mikroel ektronika.co.yu/english/product/books/pichasi chook/03.htm (6 sur 6)05/11/2004 02:14:47


mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

Chapter 4: Control Structures

. Introduction

. 4.1 Conditional Statements

. 4111F.THEN Statement

. 41.2SELECT..CASE Statement
. 41.3GOTO Statement

. 4.2 oops
. 4.2.1 FOR Statement

. 4.2.2D0O..LOOP Statement
. 423 WHILE Statement

. 43 ASM Statement

Introduction

Statements define algorithmic actions within a program. Simple statements - like assignments and
procedure calls - can be combined to form loops, conditional statements, and other structured
statements.

Simple statement does not contain any other statements. Simple statements include assignments, and
calls to procedures and functions.

Structured statements are constructed from other statements. Use a structured statement when you
want to execute other statements sequentially, conditionally, or repeatedly.

4.1 Conditional Statements

Conditional statements are used for change the flow of the program execution upon meeting a certain

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/04.htm (1 sur 9)05/11/2004 02:15:36



Programming PIC Microcontrollersin BASIC - mikroElektronika

condition. The BASIC instruction of branching in BASIC language is the | F instruction, with several
variations that provide the necessary flexibility.

4.1.1 IF..THEN Statement — conditional program branching

Syntax I f expression then
statenentsl
[ else
statenments2 |
end if

Description  Instruction selects one of two possible program paths. Instruction IF..THEN isthe
fundamental instruction of program branching in PIC BASIC and it can beused in
several waysto allow flexibility necessary for realization of decision making logic.

Expression returnsa True or False value. If expression is True, then statementsl
are executed; otherwise statements2 are executed, if theel se clauseis present.

Satementsl and statements2 can be statements of any type.

Example The simplest form of the instruction is shown in the figure below. Our example
tests the button connected to RBO - when the button is pressed, program jumps to
the label "Add" where value of variable "w" isincreased. If the button is not
pressed, program jumps back to the label "Main".

if expression then instruction

endif
S 1 [
cexpresson>— gl inStruction
[

dimj) as byte

Mai n:

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/04.htm (2 sur 9)05/11/2004 02:15:36



Programming PIC Microcontrollersin BASIC - mikroElektronika

if PORTB.0 = O then

got o Add
end if
goto Main

Add: j = + 1

end.

More complex form of instruction is program branching with the EL SE clause:

in if expression then
instruction 1
else
instruction 2
endif

T ™~ N

Expression

' ;

instruction 1 instruction 2

dimj) as byte

Mai n:

if PORTB.0 = O then

] =1 +1
el se
=i -1
endi f
goto Main

http://www.mikroel ektronika.co.yu/english/product/books/pichbasi cbook/04.htm (3 sur 9)05/11/2004 02:15:36



Programming PIC Microcontrollersin BASIC - mikroElektronika

end.

4.1.2 SELECT..CASE Statement — Conditional multiple program
branching

Syntax sel ect case Sel ector
case Value_1
Statenments_1
case Val ue_2
Statenents 2

case Val ue_N
Statenents _n
[ case el se
Statenents el se ]
end sel ect

Description = Select Case statement is used for selecting one of several available branchesin the
program course. It consists of a selector variable as a switch condition, and alist
of possible values. These values can be constants, numerals, or expressions.

Eventually, there can be an el se statement which is executed if none of the labels
corresponds to the value of the selector.

As soon as the Select Case statement is executed, at most one of the statements
statements 1 .. statements_n will be executed. The Value which matches the
Selector determines the statements to be executed.

If none of the Value items matches the Selector, then the statements _else in the
else clause (if there is one) are executed.

http://www.mikroel ektronika.co.yu/english/product/books/pichbasi cbook/04.htm (4 sur 9)05/11/2004 02:15:36



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example sel ect case W
case O
B=1
PORTB = B
case 1
A=1
PORTA = A
case el se
PORTB = 0
end sel ect

sel ect case |dent
case testA
PORTB = 6
Res = T nod 23
case teB + teC
T = 1313
case el se
T=0
end sel ect

4.1.3 GOTO Statement — Unconditional jump to the specified label

Syntax goto Label

Description = Goto statement jumps to the specified label unconditionally, and the program
execution continues normally from that point on.

Avoid using GOTO too often, because over-labeled programs tend to be less
intelligible.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/04.htm (5 sur 9)05/11/2004 02:15:36



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example program t est
' sone instructions

got o nylLabel

sonme i nstructions...

nmyLabel :

sonme i nstructions...

end.

4.2 Loops

L oop statements allow repeating one or more instructions for a number of times. The conducting
expression determines the number of iterations loop will go through.

4.2.1 FOR Statement — Repeating of a program segment

Syntax for counter = initial Value to final Val ue [step step_val ue]
statenent 1
statenent 2
statenent _N
next counter

http://www.mikroel ektronika.co.yu/english/product/books/pichbasi cbook/04.htm (6 sur 9)05/11/2004 02:15:36



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description

Example

For statement requires you to specify the number of iterations you want the loop to go
through.

Counter isvariable; initial Value and final Value are expressions compatible with
counter; statement is any statement that does not change the value of counter;
step_value is value that is added to the counter in each iteration. Step_valueis
optional, and defaultsto 1 if not stated otherwise. Be careful when using large values
for step value, as overflow may occur.

Every statement between f or and next will be executed once per iteration.

Hereisasimple example of a FOR loop used for emitting hex code on PORTB for 7-
segment display with common cathode. Nine digits should be printed with one second
delay.

for i =1to 9
porth =i
del ay_ns(1000)
next i

4.2.2 DO..LOOP Statement — Loop until condition is fulfilled

Syntax

Description

do
statenent 1

statenent N
| oop until expression

Expression returnsa True or False value. Thedo. . | oop statement executes

statement_1; ...; statement_N continually, checking the expression after each
iteration. Eventually, when expression returns True, thedo. . | oop statement

terminates.

The sequence is executed at least once because the check takes place in the end.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/04.htm (7 sur 9)05/11/2004 02:15:36



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example l =0

I =1 + 1 ' execute these 2 statenents
PORTB = | ' until i equals 10 (ten)
| oop until 1 = 10

4.2.3 WHILE Statement — Loop while condition is fulfilled

Syntax whi | e expression
statenent O
statenment 1

st at ement _N
wend

Description = Expression istested first. If it returns True, all the following statements enclosed
by whi | e and wend will be executed (or only one statement, alternatively). It

will keep on executing statements until the expression returns False.

Eventually, as expression returns False, whi | e will be terminated without
executing statements.

Wi | e issimilar todo. . | oop, except the check is performed at the beginning

of the loop. If expression returns False upon first test, statements will not be
executed.

Example while | < 90

Il =1 + 1
wend
whilel >0

| =1 div 3

PORTA = |

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/04.htm (8 sur 9)05/11/2004 02:15:36



Programming PIC Microcontrollersin BASIC - mikroElektronika

wend

4.3 ASM Statement — Embeds assembly instruction block

Syntax

Description

Example

asm
st at enent Li st
end asm

Sometimes it can be useful to write part of the program in assembly. ASM
statement can be used to embed PIC assembly instructionsinto BASIC code.

Note that you cannot use numerals as absolute addresses for SFR or GPR variables
in assembly instructions. Y ou may use symbolic namesinstead (listing will
display these names as well as addresses).

Be careful when embedding assembly code - BASIC will not check if assembly
instruction changed memory locations already used by BASIC variables.

asm
movl w 67
movwf TMRO
end asm

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc.
USA. Microchip logo and name are the registered tokens of the Microchip Technology. mikroBasicisa

registered trade mark of mikroElektronika. All other tokens mentioned in the book are the property of the

companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/04.htm (9 sur 9)05/11/2004 02:15:36


mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

Chapter 5: Built-in and Library Routines

. Introduction

. 5.1 Built-in Routines

. 5.1.1 SetBit

. 5.1.2 ClearBit
. 5.1.3TestBit
. 5l1l4Lo

. 5.15Hi

. 5.1.6 Higher

. 5.1.7 Highest
. 5.1.8Delay us
. 5.1.9Delay ms
. 5.1.10Inc

. 5.1.11 Dec

. 5.1.12 Length

5.2.6 EEPROM Library

5.2.6.1 EEPROM Read

5.2.6.2 EEPROM Write

5.2.7 Flash Memory Library

. 5.2.7.1 Flash Read

. 5.2.7.2 Flash Write

. 5.2.812C Library

. 5.2.8.112C Init

5.2.8.212C_Start

5.2.8.312C Repeated Start

5.28412C Rd

. 52.8512C Wr

. 5.2.8.612C Stop

. 529LCD Library

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (1 sur 112)05/11/2004 02:20:52

5.2.13PWM Library

5.2.13.1 PWM Init

5.2.13.2 PWM Change Duty

52.13.3PWM Start

5.2.13.4 PWM_Stop

52.14 RHA85 Library

5.2.14.1 RSA85M aster |nit

5.2.14.2 RS485M aster Read

5.2.14.3 RS485M aster Write

5.2.14.4 R85Save Init

5.2.145 R$485Save Read

5.2.14.6 R$485Slave Write

5.2.15SPI Library

5.2.15.1 SPI Init

5.2.15.2 SPI |nit Advanced




Programming PIC Microcontrollersin BASIC - mikroElektronika

. 5.2Library Routines

. 5.2.1 Numeric Formatting

5.2.1.1 ByteT oStr
5.2.1.2 WordToStr
5.2.1.3 ShortToStr
5.2.1.4 IntToStr

. 5.2.1.5Bcd2Dec
. 5.2.1.6 Dec2Bcd

5.2.1.7 Bcd2Dec16
5.2.1.8 Dec2Bcd16

5.2.2 ADC Library
5.2.2.1 ADC read

5.2.3 CAN Library
5.2.3.1 CANSetOperationM ode

. 5.2.3.2 CANGetOperationMode
. 5.2.3.3CANInitialize

5.2.3.4 CANSetBaudRate
5.2.3.5 CANSetM ask
5.2.3.6 CANSetFilter

. 5.2.3.7CANWTrite
. 5.2.3.8 CANRead
. 5.2.3.9CAN Library Constants

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (2 sur 112)05/11/2004 02:20:52

. 529.1LCD Init

. 5.2.9.2LCD Config
. 5293LCD Chr

. 5294LCD Chr CP
. 5295LCD Out

. 5296LCD Out CP
. 529.7LCD Cmd

. 5210LCDS8 Library

. 5.2.10.1LCD8 Init

. 5.2.10.2LCD8 Config
. 5.2.10.3LCD8 Chr

. 52104LCD8 Chr CP
. 5.2.105LCD8 Out

. 5.2.10.6 LCD8 Out CP
. 52.10.7LCD8 Cmd

« 5.2.11 Graphic LCD Library
. 5211.1GLCD Config

. 5211.2GLCD Init

. 5.211.3GLCD Put Ins

. 5.2.11.4GLCD Put Data

. 52.11.5GLCD Put Data2
. 52116 GLCD Select Side
. 5211.7GLCD_Data Read

5.2.15.3 SPI Read

5.2.15.4 SPI Write

5.2.16 USART Library

5.2.16.1 USART Init

5.2.16.2 USART Data Ready

5.2.16.3 USART Read

5.2.16.4 USART Write

5.2.17 One-wire Library

5.2.17.1 OW Reset

5.2.17.2 OW_Read

5.2.17.3 O0W Write

5.2.18 Software | 2C Library

5.2.18.1 Soft 12C Config

5.2.18.2 Soft 12C Start

5.2.18.3 Soft 12C Write

5.2.18.4 Soft 12C Read

5.2.18.5 Soft 12C Stop

5.2.19 Software SPI Library

5.2.19.1 Soft SPI Config

5.2.19.2 Soft_SPI _Read

5.2.19.3 Soft SPI Write




Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.4 CANSPI Library
5.2.4.1 CANSPI SetOperationM ode
5.2.4.2 CANSPI GetOperationM ode

. 5.24.3 CANSPIInitialize
. 5.2.4.4 CANSPISetBaudRate

5.2.4.5 CANSPI SetM ask
5.2.4.6 CANSPI SetFilter
5.2.4.7 CANSPIWTrite
5.2.4.8 CANSPI Read

. 5249 CANSPI Library Constants

. 5.2.5 Compact Flash Library
. 5.25.1CF Init Port

5.2.5.2 CF_Detect
5.2.5.3 CF Write Init
5.2.5.4 CF Write Byte

. 5255CF Write Word
. 5.2.5.6 CF Read Init

5.2.5.7 CF Read Byte
5.25.8 CF Read Word
5.2.5.9 CF File Write Init

. 52510 CF File Write Byte
. 52511 CF File Write Complete

. 5211.8GLCD Clear Dot

5.2.11.9GLCD_Set Dot
5.2.11.10 GLCD Circle
5.2.11.11GLCD Line

. 5211.12GLCD Invert
. 5.211.13GLCD Goto XY

5.2.11.14 GLCD_Put_Char
5.2.11.15GLCD Clear Screen

5.2.20 Software UART Library

5.2.20.1 Soft UART Init

5.2.20.2 Soft UART Read

5.2.20.3 Soft UART Write

. 5.2.21 Sound Library

5.2.21.1 Sound Init

5.2.11.16 GLCD Put Text
5.2.11.17 GLCD_ Rectangle

. 5.211.18GLCD Set Font

. 5.2.12 Manchester Code

Library
5.2.12.1 Man Receive Init

5.2.12.2 Man Receive Config
5.2.12.3 Man Receive

. 52124Man Send Init
. 5.2.12.5Man Send Config

5.2.12.6 Man Send

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (3 sur 112)05/11/2004 02:20:52

. 5.2.21.2 Sound Play

5.2.22 Trigonometry Library

5.2.22.1 SInE3

5.2.22.2 COosE3

5.2.23 Utilities

5.2.23.1 Button




Programming PIC Microcontrollersin BASIC - mikroElektronika

Introduction

BASIC was designed with focus on ssimplicity of use. Great number of built-in and library routines are included to help you
develop your applications quickly and easily.

5.1 Built-in Routines

BASIC incorporates a set of built-in functions and procedures. They are provided to make writing programs faster and easier. You
can call built-in functions and procedures in any part of the program.

5.1.1 SetBit — Sets the specified bit

Prototype  sub procedure SetBit(di mbyref Reg as byte, dimBit as byte)

Description = Sets <Bit> of register <Reg>. Any SFR (Specia Function Register) or variable of byte type can pass asvalid
variable parameter, but constants should bein range [0..7].

Example SetBit (PORTB,2) ' set bit RB2

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (4 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.1.2 ClearBit — Clears the specified bit

Prototype

Description

Example

sub procedure ClearBit(dimbyref Reg as byte, dimBit as byte)

Clears <Bit> of register <Reg>. Any SFR (Special Function Register) or variable of byte type can passasvalid
variable parameter, but constants should bein range [0..7].

ClearBit(PORTC,7) ' clear bit RC7

5.1.3 TestBit — Tests the specified bit

Prototype

Description

Example

sub function TestBit(di mbyref Reg as byte, dimBit as byte) as byte

Tests <Bit> of register <Reg>. If set, returns 1, otherwise 0. Any SFR (Special Function Register) or variable of
byte type can pass as valid variable parameter, but constants should be in range [0..7].

Test Bi t (PORTA, 2)
"'returns 1 if PORTA bit RA2 is 1, returns O ot herw se

5.1.4 Lo — Extract one byte from the specified parameter

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (5 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype  sub function Lo(dimPar as byte..longint) as byte

Description = Returns byte 0 of <Par>, assuming that word/integer comprises bytes 1 and 0, and longint comprises bytes 3, 2,
1, and 0.

Example Lo(A) ' returns |ower byte of variable A

5.1.5 Hi — Extract one byte from the specified parameter

Prototype  sub function H (dimarg as word..longint) as byte

Description = Returns byte 1 of <Par>, assuming that word/integer comprises bytes 1 and O, and longint comprises bytes 3, 2,
1, and O.

Example H (Aa) ' returns hi byte of variable Aa

5.1.6 Higher — Extract one byte from the specified parameter

Prototype  sub function Hi gher(dimPar as longint) as byte

Description = Returns byte 2 of <Par>, assuming that longint comprises bytes 3, 2, 1, and 0.

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (6 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example Hi gher (Aaaa) ' returns byte next to the highest byte of variable Aaaa

5.1.7 Highest — Extract one byte from the specified parameter

Prototype sub function Hi ghest(dimarg as longint) as byte
Description = Returns byte 3 of <Par>, assuming that longint comprises bytes 3, 2, 1, and 0.

Example Hi ghest (Aaaa) ' returns the highest byte of variabl e Aaaa

5.1.8 Delay us — Software delay in us

Prototype  sub procedure Del ay_us(const Count as word)

Description = Routine creates a software delay in duration of <Count> microseconds.

Example Del ay us(100) ' creates software delay equal to 1s

5.1.9 Delay_ms — Software delay in ms

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (7 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure Del ay nms(const Count as word)

Description = Routine creates a software delay in duration of <Count> milliseconds.

Example Del ay ns(1000) ' creates software delay equal to 1s

5.1.10 Inc — Increases variable by 1

Prototype  sub procedure Inc(byref Par as byte..longint)

Description = Routine increases <Par> by one.

Example Inc(Aaaa) ' increnents variable Aaaa by 1

5.1.11 Dec — Decreases variable by 1

Prototype  sub procedure Dec(byref Par as byte..longint)

Description = Routine decreases <Par> by one.

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (8 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example Dec(Aaaa) ' decrenents variable Aaaa by 1

5.1.12 Length — Returns length of string

Prototype  sub function Length(dimText as string) as byte

Description = Routine returns length of string <Text> as byte.

Example Length(Text) ' returns string length as byte

5.2 Library Routines

A comprehensive collection of functions and proceduresis provided for ssmplifying the initialization and use of PIC MCU and its
hardware modules. Routines currently includeslibrariesfor ADC, 12C, USART, SPI, PWM, driver for LCD, driversfor internal
and external CAN modules, flexible 485 protocol, numeric formatting routines...

5.2.1 Numeric Formatting Routines

Numeric formatting routines convert byte, short, word, and integer to string. Y ou can get text representation of numerical value by
passing it to one of the routines listed below.

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (9 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.1.1 ByteToStr — Converts byte to string

Prototype  sub procedure ByteToStr(di minput as byte, dimbyref txt as char[6])

Description = Parameter <input> represents numerical value of byte type that should be converted to string; parameter <txt>
IS passed by the address and contains the result of conversion.

Parameter <txt> has to be of sufficient size to fit the converted string.

Example Byt eToStr (Count er, Message)

Copi es value of byte Counter into string Message

5.2.1.2 WordToStr — Converts word to string

Prototype  sub procedure WordToStr(di minput as word, dimbyref txt as char[6])

Description = Parameter <input> represents numerical value of word type that should be converted to string; parameter <txt>
Is passed by the address and contains the result of conversion.

Parameter <txt> hasto be of sufficient size to fit the converted string.

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (10 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example Wor dToSt r (Count er, Message)
Copi es value of word Counter into string Message

5.2.1.3 ShortToStr — Converts short to string

Prototype = sub procedure ShortToStr(di minput as short, dimbyref txt as char[6])

Description = Parameter <input> represents numerical value of short type that should be converted to string; parameter <txt>
Is passed by the address and contains the result of conversion.

Parameter <txt> hasto be of sufficient size to fit the converted string.

Example Short ToStr (Counter, Message)
' Copies value of short Counter into string Message

5.2.1.4 IntToStr — Converts integer to string

Prototype  sub procedure IntToStr(di minput as integer, dimbyref txt as char[6])

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (11 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = Parameter <input> represents numerical value of integer type that should be converted to string; parameter
<txt> is passed by the address and contains the result of conversion.

Parameter <txt> hasto be of sufficient size to fit the converted string.

Example | nt ToStr (Counter, Message)

Copi es value of integer Counter into string Message

5.2.1.5 Bcd2Dec — Converts 8-bit BCD value to decimal

Prototype sub procedure Bcd2Dec(di m bcd num as byte) as byte

Description = Function converts 8-bit BCD numeral to its decimal equivalent and returns the result as byte.

Example dima as byte
dimb as byte

a = 140
b = Bcd2Dec(a) ' b equals 224 now

5.2.1.6 Bcd2Dec — Converts 8-bit decimal to BCD

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (12 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika
Prototype sub procedure Dec2Bcd(di mdec_num as byte) as byte
Description = Function converts 8-bit decimal numeral to BCD and returns the result as byte.

Example dima as byte
dimb as byte

a = 224
Dec2Bcd( a) ' b equals 140 now

(@p
1

5.2.1.7 Bcd2Dec — Converts 16-bit BCD value to decimal

Prototype  sub procedure Bcd2Decl16(di m bcd_num as word) as word

Description = Function converts 16-bit BCD numeral to its decimal equivalent and returns the result as byte.

Example dima as word
dimb as word

a = 1234
b = Bcd2Decl16( a) " b equal s 4660 now

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (13 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.1.8 Bcd2Dec — Converts 16-bit BCD value to decimal

Prototype ~ sub procedure Dec2Bcdl6(di m dec_num as word) as word

Description = Function converts 16-bit decimal numeral to BCD and returns the result as word.

Example dima as word
dimb as word

a = 4660
b = Dec2Bcdl6(a) " b equals 1234 now

5.2.2 ADC Library

ADC (Analog to Digital Converter) module is available with a number of PIC MCU models. Library function ADC Read is
included to provide you comfortable work with the module. The function is currently unsupported by the following PIC MCU
models. P18F2331, P18F2431, P18F4331, and P18F4431.

5.2.2.1 ADC_Read — Get the results of AD conversion

Prototype  sub function ADC Read(di m Channel as byte) as word

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (14 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description

Example

Routine initializes ADC module to work with RC clock. Clock determines the time period necessary for
performing AD conversion (min 12TAD). RC sourcestypically have Tad 4uS. Parameter <Channel>
determines which channel will be sampled. Refer to the device data sheet for information on device channels.

res = ADC Read(2)

+5Y

+5V

LKLY

reads channel

2 and stores val ue

Reset

4MHz

PIC16F877
— Hlf'fLFI..".'ppl"I'M RE7PGED T
[{resnvann RESFGE [J— B0 AR
[Jravan rBs [] —{—r
Hrazianzovet- rB4 [] b0y AA LD&
[razanaovers  REIPG] []
[Jrearock raz [] B AR o
[Jrasians ra1 ] C———v
[ FtEEu'ﬂE.n".MS REMINT [] B0 AR 6
+5y  [revwRiens waid [ — 3 i
[IrezcEanT vss I
LE widd ROTIFSPT 3_ 30 An LO5
{Jves RO6PEPE J_,—:—H—‘I_
08l ROSFSPS 330 02
0sC2 RO4PSPY [J— :‘ "ﬂ[ ﬁ| LD4
e [Qrowrioso  mromrwoT [ _
0 [rcimiost RoaTxck [ 200 Ax LD3
Ty |  [rczoces Res [ — +—
[res res [] -
] | RDAIPSFT ROIPSP3 [ 30 A by
. roVFSP Roeesez [— — by 1
B 300 A7 b
C——{+—+
B¥ID - AA L oo
C—H—
ADC HW connection

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (15 sur 112)05/11/2004 02:20:52

In variable res



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.3 CAN Library

The Controller Area Network module (CAN) is serial interface, used for communicating with other peripherals or microcontrollers.
CAN moduleis available with a number of PIC MCU models. BASIC includes a set of library routines to provide you comfortable
work with the module. More details about CAN can be found in appropriate literature and on mikroElektronika Web site.

5.2.3.1 CANSetOperationMode — Sets CAN to requested mode

Prototype = sub procedure CANSet Oper ationhMbde(di m Mode as byte, dim Wit as byte)
Description = The procedure copies <Mode> to CANSTAT and sets CAN to requested mode.

Operation <Mode> code can take any of predefined constant values.
<Wait> takes values TRUE(255) or FALSE(0)

If Wait istrue, thisisablocking call. It won't return until requested mode is set. If Wait isfalse, thisisanon-
blocking call. It does not verify if CAN module is switched to requested mode or not. Caller must use
CANGetOperationM ode() to verify correct operation mode before performing mode specific operation.

Example CANSet Oper ati onMode( CAN_MODE LI STEN, TRUE) ' Sets CAN to Listen node

5.2.3.2 CANGetOperationMode — Returns the current operation mode of CAN

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (16 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype = sub function CANGet Operationhde as byte

Description = The function returns the current operation mode of CAN.

Example CANGCet Oper at i onMbde

5.2.3.3 CANInitialize — Initializes CAN

Prototype  sub procedure CANInitialize(dimSIWas byte, dimBRP as byte, di m PHSEGL
as byte, dim PHSE& as byte, di m PROPSEG as byte, di m CAN_CONFI G FLAGS as
byt e)

Description = The procedureinitializes CAN module. CAN must be in Configuration mode or else these values will be
ignored.

Parameters:

SIW value as defined in 18X X X8 datasheet (must be between 1 thru 4)

BRP value as defined in 18X X X8 datasheet (must be between 1 thru 64)
PHSEG1 value as defined in 18X X X8 datasheet (must be between 1 thru 8)
PHSEG2 value as defined in 18X X X8 datasheet (must be between 1 thru 8)
PROPSEG value as defined in 18X X X8 datasheet (must be between 1 thru 8)
CAN_CONFIG_FLAGS valueisformed from constants (see below)

Output:

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (17 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

CAN bit rateis set. All masks registers are set to '0' to allow all messages.
Filter registers are set according to flag value:

| f (CAN_CONFI G FLAGS and CAN CONFI G VALID XTD MSG <> 0
Set all filters to XTD MSG
Else if (config and CONFI G VALID STD MG <> 0
Set all filters to STD MSG
El se
Set half of the filters to STD, and the rest to XTD MSG

Side Effects:
All pending transmissions are aborted.

Example dimaa as byte
aa = CAN_CONFI G_SAMPLE THRI CE and ‘" formvalue to be used
CAN_CONFI G PHSE&G2 PRG ON and “wth CANInitialize

CAN_CONFI G_STD_MSG and
CAN_CONFI G DBL_BUFFER ON and
CAN_CONFI G VALI D_XTD_MSG and
CAN_CONFI G LI NE_FI LTER OFF

CANInitialize(l, 1, 3, 3, 1, aa)

5.2.3.4 CANSetBaudRate — Sets CAN Baud Rate

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (18 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype ~ sub procedure CANSet BaudRat e(di m SIWas byte, di mBRP as byte, di m PHSEGL
as byte, dim PHSE& as byte, di m PROPSEG as byte, di m CAN _CONFI G_ FLAGS as
byt e)

Description = The procedure sets CAN Baud Rate. CAN must be in Configuration mode or else these values will be ignored.

Parameters:

SIW value as defined in 18X X X8 datasheet (must be between 1 thru 4)

BRP value as defined in 18X X X8 datasheet (must be between 1 thru 64)
PHSEGL1 value as defined in 18X X X8 datasheet (must be between 1 thru 8)
PHSEG2 value as defined in 18X X X8 datasheet (must be between 1 thru 8)
PROPSEG value as defined in 18X X X8 datasheet (must be between 1 thru 8)
CAN_CONFIG_FLAGS - Vaue formed from constants (see section below)

Output:
Given values are bit adjusted to fit in 18X XX8 and BRGCONX registers and copied. CAN hit rate is set as per
given values.

Example CANSet BaudRat e(1, 1, 3, 3, 1, aa)

5.2.3.5 CANSetMask — Sets the CAN message mask

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (19 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure CANSet Mask( CAN MASK as byte, val as longint, dim
CAN_CONFI G_FLAGS as byte)

Description = The procedure sets the CAN message mask. CAN must be in Configuration mode. If not, all valueswill be
ignored.

Parameters:

CAN_MASK - One of predefined constant value

val - Actual mask register value

CAN_CONFIG_FLAGS - Type of message to filter, either CAN_CONFIG_XTD_MSG or
CAN_CONFIG_STD_MSG

Output:
Given valueis bit adjusted to appropriate buffer mask registers.

Example CANSet Mask( CAN_MASK_B2, -1, CAN_CONFI G_XTD_MsG

5.2.3.6 CANSetFilter — Sets the CAN message filter

Prototype sub procedure CANSetFilter(di m CAN FILTER as byte, dimval as longint, dim
CAN_CONFI G_FLAGS as byte)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (20 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = The procedure sets the CAN message filter. CAN must be in Configuration mode. If not, all valueswill be
ignored.

Parameters:

CAN_FILTER - One of predefined constant values

val - Actua filter register value.

CAN_CONFIG_FLAGS - Type of message to filter, either CAN_CONFIG_XTD_MSG or
CAN_CONFIG_STD_MSG

Output:
Given valueis bit adjusted to appropriate buffer filter registers

Example  CANSetFilter (CAN_FILTER B1_F1, 3, CAN_CONFI G XTD_MSG

5.2.3.7 CANWTrite — Queues message for transmission

Prototype sub function CANWite(dimid as longint, dimbyref Data : as byte[8], dim
Dat aLen as byte, dim CAN TX M5G FLAGS as byte) as byte

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (21 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description

Example

If at least one empty transmit buffer is found, given message is queued for the transmission. If none found,
FALSE valueisreturned. CAN must be in Normal mode.

Parameters:

id - CAN message identifier. Only 11 or 29 bits may be used depending on message type (standard or extended)
Data - array of bytes up to 8 bytesin length

Datalen - Data length from 1 thru 8

CAN_TX _MSG_FLAGS - Vaue formed from constants (see section below)

aal = CAN.TX PRRORITY_ O and ‘" formvalue to be used

CAN_TX_XTD FRAME and ' with CANWite
CAN_TX_NO RTR_FRAME

CANWite(-1, data, 1, aal)

5.2.3.8 CANRead — Extracts and reads the message

Prototype

sub function CANRead(di mbyref id as longint, dimbyref Data as byte[8],
di m byref DatalLen as byte, di mbyref CAN RX MSG FLAGS as byte) as byte

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (22 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description  If at least one full receive buffer isfound, the function extracts and returns the message as byte. If none found,
FALSE valueisreturned. CAN must be in mode in which receiving is possible.

Parameters:

id - CAN message identifier

Data - array of bytes up to 8 bytesin length

Datalen - Datalength from 1 thru 8

CAN_TX_MSG_FLAGS - Vaue formed from constants (see below)

Example res = CANRead(id, Data, 7, 0)

5.2.3.9 CAN Library Constants

Y ou need to be familiar with constants that are provided for use with the CAN module. All of the following constants are
predefined in CAN library.

CAN_OP_MODE

These constant values define CAN module operation mode. CANSetOperationMode() routine requires this code. These values
must be used by itself, i.e. they cannot be ANDed to form multiple values.

const CAN MODE BITS = $EO0 ' Use these to access opnode bits
const CAN MODE NOCRMAL = O
const CAN MODE SLEEP = $20

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (23 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

const CAN MODE LOOP = $40
const CAN MODE LI STEN = $60
const CAN MODE_CONFI G = $80

CAN_TX_MSG_FLAGS

These constant values define flags related to transmission of a CAN message. There could be more than one this flag ANDed
together to form multiple flags.

const CAN TX PRIORITY BITS = $03

const CAN.TX PRIORITY_ 0 = $FC tOXXXXXX00
const CAN.TX PRIORITY_1 = $FD tOXXXXXX01
const CAN. TX PRIORITY_2 = $FE tOXXXXXX10
const CAN. TX PRIORITY 3 = $FF tOXKXXXX1 1

const CAN TX FRAME BI T = $08
const CAN TX STD FRAME = $FF tOXOKXXXIXX
const CAN TX XTD FRAME = $F7 L OXXXXXOXX

const CAN. TX RTR BIT = $40
const CAN TX NO RTR FRAME = $FF ' XLXXXXXX
const CAN TX RTR FRAME = $BF ' XOXXXXXX

CAN_RX_MSG_FLAGS

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (24 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

These constant values define flags related to reception of a CAN message. There could be more than one this flag ANDed together
to form multiple flags. If aparticular bit is set; corresponding meaning is TRUE or elseit will be FALSE.

eg.

I f (MsgFlag and CAN RX OVERFLOWN <> 0 then

Recei ver overfl ow has occurred.

We have | ost our previous nessage.

const CAN RX FILTER BITS = $07 ' Use these to access filter bits
const CAN RX FILTER 1 = $00
const CAN RX FILTER 2 = $01
const CAN RX FILTER 3 = $02
const CAN RX FILTER 4 = $03
const CAN RX FILTER 5 = $04
const CAN RX FILTER 6 = $05

const CAN_RX OVERFLOW = $08 ' Set if Overflowed el se cleared
const CAN RX I NVALI D MsG = $10 " Set if invalid else cleared
const CAN RX XTD FRAME = $20 " Set if XTD nessage el se cleared
const CAN RX RTR FRAME = $40 ' Set if RTR nessage el se cleared

const CAN RX DBL BUFFERED = $80 ' Set if this nmessage was hardware doubl e-buffered

CAN_MASK

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (25 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika
These constant values define mask codes. Routine CANSetMask()requires this code as one of its arguments. These enumerations
must be used by itself i.e. it cannot be ANDed to form multiple values.

const CAN MASK Bl = 0
const CAN MASK B2 =1

CAN_FILTER

These constant values define filter codes. Routine CANSetFilter() requires this code as one of its arguments. These enumerations
must be used by itself, i.e. it cannot be ANDed to form multiple values.

const CAN FILTER Bl F1 =
const CAN FILTER B1_F2 =
const CAN FILTER B2 F1 =
const CAN FILTER B2 F2 =
const CAN FILTER B2 _F3 =
const CAN FILTER B2_F4 =

o A~ W N PFL O

CAN_CONFIG_FLAGS

These constant values define flags related to configuring CAN module. Routines CANInitialize() and CANSetBaudRate() use
these codes. One or more these values may be ANDed to form multiple flags

const CAN_CONFI G DEFAULT = $FF " 11111111

const CAN CONFI G PHSEG2 PRG BI T = $01

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (26 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

const

const

const
const

const

const
const

const

const
const

const

const
const

const

const
const
const
const

const

CAN_CONFI G PHSEG2_PRG ON = $FF
CAN_CONFI G PHSEG2 PRG OFF = $FE

CAN_CONFI G LI NE_FILTER BI T = $02
CAN_CONFI G LI NE_FI LTER ON = $FF
CAN_CONFI G LI NE_FI LTER OFF = $FD

CAN_CONFI G_SAMPLE BI T = $04
CAN_CONFI G SAMPLE ONCE = $FF
CAN_CONFI G SAMPLE THRI CE = $FB

CAN CONFI G MSG TYPE BI T = $08
CAN_CONFI G STD MBG = $FF
CAN_CONFI G XTD MSG = $F7

CAN_CONFI G DBL_BUFFER BI T = $10
CAN_CONFI G DBL_BUFFER ON = $FF
CAN_CONFI G DBL_BUFFER OFF = $EF

CAN_CONFI G MBG BI TS = $60
CAN_CONFI G ALL_MBG = $FF
CAN_CONFI G VALI D_XTD MSG
CAN_CONFI G VALI D_STD MSG
CAN_CONFI G ALL_VALI D_MBG

$DF
$BF
$9F

XAXXAXKX1
XXXXXXX0

XXXXXXLX
XAXXXKOX

XAXXXLXX
XXXXXOXX

XAXXI XXX
XAXXOXXX

XAXLXKXX
XXXOXKXX

XTI XXXKXX
XLOXXXXX
XO L XXXXX
XOOXXXXX

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (27 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

—————® CAN TX of MCU

= CAMN RX of MCU

lﬂﬂ—[lr

TH.CAN RS [J—
—
]

A
L

—Ehe o

.|.5'|.."|_[ Ve CARL

[|RxD Wraf

MCP2551

/v‘T
Shielded pair
I

no longer than 300m

Example of interfacing CAN transceiver with MCU and bus

5.2.4 CANSPI Library

The Controller Area Network module (CAN) is serial interface, used for communicating with other peripherals or microcontrollers.
CAN moduleis available with a number of PIC MCU models. MCP2515 or MCP2510 are modules that enable any chip with SPI
interface to communicate over CAN bus. BASIC includes a set of library routines to provide you comfortable work with the

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (28 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

module. More details about CAN can be found in appropriate literature and on mikroElektronika Web site.

Note: CANSPI routines are supported by any PIC MCU model that has SPI interface on PORTC. Also, CS pin of MCP2510 or
MCP2515 must be connected to RCO pin.

5.2.4.1 CANSPISetOperationMode — Sets CAN to requested mode

Prototype

Description

Example

sub procedure CANSPI Set Oper ati onMbde(di m node as byte, dimWit as byte)
The procedure copies <mode> to CANSTAT and sets CAN to requested mode.

Operation <mode> code can take any of predefined constant values.
<Wait> takes values TRUE(255) or FAL SE(0)

If Wait istrue, thisisablocking call. It won't return until requested mode is set. If Wait isfalse, thisisanon-
blocking call. It does not verify if CAN module is switched to requested mode or not. Caller must use
CANGetOperationMode() to verify correct operation mode before performing mode specific operation.

CANSPI Set Oper ati onMode( CAN_ MODE LI STEN, TRUE) ' Sets CAN to Listen node

5.2.4.2 CANSPIGetOperationMode — Returns the current operation mode of CAN

Prototype

sub function CANSPI Get Oper ati onVbde as byte

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (29 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = The function returns the current operation mode of CAN.

Example CANGCet Oper at i onMbde

5.2.4.3 CANSPIInitialize — Initializes CANSPI

Prototype  sub procedure CANSPIInitialize(dimSIWas byte, dimBRP as byte, dim
PHSEGL as byte, dim PHSE&R as byte, di m PROPSEG as byte, dim
CAN_CONFI G_ FLAGS as hyte)

Description = The procedure initializes CAN module. CAN must be in Configuration mode or else these values will be
ignored.

Parameters:

SIW value as defined in 18X X X8 datasheet (must be between 1 thru 4)

BRP value as defined in 18X X X8 datasheet (must be between 1 thru 64)
PHSEGL1 value as defined in 18X X X8 datasheet (must be between 1 thru 8)
PHSEG2 value as defined in 18X X X8 datasheet (must be between 1 thru 8)
PROPSEG value as defined in 18X X X8 datasheet (must be between 1 thru 8)
CAN_CONFIG_FLAGS valueisformed from constants (see bel ow)

Output:
CAN bit rateis set. All masks registers are set to '0' to allow all messages.
Filter registers are set according to flag value:

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (30 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

| f (CAN_CONFI G FLAGS and CAN CONFI G VALID XTD MsG <> 0
Set all filters to XTD MG
Else if (config and CONFI G VALID STD MG <> 0
Set all filters to STD MSG
El se
Set half of the filters to STD, and the rest to XTD MSG

Side Effects:
All pending transmissions are aborted.

Example dimaa as byte
aa = CAN_CONFI G_SAMPLE THRI CE and ‘" formvalue to be used
CAN_CONFI G_PHSE&R2_PRG ON and "' with CANSPIInitialize

CAN_CONFI G_STD _MSG and
CAN_CONFI G DBL_BUFFER ON and
CAN_CONFI G VALI D_XTD_MSG and
CAN_CONFI G LI NE_FI LTER OFF

CANInitialize(l, 1, 3, 3, 1, aa)

5.2.4.4 CANSPISetBaudRate — Sets CAN Baud Rate

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (31 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure CANSPI Set BaudRat e(dim SJWas byte, dimBRP as byte, dim
PHSEGL as byte, dimPHSE& as byte, di m PROPSEG as byte, dim
CAN_CONFI G_FLAGS as byte)

Description = The procedure sets CAN Baud Rate. CAN must be in Configuration mode or else these values will be ignored.

Parameters:

SIW value as defined in 18X X X8 datasheet (must be between 1 thru 4)

BRP value as defined in 18X X X8 datasheet (must be between 1 thru 64)
PHSEGL1 value as defined in 18X X X8 datasheet (must be between 1 thru 8)
PHSEG2 value as defined in 18X X X8 datasheet (must be between 1 thru 8)
PROPSEG value as defined in 18X X X8 datasheet (must be between 1 thru 8)
CAN_CONFIG_FLAGS - Vaue formed from constants (see section below)

Output:
Given values are bit adjusted to fit in 18X XX8 and BRGCONX registers and copied. CAN hit rate is set as per
given values.

Example CANSPI Set BaudRate(1, 1, 3, 3, 1, aa)

5.2.4.5 CANSPISetMask — Sets the CAN message mask

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (32 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype  sub procedure CANSPI Set Mask( CAN_MASK as byte, val as longint, dim
CAN_CONFI G_FLAGS as byte)

Description = The procedure sets the CAN message mask. CAN must be in Configuration mode. If not, all values will be
ignored.

Parameters:

CAN_MASK - One of predefined constant value

val - Actual mask register value

CAN_CONFIG_FLAGS - Type of message to filter, either CAN_CONFIG_XTD_MSG or
CAN_CONFIG_STD_MSG

Output:
Given valueis bit adjusted to appropriate buffer mask registers.

Example  CANSPI Set Mask( CAN_MASK_B2, -1, CAN_CONFI G XTD_MBG)

5.2.4.6 CANSPISetFilter — Sets the CAN message filter

Prototype  sub procedure CANSPI Set Filter(di m CAN_FILTER as byte, dimval as |ongint,
di m CAN_CONFI G_FLAGS as byte)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (33 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = The procedure sets the CAN message filter. CAN must be in Configuration mode. If not, all values will be
ignored.

Parameters:

CAN_FILTER - One of predefined constant values

val - Actudl filter register value.

CAN_CONFIG_FLAGS - Type of message to filter, either CAN_CONFIG_XTD_MSG or
CAN_CONFIG_STD_MSG

Output:
Given valueis bit adjusted to appropriate buffer filter registers

Example  CANSPI SetFi | ter (CAN_FILTER B1_F1, 3, CAN_CONFI G_XTD_MSG)

5.2.4.7 CANSPIWrite — Queues message for transmission

Prototype  sub function CANSPIWite(dimid as longint, dimbyref Data : as byte[8],
di m Dat aLen as byte, dim CAN TX MSG FLAGS as byte) as byte

http://www.mikroel ektronika.co.yu/english/product/books/pi cbasi cbook/05.htm (34 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description  If at least one empty transmit buffer isfound, given message is queued for the transmission. If none found,
FALSE valueisreturned. CAN must be in Normal mode.

Parameters:

id - CAN message identifier. Only 11 or 29 bits may be used depending on message type (standard or extended)
Data - array of as bytes up to 8 as bytesin length

Datalen - Data length from 1 thru 8

CAN_TX_MSG_FLAGS - Vaue formed from constants (see section below)

Example aal = CAN.TX PRRORITY O and ' formvalue to be used

CAN_TX_XTD_FRAME and ' with CANSPIWite
CAN_TX_NO RTR_FRAME

CANSPI Wite(-1, data, 1, aal)

5.2.4.8 CANSPIRead — Extracts and reads the message

Prototype sub function CANSPI Read(di m byref id as longint, dimbyref Data as byte
[8], dimbyref DatalLen as byte, dimbyref CAN RX MSG FLAGS as byte) as byte

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (35 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = If at least one full receive buffer isfound, the function extracts and returns the message as byte. If none found,
FALSE valueisreturned. CAN must be in mode in which receiving is possible.

Parameters:

id - CAN message identifier

Data - array of bytes up to 8 bytesin length

Datalen - Data length from 1 thru 8

CAN_TX MSG _FLAGS - Vaue formed from constants (see below)

Example res = CANSPI Read(id, Data, 7, 0)

5.2.4.9 CANSPI Library Constants

Y ou need to be familiar with constants that are provided for use with the CAN module. All of the following constants are
predefined in CANSPI library.

CAN_OP_MODE

These constant values define CAN module operation mode. CANSetOperationMode() routine requires this code. These values
must be used by itself, i.e. they cannot be ANDed to form multiple values.

const CAN MODE BI TS $EO0 ' Use these to access opnode bits
const CAN _MODE NORMAL = 0
const CAN MODE SLEEP = $20

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (36 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

const CAN MODE LOOP = $40
const CAN MODE LI STEN = $60
const CAN MODE_CONFI G = $80

CAN_TX_MSG_FLAGS

These constant values define flags related to transmission of a CAN message. There could be more than one this flag ANDed
together to form multiple flags.

const CAN TX PRIORITY BITS = $03

const CAN.TX PRIORITY_ 0 = $FC tOXXXXXX00
const CAN.TX PRIORITY_1 = $FD tOXXXXXX01
const CAN. TX PRIORITY_2 = $FE tOXXXXXX10
const CAN. TX PRIORITY 3 = $FF tOXKXXXX1 1

const CAN TX FRAME BI T = $08
const CAN TX STD FRAME = $FF tOXOKXXXIXX
const CAN TX XTD FRAME = $F7 L OXXXXXOXX

const CAN. TX RTR BIT = $40
const CAN TX NO RTR FRAME = $FF ' XLXXXXXX
const CAN TX RTR FRAME = $BF ' XOXXXXXX

CAN_RX_MSG_FLAGS

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (37 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

These constant values define flags related to reception of a CAN message. There could be more than one this flag ANDed together
to form multiple flags. If aparticular bit is set; corresponding meaning is TRUE or elseit will be FALSE.

eg.

I f (MsgFlag and CAN RX OVERFLOWN <> 0 then

Recei ver overfl ow has occurred.

We have | ost our previous nessage.

const CAN RX FILTER BITS = $07 ' Use these to access filter bits
const CAN RX FILTER 1 = $00
const CAN RX FILTER 2 = $01
const CAN RX FILTER 3 = $02
const CAN RX FILTER 4 = $03
const CAN RX FILTER 5 = $04
const CAN RX FILTER 6 = $05

const CAN_RX OVERFLOW = $08 ' Set if Overflowed el se cleared
const CAN RX I NVALI D MsG = $10 " Set if invalid else cleared
const CAN RX XTD FRAME = $20 " Set if XTD nessage el se cleared
const CAN RX RTR FRAME = $40 ' Set if RTR nessage el se cleared

const CAN RX DBL BUFFERED = $80 ' Set if this nmessage was hardware doubl e-buffered

CAN_MASK

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (38 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika
These constant values define mask codes. Routine CANSetMask()requires this code as one of its arguments. These enumerations
must be used by itself i.e. it cannot be ANDed to form multiple values.

const CAN MASK Bl = 0
const CAN MASK B2 =1

CAN_FILTER

These constant values define filter codes. Routine CANSetFilter() requires this code as one of its arguments. These enumerations
must be used by itself, i.e. it cannot be ANDed to form multiple values.

const CAN FILTER Bl F1 =
const CAN FILTER B1_F2 =
const CAN FILTER B2 F1 =
const CAN FILTER B2 F2 =
const CAN FILTER B2 _F3 =
const CAN FILTER B2_F4 =

o A~ W N PFL O

CAN_CONFIG_FLAGS

These constant values define flags related to configuring CAN module. Routines CANInitialize() and CANSetBaudRate() use
these codes. One or more these values may be ANDed to form multiple flags

const CAN_CONFI G DEFAULT = $FF " 11111111

const CAN CONFI G PHSEG2 PRG BI T = $01

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (39 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

const

const

const
const

const

const
const

const

const
const

const

const
const

const

const
const
const
const

const

CAN_CONFI G PHSEG2_PRG ON = $FF
CAN_CONFI G PHSEG2 PRG OFF = $FE

CAN_CONFI G LI NE_FILTER BI T = $02
CAN_CONFI G LI NE_FI LTER ON = $FF
CAN_CONFI G LI NE_FI LTER OFF = $FD

CAN_CONFI G_SAMPLE BI T = $04
CAN_CONFI G SAMPLE ONCE = $FF
CAN_CONFI G SAMPLE THRI CE = $FB

CAN CONFI G MSG TYPE BI T = $08
CAN_CONFI G STD MBG = $FF
CAN_CONFI G XTD MSG = $F7

CAN_CONFI G DBL_BUFFER BI T = $10
CAN_CONFI G DBL_BUFFER ON = $FF
CAN_CONFI G DBL_BUFFER OFF = $EF

CAN_CONFI G MBG BI TS = $60
CAN_CONFI G ALL_MBG = $FF
CAN_CONFI G VALI D_XTD MSG
CAN_CONFI G VALI D_STD MSG
CAN_CONFI G ALL_VALI D_MBG

$DF
$BF
$9F

XAXXAXKX1
XXXXXXX0

XXXXXXLX
XAXXXKOX

XAXXXLXX
XXXXXOXX

XAXXI XXX
XAXXOXXX

XAXLXKXX
XXXOXKXX

XTI XXXKXX
XLOXXXXX
XO L XXXXX
XOOXXXXX

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (40 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

+5v —

+54
+5Y = []
=
o o =
2l =2||=
— - ™
= |0
+GY § 1
o
TH-CAN idd
RA-CAN RET [] =
CLKOUT  C5 ]
THIRTE =50 []
TRTE =21 [}
THIRTE scr:ﬁ
QsCT T [
=] osc1 Rxeer ]
Vst EOER
AMHz
MCPZ510

PIC16FBTT
- L
[| McLRVpaTHY  REZPGD
[| raeiamg REEPGC
[ rattanat RES
] raziamzires. RE4
[l rastanarrets RBAPGM
[ reamock RB2
[ rasiama RE1
[| rECiADiANS  REBOANT
[ rE1rvWRIANE Vdd
REZICSIANT Vs
Wid ROTIPSPT
Vs RDB/PSPE
05C1 RODG/PSPS
0sC2 RO4/PSP4
RCOTIOS0 RCHRNDT
RCUTIOS  RCETXCK
RC2/CCP1 RCE
RCE RCA
RODOVPEPO  RDIPSPI
RD1/PSP1  RD2PSP2

—
-

Shielded pair, less l

than 300m long

Example of interfacing CAN transceiver MCP2551, and MCP2510 with MCU and bus

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (41 sur 112)05/11/2004 02:20:52




Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.5 Compact Flash Library

Compact Flash Library provides routines for accessing data on Compact Flash card (abbrev. CF further in text). CF cards are
widely used memory elements, commonly found in digital cameras. Great capacity (8MB ~ 2GB, and more) and excellent access
time of typically few microseconds make them very attractive for microcontroller applications.

In CF card, datais divided into sectors, one sector usually comprising 512 bytes (few older models have sectors of 256B). Read
and write operations are not performed directly, but successively through 512B buffer. Following routines can be used for CF with
FAT16 and FAT32 file system.

Note: routinesfor filehandling (CF_File Wite Init, CF File Wite Byte, CF_ File Wite Conpl ete)can
be used only with FAT16 file system, and only with PIC18 family!

L !
SECTIOrN AJOEEES

Sector 0 | a1 bytes
Byte Address  &12
aechor |
1024
sSector 2
1536
Sector 3

Before write operation, make sure you don’t overwrite boot or FAT sector asit could make your card on PC or digital cam
unreadable. Drive mapping tools, such as Winhex, can be of a great assistance.

5.2.5.1 CF_Init_Port — Initializes ports appropriately

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (42 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype

Description

Example

sub procedure CF INIT _PORT(di mbyref CrlPort as byte, di mbyref DataPort
as byte)

The procedure initializes ports appropriately:
<CitrlPort> is control port, and <DataPort> is data port to which CF is attached.

CF Init_Port(PORTB, PORTD) ' Control port is PORTB, Data port is PORTD

5.2.5.2 CF_Detect — Checks for presence of CF

Prototype

Description

Example

sub function CF_DETECT(di mbyref CrlPort as byte) as byte

The function checks if Compact Flash card is present. Returnstrue if present, otherwise returns false.
<CtrlPort> must beinitialized (call CF_INIT_PORT first).

do
nop

| oop until CF_Detect(PORTB) = true "'wait until CF card is inserted

5.2.5.3 CF_Write_Init — Initializes CF card for writing

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (43 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure CF WRITE INIT(di mbyref CrlPort as byte, dimbyref DataPort as
byte, dim Adr as |ongint, dim SectCnt as byte)

Description = The procedure initializes CF card for writing. Ports need to be initialized.

Parameters:

CtrlPort - control port,

DataPort - data port,

k - specifies sector address from where data will be written,
SectCnt - parameter is total number of sectors prepared for write.

Example CF Wite Init(PORTB, PORTD, 590, 1) "Initialize wite at sector address 590
‘' of 1 sector (512 bytes)

5.2.5.4 CF_Write_Byte — Writes 1 byte to CF

Prototype ~ sub procedure CF_WRI TE_BYTE(di m byref CirlPort as byte, dimbyref DataPort as
byte, di mBData as byte)

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (44 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = The procedure writes 1 byte to Compact Flash. The procedure has effect only if CF card isinitialized for writing.

Parameters:

CtrlPort - control port,
DataPort - data port,

dat - data byte written to CF

Example CF Wite Init(PORTB, PORTD, 590, 1) "Initialize wite at sector address 590
of 1 sector (512 bytes)

for i =0 to 511 ' Wite 512 bytes to sector at address
590

CF_ Wite Byte(PORTB, PORTD, i)
next i

5.2.5.5 CF_Write_Word — Writes 1 word to CF

Prototype sub procedure CF WRITE WORD(di m byref Ctrl Port as byte, dim byref DataPort
as byte, dimWbata as word)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (45 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = The procedure writes 1 word to Compact Flash. The procedure has effect only if CF card isinitialized for
writing.

Parameters:

CtrlPort - control port,

DataPort - data port,

Wdata - data word written to CF

Example  CF_Wite_Wrd(PORTB, PORTD, Data)

5.2.5.6 CF_Read_Init — Initializes CF card for reading

Prototype  sub procedure CF_READ I NI T(dimbyref CirlPort as byte, dimbyref DataPort as
byte, dim Adr as |ongint, dim SectCnt as byte)

Description = Parameters:
CtrlPort - control port,
DataPort - data port,
Adr - specifies sector address from where data will be read,
SectCnt - total number of sectors prepared for read operations.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (46 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example CF _Read Init(PORTB, PORTD, 590, 1) " Initialize wite at sector address
590
of 1 sector (512 bytes)

5.2.5.7 CF_Read Byte — Reads 1 byte from CF

Prototype  sub function CF_READ BYTE(di m byref CirlPort as byte, di mbyref DataPort
as byte) as byte

Description = Function reads 1 byte from Compact Flash. Ports need to be initialized, and CF must be initialized for reading.

Parameters:
CtrlPort - control port,
DataPort - data port

Example PORTC = CF_Read_ Byt e( PORTB, PORTD) ' read byte and display on PORTC

5.2.5.8 CF_Read Word — Reads 1 word from CF

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (47 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype

Description

Example

sub function CF_READ WORD(di m byref Cirl Port as byte, dimbyref DataPort
as byte) as word

Function reads 1 word from Compact Flash. Ports need to be initialized, and CF must be initialized for reading.

Parameters:
CtrlPort - control port,
DataPort - data port

PORTC = CF_Read Word(PORTB, PORTD) ' read word and display on PORTC

5.2.5.9 CF_File_Write_Init — Initializes CF card for file writing operation (FAT16 only, PIC18

only)

Prototype

Description

sub procedure CF File Wite Init(dimbyref CrlPort as byte, dimbyref
Dat aPort as byte)

This procedure initializes CF card for file writing operation (FAT16 only, PIC18 only).

Parameters:
CtrlPort - control port,
DataPort - data port

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (48 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example CF File Wite Init(PORTB, PORTD)

5.2.5.10 CF_File_Write_Byte — Adds one byte to file (FAT16 only, PIC18 only)

Prototype  sub procedure CF_File_ Wite_Byte(dimbyref CirlPort as byte, di mbyref
Dat aPort as byte, dim Bdata as byte)

Description = This procedure adds one byte (Bdata) to file (FAT16 only, PIC18 only).

Par ameters:

CtrlPort - control port,
DataPort - data port,

Bdata - data byte to be written.

Example while i < 50000
CF File Wite Byte(PORTB, PORTD, 48 + index)
' denonstration: wites 50000 bytes to file
inc(i)
wend

5.2.5.11 CF_File _Write_Complete — Closes file and makes it readable (FAT16 only, PIC18
only)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (49 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype  sub procedure CF_File_Wite_Conplete(dimbyref CrlPort as byte, dim byref
Dat aPort as byte,dimbyref Filenane as char[9])

Description = Upon all data has be written to file, use this procedure to close the file and make it readable by Windows
(FAT16 only, PIC18 only).

Parameters:

CtrlPort - control port,

DataPort - data port,

Filename (must bein upper case and must have exactly 8 characters).

Example CF File Wite_ Conpl ete( PORTB, PORTD, "exanplel", "txt")

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (50 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

+5Y
—————— i
A
A
RDZ2 "
/] PIC MCU V] —1 J_z
RDa —
, [> FB0 —
=l RE1 =
_RE2 —_— ia
P
L 3 . T
== Compact Flash Card
jr—-.’ﬂ
RET e T 1
] 1
_BE# *—-=-§; 12 /\\-I
==
RES —
*'51“' A i fl
) 3
RE3 '
RO7 —
. RO —]
=] RS — ] ;
RD4 —— A
REA ROS = "
1_—"& i

Compact Flash Connector
(TOP VIEW)

Pin diagram of CF memory card

5.2.6 EEPROM Library

EEPROM data memory is available with a number of PIC MCU models. Set of library procedures and functionsis listed below to

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (51 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

provide you comfortable work with EEPROM.

Notes:
Be aware that al interrupts will be disabled during execution of EEPROM _Write routine (GIE bit of INTCON register will be
cleared). Routine will set this bit on exit.

Ensure minimum 20ms delay between successive use of routines EEPROM_Write and EEPROM _Read. Although EEPROM will
write the correct value, EEPROM __Read might return undefined result.

5.2.6.1 EEPROM_Read — Reads 1 byte from EEPROM

Prototype  sub function EEprom Read(di m Address as byte) as byte

Description = Function reads byte from <Address>. <Address> is of byte type, which means it can address only 256
locations. For PIC18 MCU models with more EEPROM data locations, it is programmer's responsibility to set
SFR EEADRH register appropriately.

Ensure minimum 20ms delay between successive use of routines EEPROM_Write and EEPROM _Read.
Although EEPROM will write the correct value, EEPROM _Read might return undefined result.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (52 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example TRISB = 0
Del ay _ns(30)

for i =0 to 20
PORTB = EEPROM Read( i)
for j 0 to 200
Del ay _us(500)
next j
next i

5.2.6.2 EEPROM_Write — Writes 1 byte to EEPROM

Prototype ~ sub procedure EEprom Wite(di m Address as byte, dimData as byte)

Description = Function writes byte to <Address>. <Address> is of byte type, which means it can address only 256 locations.
For PIC18 MCU models with more EEPROM data locations, it is programmer's responsibility to set SFR
EEADRH register appropriately.

All interrupts will be disabled during execution of EEPROM _Write routine (GIE bit of INTCON register will be
cleared). Routine will set this bit on exit

Ensure minimum 20ms delay between successive use of routines EEPROM_Write and EEPROM _Read.
Although EEPROM will write the correct value, EEPROM _Read might return undefined result.

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (53 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example for i =0 to 20
EEPROM Wite(i, i + 6)
next i

5.2.7 Flash Memory Library

This library provides routines for accessing microcontroller Flash memory.

Note: Routines differ for PIC16 and PIC18 families.

5.2.7.1 Flash_Read — Reads data from microcontroller Flash memory

Prototype  sub function Flash Read(di m Address as longint) as byte ' for PICl8

sub function Flash_Read(di m Address as word) as word ' for PICl6

Description = Procedure reads data from the specified <Address>.

Example for i =0 to 63
t oRead = Fl ash_Read($0D00 + i)

read 64 consecutive |ocations starting from 0x0DOO
next i

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (54 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.7.2 Flash_Write — Writes data to microcontroller Flash memory

Prototype sub procedure Flash Wite(di mAddress as longint, dimbyref Data as byte
[64]) ' for PIC18

sub procedure Fl ash Wite(di mAddress as word, dimData as word) ' for
Pl C16

Description = Procedure writes chunk of datato Flash memory (for PIC18, data needs to exactly 64 bytesin size). Keepin
mind that this function erases target memory before writing <Data> to it. This means that if write was
unsuccessful, your previous data will be lost.

Example for i =0 to 63 "initialize array
toWite[i] =i
next i
Fl ash_Wite($0D00, toWite) " wite contents of the array to the address
0x0D00

5.2.8 12C Library

|2C interface is serial interface used for communicating with peripheral or other microcontroller devices. Routines below are
intended for PIC MCUs with MSSP module. By using these, you can configure and use PIC MCU as master in 12C communication.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (55 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.8.1 12C_Init — Initializes 12C module

Prototype  sub procedure I2C I nit(const Cock as |ongint)

Description = Initializes 12C module. Parameter <Clock> isadesired |2C clock (refer to device data sheet for correct values in
respect with Fosc).

Example | 2C_1 ni t (100000)

5.2.8.2 I2C_Start — Issues start condition

Prototype  sub function [2C Start as byte

Description = Determinesif 12C busisfree and issues START condition; if thereis no error, function returns O.

Example | 2C Start

5.2.8.3 I2C_Repeated_Start — Performs repeated start

Prototype ~ sub procedure |2C _Repeated_Start

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (56 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = Performs repeated start condition.

Example | 2C_Repeat ed_St art

5.2.8.4 12C_Rd — Receives byte from slave

Prototype ~ sub function I2C Rd(di m Ack as byte) as byte
Description = Receives 1 byte from slave and sends not acknowledge signal if <Ack> is 0O; otherwise, it sends acknowledge.

Example Data = 12C Rd(1) ' read data w acknow edge

5.2.8.512C_Wr — Sends data byte via I12C bus

Prototype  sub function I2C W(dimData as byte) as byte

Description = After you have issued a start or repeated start you can send <Data> byte vial2C bus. The function returns O if
there are no errors.

Example | 2C_W ( $A2) " send byte via I 2C(command to 24cQ2)

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (57 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.8.6 12C_Stop — Issues STOP condition

Prototype ~ sub procedure |2C _Stop as byte

Description = Issues STOP condition.

Example | 2C_St op
3V 5V

[

I E I :

=4 = 1

1

[

[

+-,._"_3'|,l' 1 I:

Resat

(o] +5Y E

da0 Ve :?— T—E

Al WP f— -
+—{NC  SCL[L
+—GND  SDA T

L 24co4 <

— i
MCLRApp THY RBTFGED

RADIAN REB&IPGEE
RATIANI RHS
R . B4
RAJAMANEF  ROIPGEM
S F- ey g 4| RBZ
FASIAH RO
REQFADIAMS REINT
RE1AVRIANE Wdd
REZCHANT Wz

Widd ROTPEPT
Wag ROEFPEPE
056G ROSFEPE
DECE RIO4/FERY
RCONTIOS0  RCTRXDT
RCTIOEI RCETXCK
RC2ICCRT RCH
RC3 RC4
ROAFSPD RDAFEF3
RON/F3F1 ROZFEFE

l_ll_ll_ll.|.l|_ll_||_||_|l_||_||_|l_ll_| N ] N S - - -

PIC16F87T

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (58 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example of 12C communication with 24c02 EEPROM

5.2.9 LCD Library

BASIC provides a set of library procedures and functions for communicating with commonly used 4-bit interface LCD (with
Hitachi HD44780 controller). Be sure to designate port with LCD as output, before using any of the following library procedures
or functions.

5.2.9.1 LCD_Init — Initializes LCD with default pin settings

Prototype @ sub procedure LCD Init(dimbyref Port as byte)

Description = Initializes LCD at <Port> with default pin settings (see the figure below).

Example LCD_I ni t ( PORTB)
"Initializes LCD on PORTB (check pin settings in the figure bel ow)

5.2.9.2 LCD_Config — Initializes LCD with custom pin settings

Prototype sub procedure LCD Config(dimbyref Port as byte, const RS, const EN, const
WR, const D7, const D6, const D5, const D4)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (59 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = Initializes LCD at <Port> with pin settings you specify: parameters <RS>, <EN>, <WR>, <D7> .. <D4> need
to be a combination of values0..7 (e.g. 3,6,0,7,2,1,4).

Example LCD_Config(PCRTD, 1, 2, 0, 3, 5, A4, 6)

Initializes LCD on PORTD with our custom pin settings

5.2.9.3 LCD_Chr - Prints char on LCD at specified row and col

Prototype sub procedure LCD Chr(dimRow as byte, dim Colum as byte, dim Character
as byte)

Description = Prints <Character> at specified <Row> and <Column> on LCD.

Example LCD Chr (1, 2, "e")

Prints character "e" on LCD (1st row, 2nd col umm)

5.2.9.4 LCD_Chr_CP — Prints char on LCD at current cursor position

Prototype  sub procedure LCD _Chr_CP(di m Character as byte)

Description = Prints <Character> at current cursor position.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (60 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example LCD_Chr _CP(" k")

Prints character "k" at current cursor position

5.2.9.5 LCD_Out - Prints string on LCD at specified row and col

Prototype  sub procedure LCD Qut(di m Row as byte, dim Colum as byte, dimbyref Text
as char[ 255])

Description = Prints <Text> (string variable) at specified <Row> and <Column> on LCD. Both string variables and string
constants can be passed.

Example LCD Qut (1, 3, Text)

Prints string variable Text on LCD (1st row, 3rd col umm)

5.2.9.6 LCD_Out_CP — Prints string on LCD at current cursor position

Prototype ~ sub procedure LCD_Qut _CP(di m byref Text as char[255])

Description = Prints <Text> (string variable) at current cursor position. Both string variables and string constants can be
passed.

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (61 sur 112)05/11/2004 02:20:52



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example LCD Qut _CP("Sone text")

Prints "Sone text" at current cursor position

5.2.9.7 LCD_Cmd — Sends command to LCD

Prototype  sub procedure LCD_Cnd(di m Command as byte)
Description = Sends <Command> to LCD.

List of available commands follows:

LCD First_Row

Moves cursor to 1st row

LCD_Second_Row

Mbves cursor to 2nd row

LCD_Thi rd_Row

Moves cursor to 3rd row

LCD Fourth Row

Moves cursor to 4th row

LCD d ear

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (62 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Cl ears displ ay

LCD Ret urn_Hone
Ret urns cursor to hone position,
returns a shifted display to original position.
Di splay data RAM i s unaffect ed.

LCD Cursor O f
Turn off cursor

LCD Underline_On
" Underline cursor on

LCD Bl i nk_Cursor_On
" Blink cursor on

LCD Move Cursor Left
' Move cursor |eft w thout changing display data RAM

LCD Move Cursor Ri ght
' Move cursor right w thout changi ng di splay data RAM

LCD Turn_On
" Turn LCD display on

LCD Turn O f

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (63 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

" Turn LCD display off

LCD Shift Left
* Shift display left wthout changi ng display data RAM

LCD _Shift_Ri ght
* Shift display right w thout changing display data RAM

Example LCD Cnd(LCD O ear) ' Clears LCD display

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (64 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

LCD HW connection

LCD HW connection

5.2.10 LCDS8 Library (8-bit interface LCD)

BASIC provides a set of library procedures and functions for communicating with commonly used 8-bit interface LCD (with
Hitachi HD44780 controller). Be sure to designate Control and Data ports with LCD as output, before using any of the following
library procedures or functions.

5.2.10.1 LCD8_Init — Initializes LCD with default pin settings

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (65 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype

Description

Example

sub procedure LCD8 Init(dimbyref Port Crl as byte, dimbyref Port Data
as byte)

Initializes LCD at <Port_Ctrl> and <Port_Data> with default pin settings (see the figure below).

LCD8 I nit (PORTB, PORTC)
"Initializes LCD on PORTB and PORTC with default pin settings

(check pin settings in the figure bel ow)

5.2.10.2 LCD8_Config — Initializes LCD with custom pin settings

Prototype

Description

Example

sub procedure LCD8 Config(dimbyref Port Crl as byte, dimbyref Port Data
as byte, const RS, const EN, const WR, const D7, const D6, const D5, const
D4, const D3, const D2, const D1, const DO)

Initializes LCD at <Port_Ctrl> and <Port_Data> with pin settings you specify: parameters <RS>, <EN>,
<WR> need to bein range 0..7; parameters <D7>..<D0> need to be a combination of values 0..7 (e.g.
3,6,5,0,7,2,1,4).

LCD8_Confi g(PORTC, PORTD, 0, 1, 2, 6, 5, 4, 3, 7, 1, 2, 0)

Initializes LCD on PORTC and PORTD with our custom pin settings

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (66 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.10.3 LCD8_Chr — Prints char on LCD at specified row and col

Prototype sub procedure LCD8 Chr(di m Row as byte, dim Colum as byte, dim Character
as byte)

Description = Prints <Character> at specified <Row> and <Column> on LCD.

Example LCD8_Chr (1, 2, "e")

Prints character "e" on LCD (1st row, 2nd col umm)

5.2.10.4 LCD8_Chr_CP — Prints char on LCD at current cursor position

Prototype  sub procedure LCD8_Chr_CP(di m Character as byte)

Description = Prints <Character> at current cursor position.

Example LCD8_Chr _CP("k")

Prints character "k" at current cursor position

5.2.10.5 LCD8_Out — Prints string on LCD at specified row and col

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (67 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype  sub procedure LCD8_Qut (di m Row as byte, dim Colum as byte, dimbyref Text
as char[ 255])

Description = Prints <Text> (string variable) at specified <Row> and <Column> on LCD. Both string variables and string
constants can be passed.

Example LCD8_CQut (1, 3, Text)

Prints string variable Text on LCD (1st row, 3rd col umm)

5.2.10.6 LCD8_Out_CP — Prints string on LCD at current cursor position

Prototype  sub procedure LCD8_Qut_ CP(di m byref Text as char[255])

Description = Prints <Text> (string variable) at current cursor position. Both string variables and string constants can be
passed.

Example LCD8_Qut _CP("Test")
" Prints "Test" at current cursor position

5.2.10.7 LCD8_Cmd — Sends command to LCD

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (68 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype = sub procedure LCD8_Cmd(di m Conmand as byt e)

Description = Sends <Command > to LCD.

List of available commands follows:

LCD First_Row
" Moves cursor to 1st row

LCD_Second_Row
" Moves cursor to 2nd row

LCD _Thi rd_Row
' Moves cursor to 3rd row

LCD Fourth Row
' Moves cursor to 4th row

LCD d ear
' Clears display

LCD Return_Hone

' Returns cursor to hone position,
returns a shifted display to original position.
‘' Display data RAM i s unaffected.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (69 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

LCD Cursor O f
" Turn off cursor

LCD Underline_On
" Underline cursor on

LCD Bl i nk_Cursor_On
" Blink cursor on

LCD Move Cursor Left
' Move cursor |eft without changing display data RAM

LCD Move Cursor Ri ght
' Move cursor right w thout changi ng di splay data RAM

LCD Turn_On
' Turn LCD display on

LCD Turn O f
" Turn LCD display off

LCD Shift_Left
* Shift display left wthout changi ng display data RAM

LCD _Shi ft _Ri ght
* Shift display right w thout changing display data RAM

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (70 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example LCD8_Cnd(LCD _d ear) ' Clears LCD display

LCD HW connection

LCD HW connection

5.2.11 Graphic LCD Library

mikroPascal provides a set of library procedures and functions for drawing and writing on Graphical LCD. Also it ispossible to
http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (71 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

convert bitmap (use menu option Tools > BMP2LCD) to constant array and display it on GLCD. These routines works with
commonly used GLCD 128x64, and work only with the PIC18 family.

5.2.11.1 GLCD_Config — Initializes GLCD with custom pin settings

Prototype = sub procedure GLCD Config(di mbyref Cirl_Port as byte, dimbyref Data_Port
as byte, dim Reset as byte, dim Enable as byte,dimRS as byte, dimRWas
byte, dim CSl1 as byte, dim CS2 as byte)

Description = Initializes GLCD at <Ctrl_Port> and <Data_Port> with custom pin settings.

Example G.CD LCD Confi g(PORTB, PORTC, 1,7,4,6,0,2)
5.2.11.2 GLCD_Init — Initializes GLCD with default pin settings
Prototype sub procedure GCD Init(dimCrl _Port as byte, dimData Port as byte)

Description  Initializes LCD at <Ctrl_Port> and <Data_Port>. With default pin settings Reset=7, Enable=1, RS=3, RW=5,
CS1=2, CS2=0.

Example GLCD LCD I nit(PORTB, PORTC)

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (72 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.11.3 GLCD_Put_Ins — Sends instruction to GLCD.

Prototype sub procedure G.CD Put _Ins(dimlns as byte)
Description = Sendsinstruction <Ins>to GLCD. Available instructions include:

X _ADRESS = $B8 ' Adress base for Page 0
Y _ADRESS = $40 ' Adress base for YO
START LINE = $C0 ' Adress base for line O
DI SPLAY ON = $3F ' Turn display on

DI SPLAY OFF = $3E ' Turn display off

Example GLCD_Put _I ns( DI SPLAY_ON)

5.2.11.4 GLCD_Put_Data — Sends data byte to GLCD.

Prototype @ sub procedure GLCD Put Data(di mdata as byte)

Description = Sends data byteto GLCD.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (73 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example GLCD_Put _Dat a(t enperat ure)

5.2.11.5 GLCD_Put_Data2 — Sends data byte to GLCD.

Prototype sub procedure G.CD Put Data2(di mdata as byte, dimside as byte)

Description = Sends datato GLCD at specified <side> (<side> can take constant value LEFT or RIGHT) .

Example GLCD Put Data2(tenperature, 1)

5.2.11.6 GLCD_Select_Side- Selects the side of the GLCD.

Prototype  sub procedure G.CD Sel ect Side(di m LCDSi de as byte)

Description = Selectsthe side of the GLCD:
"const RIGHT = 0
' const LEFT =1

Example GLCD_Sel ect _Si de( 1)

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (74 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.11.7 GLCD_Data_Read — Reads data from GLCD.

Prototype  sub function GLCD Data Read as byte

Description = Reads datafrom GLCD.

Example GLCD_Dat a_Read

5.2.11.8 GLCD_Clear_Dot — Clears a dot on the GLCD.

Prototype  sub procedure GL.CD Clear Dot(dimx as byte, dimy as byte)

Description = Clearsadot on the GLCD at specified coordinates.

Example GLCD O ear Dot (20, 32)

5.2.11.9 GLCD_Set_Dot — Draws a dot on the GLCD.

Prototype sub procedure G.CD Set Dot (dimx as byte, dimy as byte)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (75 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = Drawsadot on the GLCD at specified coordinates.

Example GLCD_Set Dot (20, 32)

5.2.11.10 GLCD_Circle — Draws a circle on the GLCD.

Prototype sub procedure G.CD Circle(dimCenterX as integer, dimCenterY as integer,
di m Radi us as i nteger)

Description = Drawsacircle on the GLCD, centered at <Center X, Center Y> with <Radius>.

Example GLCD GCrcle(30, 42, 6)

5.2.11.11 GLCD_Line — Draws a line

Prototype sub procedure G.CD Line(dimxl1l as integer, dimyl as integer, dimx2 as
I nteger, dimy2 as integer)

Description = Drawsaline from (x1,y1) to (x2,y2).

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (76 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example G.CD Line(0, 0, 120, 50)
G.CD Line(0,63, 50, 0)

5.2.11.12 GLCD_Invert — Inverts display

Prototype @ sub procedure G.CD Invert(dim Xaxis as byte, dim Yaxis as byte)

Description = Procedure inverts display (changes dot state on/off) in the specified area, X pixels wide starting from O position,
8 pixels high. Parameter Xaxis spans 0..127, parameter Y axis spans 0..7 (8 text lines).

Example GLCD I nvert (60, 6)

5.2.11.13 GLCD_Goto_XY — Sets cursor to dot(x,y)

Prototype  sub procedure GLCD Goto XY(dimx as byte, dimy as byte)

Description = Sets cursor to dot (X,y). Procedure is used in combination with GLCD_Put _Dat a, G_.CD_Put Dat a2, and
GLCD Put Char.

Example GLCD _Got o_XY(60, 6)

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (77 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.11.14 GLCD_Put_Char — Prints <Character> at cursor position

Prototype  sub procedure G.CD Put Char (di m Character as byte)

Description = Prints <Character> at cursor position.

Example GLCD_Put _Char (k)

5.2.11.15 GLCD_Clear_Screen — Clears the GLCD screen

Prototype @ sub procedure G.CD C ear Screen

Description = Clearsthe GLCD screen.

Example GLCD_C ear _Screen

5.2.11.16 GLCD_Put_Text — Prints text at specified position

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (78 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure G.CD Put Text(dimx_pos as word, dimy pos as word, dim
byref text as char[25], diminvert as byte)

Description = Prints <text> at specified position; y_pos spans 0..7.

Example  GLCD Put_Text(0, 7, My_text, NONI NVERTED TEXT)

5.2.11.17 GLCD_Rectangle — Draws a rectangle

Prototype sub procedure G.CD Rectangle(dim Xl as byte, dimYl as byte, dim X2 as
byte, dim Y2 as byte)

Description = Draws arectangle on the GLCD. (x1,y1) setsthe upper left corner, (x2,y2) sets the lower right corner.

Example GLCD Rectangl e(10, 0, 30, 35)

5.2.11.18 GLCD_Set_Font — Sets font for GLCD

Prototype @ sub procedure G.CD Set Font(dimfont _index as byte)

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (79 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = Setsfont for GLCD. Parameter <font_index> spans from 1 to 4, and determines which font will be used:
1: 5x8 dots
2: 5X7
3: 3x6
4: 8x8

Example GLCD_Set Font (2)

5.2.12 Manchester Code Library

mikroBasic provides a set of library procedures and functions for handling Manchester coded signal. Manchester codeisacodein
which data and clock signals are combined to form a single self-synchronizing data stream; each encoded bit contains atransition
at the midpoint of abit period, the direction of transition determines whether the bitisa 0 or a 1; second half isthe true bit value
and thefirst half is the complement of the true bit value (as shown in the figure below).

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (80 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika
Manchester RF_Send_Byte format

St1(|5t2(Ctr ([B7 |B6|B5|B4 | B3| B2|B1|BO

Bi-phase coding
Al
1 0

2.4ms Example of transmission

117000100011

Note: Manchester receive routines are blocking calls (Man_Recei ve_Confi g, Man_Receive | nit, Man_Recei ve).
This means that PIC will wait until the task is performed (e.g. byte is received, synchronization achieved, etc).

Note: Routines for receiving are limited to a baud rate scope from 340 ~ 560 bps.

5.2.12.1 Man_Receive_Init — Initialization with default pin

Prototype  sub procedure Man_Receive_lnit(dimbyref Port as byte)

Description = Procedure works same as Man_Recei ve_Conf i g, but with default pin setting (pin 6).

Example Man_Recei ve_ | nit ( PORTD)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (81 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.12.2 Man_Receive_Config — Initialization with custom pin

Prototype sub procedure Man_Receive Config(di mbyref Port as byte, dim RXpin as byte)

Description = This procedure needs to be called in order to receive signal by procedure Man_Recei ve. You need to specify

the <Port> and <RXpin> of input signal. In case of multiple errors on reception, you should call
Man_Recei ve_ | nit once again to enable synchronization.

Example Man_Recei ve_Confi g( PORTD, 5)

5.2.12.3 Man_Receive — Receives a byte

Prototype  sub function Man_Recei ve(di m byref Error as byte) as byte

Description = Function extracts one byte from signal. If format does not match the expected, <Error> flag will be set True.

Example dimErrorFlag as byte
tenp = Man_Recei ve( ErrorFl ag) ' Attenpt byte receive

5.2.12.4 Man_Send_Init — Initialization with default pin

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (82 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype = sub procedure Man_Send_Init(di m byref Port as byte)

Description = Procedure works same as Man_Send_Conf i g, but with default pin setting (pin 0).

Example Man_Send | ni t ( PORTB)

5.2.12.5 Man_Send_Config — Initialization with custom pin

Prototype  sub procedure Man_Send_Config(di m byref Port as byte, dim TXpin as byte)

Description = Procedure needs to be called in order to send signals via procedure Man_Send. Procedure specifies <Port> and
<TXpin> for outgoing signal (const baud rate).

Example Man_Send_ Confi g( PORTB, 4)

5.2.12.6 Man_Send — Sends a byte

Prototype  sub procedure Man_Send(di m Data as byte)

Description = Procedure sends one <Data> byte.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (83 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example for i =1 to Length(sl)

Man_Send(sl[i]) " Send char
Del ay_ns(90)
next i

5.2.13 PWM Library

CCP (Capture/ Compare/ PWM) module is available with a number of PIC MCU models. Set of library procedures and functionsis
listed below to provide comfortable work with PWM (Pulse Width Modulation).

Note that these routines support module on PORTC pin RC2, and won't work with modules on other ports. Also, BASIC doesn't
support enhanced PWM modules.

5.2.13.1 PWM _ Init — Initializes PWM module

Prototype ~ sub procedure PWM Init(const PWM Freq)

Description ' Initializes PWM module with (duty ratio) 0%. <PWM_Freg> isadesired PWM frequency (refer to device data
sheet for correct valuesin respect with Fosc).

Example PVWM | ni t (5000) ‘initializes PW nodule, freq = 5kHz

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (84 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.13.2 PWM_Change_Duty — Changes duty ratio

Prototype = sub procedure PWVM Change Duty(di m New Duty as byte)

Description = Routine changes duty ratio. <New_Duty> takes values from 0 to 255, where 0 is 0% duty ratio, 127 is 50% duty
ratio, and 255 is 100% duty ratio. Other values for specific duty ratio can be calculated as (Percent* 255)/100.

Example whil e true
Del ay _ns(100)

j =] +1
PWM Change Duty(])
wend

5.2.13.3 PWM_Start — Starts PWM

Prototype @ sub procedure PWM Start

Description = Starts PWM.

Example PWM St ar t

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (85 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.13.4 PWM_Stop — Stops PWM

Prototype @ sub procedure PWM Stop

Description = Stops PWM.

Example PWM_St op

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (86 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

PIC16F&7T
+5V v
———{ |ITRvppTHY RETPED []
_ [Jramann REAPGC []
e Oratian Rras []
- [Irazianzvrer- rB4 []
[Irasiananmats  REIPGM []
Orramocs raz []
[rasians ra1[]
E o [ nEr:-.-muﬁ REMINT []
2 L +5y  [RevwRiame wd [
[rEzcsaNT vas I
Ll:vm RETPSPT []
{]v== RO&FSPE []
0SCH ROSPEPS [
0SC2 RO4FSP4 []
T [[rocomiosn  RCTRADT []
f [IrciTios  RoaTwck []
TeT | fIrczcor rcs [
[rca rC4 ]
4MHz [Jroarsro REAFSP [
L [Jroesei RO2FSPE [
oLy Aax LDO
UUuuu e

PWM demonstration
5.2.14 RS485 Library

R385 is a multipoint communication which allows multiple devices to be connected to asingle signal cable. BASIC provides a set
of library routines to provide you comfortable work with R$485 system using Master/Slave architecture.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (87 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika
Master and Slave devices interchange packets of information, each of these packets containing synchronization bytes, CRC byte,
address byte, and the data. In Master/Slave architecture, Slave can never initiate communication. Each Slave has its unique address
and receives only the packets containing that particular address. It is programmer's responsibility to ensure that only one device
transmits datavia 485 bus at atime.

R3485 routines require USART module on port C. Pins of USART need to be attached to RS485 interface transceiver, such as
LTCA485 or similar. Pins of transceiver (Receiver Output Enable and Driver Outputs Enable) should be connected to port C, pin 2
(see thefigure at end of the chapter).

Note: Address 50 isacommon address for al Slave devices. packets containing address 50 will be received by all Slaves. The only
exceptions are Slaves with addresses 150 and 169, which require their particular address to be specified in the packet.

5.2.14.1 RS485Master_Init — Initializes MCU as Master in RS485 communication

Prototype @ sub procedure RS485nmaster init

Description  Initializes MCU as Master in R485 communication. USART needs to be initialized.

Example RS485Mast er _Init

5.2.14.2 RS485Master Read — Receives message from Slave

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (88 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype @ sub procedure RS485nmaster read(di m byref data as byte[5])

Description = Master receives any message sent by Slaves. As messages are multi-byte, this procedure must be called for each
byte received (see the example at the end of the chapter). Upon receiving a message, buffer isfilled with the
following values:

. data[0..2] is actual data

. data[3] is number of bytesreceived, 1..3

. data[4] isset to 255 when message is received

. data[5] isset to 255 if error has occurred

. data[6] isthe address of the Slave which sent the message

Procedure automatically sets data]4] and data[5] upon every received message. These flags need to be cleared
repeatedly from the program.

Note: MCU must beinitialized as Master in 485 communication to assign an address to MCU

Example RS485Mast er _Read( dat )

5.2.14.3 RS485Master_Write — Sends message to Slave

Prototype ~ sub procedure RS4A85Master _Wite(di mbyref data as byte[2], dimdatalen as
byte, di maddress as byte)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (89 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = Routine sends number of bytes (1 < datalen <= 3) from buffer via 485, to dave specified by <address>.

MCU must beinitialized as Master in 485 communication. It is programmer's responsibility to ensure (by
protocol) that only one device sends data via 485 bus at atime.

Example RS485Master Wite(dat, 1)

5.2.14.4 RS485Slave _Init — Initializes MCU as Slave in RS485 communication

Prototype sub procedure RS485Sl ave | nit(di m address as byte)
Description = Initializes MCU as Slave in R85 communication. USART needs to be initialized.

<address> can take any value between 0 and 255, except 50, which is common address for all slaves.

Example RS485Sl ave | nit(160) "initialize MCU as Sl ave with address 160

5.2.14.5 RS485Slave Read — Receives message from Master

Prototype = sub procedure RS485S| ave_Read(di m byref data as byte[5])

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (90 sur 112)05/11/2004 02:20:53



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = Only messages that appropriately address Slaves will be received. As messages are multi-byte, this procedure
must be called for each byte received (see the example at the end of the chapter). Upon receiving a message,
buffer isfilled with the following values:

. datg[0..2] isactual data

. data[3] is number of bytesreceived, 1..3

. data[4] is set to 255 when message is received
. data[5] isset to 255 if error has occurred

. rest of the buffer is undefined

Procedure automatically sets data]4] and data[5] upon every received message. These flags need to be cleared
repeatedly from the program.

MCU must beinitialized as Master in 485 communication to assign an address to MCU.

Example RS485S| ave_Read( dat)

5.2.14.6 RS485Slave Write — Sends message to Master

Prototype  sub procedure RS485Sl ave_Wite(di mbyref data as byte[2], dimdatalen as
byt e)

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (91 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Description = Sends number of bytes (1 < datalen <= 3) from buffer via 485 to Master.

MCU must beinitialized as Slave in 485 communication. It is programmer's responsibility to ensure (by
protocol) that only one device sends data via 485 bus at atime.

Example RS485SI ave Wite(dat, 1)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (92 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Connecting PC and PIC via
R5485 communication line

PIC16F877
+
sV S
e | MCLRA U THY RETPGD [ ]
[raniana RESPGE [ Up to 32 devices can
u [ratians res [
£ be connected fo
[razianztmei. Re4 [] +5V RS485 line
[Jravanaveet RBIPGM [
[rearock rez [] i I
Resat [Jrasians rat1l]
__ +5\ I
O ——{|reEpADians  RENINT [] 10K I
° ey [JREVWRiANG vad [ ‘ ||
[Ire=CsmNT wez [ S ]
T f]iad ROTPSPT [] : % Iﬂ; i L L
i rRoars [] Co:  np—4
D501 ROSPSPS [ 1 ol aHD
0502 RO4F5R4 [
ROONTIOS0  ROTRXDT [ LTC485
ROUTIOSI  ROETRCK [J— 2
RCZTCP Acs [ Shielded pair
. A4 — -1
RC3 c4 [ less than 300m —
ROOFERD RO3PSF3 [] lang
ROPSP1 rRO2FSP2 (] =
+5 I
1.7uF ;
5% Tl
. I
- I
E v+ GND I
= - Tau I
ui G+ Rlin = |
" C- Rt = :[] I
- THin |
?: Tiout TN I
—Ts 2n Rdou :
% fOND MAX232 I
o= ]
..-_.'I"'"‘"‘-"--r-.p_. I"' ~up I
Yot
e I = RS232 10 RS485 converter JI
b e e e e e

Example of interfacina PC to PIC MCU via R$485 bus

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (93 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.15 SPI Library

SPI (Serial Peripheral Interface) module is available with a number of PIC MCU models. Y ou can easily communicate with other
devicesvia SPI - A/D converters, D/A converters, MAX7219, LTC1290 etc. Y ou need PIC MCU with hardware integrated SPI
(for example, PIC16F877). Then, simply use the following functions and procedures.

5.2.15.1 SPI_Init — Standard initialization of SPI

Prototype @ sub procedure SPI _Init
Description = Routineinitializes SPI with default parameters:

. Master mode,

. clock Fosc/4,

. clock idle state low,

. datatransmitted on low to high edge,

. input data sampled at the middle of interval.

Example SPI Init

5.2.15.2 SPI_Init_Advanced — does smt

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (94 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure SPI _Init_Advanced(di m Master as byte, dimData _Sanple as
byte, dimCock Idle as byte, dimLow To_Hi gh as byte)

Description = For advanced settings, configure and initialize SPI using the procedure SPI_Init_Advanced.
Allowed values of parameters:
<Master> determines the work mode for SPI:

. Mast er OSC di v4 : Master clock=Fosc/4

. Master OSC di v16 : Master clock=Fosc/16

. Master OSC di v64 : Master clock=Fosc/64

. Mast er TMR2 : Master clock source TMR2

. Sl ave SS ENABLE : Master Slave select enabled
. Slave_SS DI S: Master Slave select disabled

<Data_Sample> determines when data is sampled:

. Data_SAMPLE M DDLE : input data sampled in middle of interval
. Dat a_ SAMPLE END: input data sampled at the end of interval

<Clock Idle> determinesidle state for clock:

. CLK Idl e H GH:clock idle HIGH
. CLK I'dl e LOW: clock idle LOW

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (95 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika
<Low_To_ High> determines transmit edge for data:

. LOW 2 HI CGH: datatransmit on low to high edge
. H GH 2_LOW: datatransmit on high to low edge

Example SPI Init_Advanced(Master OSC div4, Data SAMPLE M DDLE, CLK Idle LOW
LOW 2 H GH)
‘" This wll set SPI to:

mast er node,

cl ock = Fosc/ 4,

data sanpled at the mddle of interval,
clock idle state | ow,

data transmtted at |ow to high edge.

5.2.15.3 SPI_Read — Reads the received data

Prototype  sub function SPI _Read(di mBuffer as byte) as byte

Description = Routine provides clock by sending <Buffer> and reads the received data at the end of the period.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (96 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example dimrec as byte

SPI _Read(rec)

5.2.15.4 SPI_Write — Sends data via SPI

Prototype @ sub procedure SPI _Wite(di mData as byte)

Description = Routine writes <Data> to SSPBUF and immediately starts the transmission.

Example SPI Wite(7)

5.2.16 USART Library

USART (Universal Synchronous Asynchronous Receiver Transmitter) hardware module is available with a number of PIC MCU
models. Y ou can easily communicate with other devices via RS232 protocol (for example with PC, see the figure at the end of this
chapter - RS232 HW connection). Y ou need a PIC MCU with hardware integrated USART (for example, PIC16F877). Then,
simply use the functions and procedures described below.

Note: Some PIC microsthat have two USART modules, such as P18F8520, require you to specify the module you want to use.
Simply append the number 1 or 2 to procedure or function name, e.g. USART Wi te2(Dat) .

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (97 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.16.1 USART _Init — Initializes USART

Prototype @ sub procedure USART |Init(const Baud_ Rate)
Description = Initializes PIC MCU USART hardware and establishes communication at specified <Baud_Rate>.

Refer to the device data sheet for baud rates allowed for specific Fosc. If you specify the unsupported baud rate,
compiler will report an error.

Example USART _I ni t (2400)

5.2.16.2 USART_Data Ready — Checks if data is ready

Prototype sub function USART Data Ready as byte

Description = Function checksif datais ready. Returns 1 if so, returns O otherwise.

Example USART_Dat a_Ready

5.2.16.3 USART_Read — Receives a byte

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/05.htm (98 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype  sub function USART_Read as byte

Description = Receives abyte; if byteisnot received returns O.

Example USART_Read

5.2.16.4 USART_Write — Transmits a byte

Prototype  sub procedure USART _Wite(di mData as byte)

Description = Procedure transmits byte <Data>.

Example USART_W it e(dat)

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (99 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

-1'.'||F +5‘lull
) . T
Ll ]J
Nl [
v !
SUB-D connector $-pin _'L|_I—[ 1= Tiout ]
ui_kﬁ C2+ Rinf] =
1 el e R
] — —] THin [ Tx line ta MCU
i [] T2out T2in ]
] 1 Rzin F2out [
-g 1 = L " R e foMCU
odd = =+ MAX232
! ' Sarfal cable
i (1t 1)
#"’: 1
b |04 Receive dala (Rx) [
| [, & senadaa i
1ot ]
T
ol
N 1
) o _-_‘_-_-_h'_'_‘—-—-_, ™
IL“"\.._..-- J_ % J
"ﬁxﬁdﬁ :-.l'II T \
¥yl N
RS232 HW connection

5.2.17 One-Wire Library

1-wire library provides routines for communicating via 1-wire bus, for example with DS1820 digital thermometer. Note that
oscillator frequency Fosc needsto be at least 4AMHz in order to use the routines with Dallas digital thermometers.

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (100 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.17.1 OW_Reset — Issues 1-wire reset signal for DS1820

Prototype  sub function OWReset(dimbyref PORT as byte, dimPin as byte) as byte

Description = Issues 1-wire reset signal for DS1820. Parameters <PORT> and <Pin> specify the location of DS1820; return
value of the function is O if DS1820 is present, and 1 otherwise.

Example OW Reset ( PORTA, 5)

5.2.17.2 OW_Read — Reads one byte via 1-wire bus

Prototype  sub function OVN Read(di mbyref PORT as byte, Pin as byte) as byte
Description = Reads one byte via 1-wire bus.

Example tenp = ON Read( PORTA, 5) ' get result from PORTA

5.2.17.3 OW_Write — Writes one byte via 1-wire bus

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (101 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure ONWite(di mbyref PORT as byte, dimPin as byte, dimpar as
byt e)

Description = Writes one byte (<par>) via 1-wire bus

Example ONWite(PORTA, 5, $44)

5.2.18 Software 12C

BASIC provides routines which implement software 12C. These routines are hardware independent and can be used with any
MCU. Software |2C enables you to use MCU as Master in 12C communication. Multi-master mode is not supported.

5.2.18.1 Soft_12C_Config — Configure the 12C master mode

Prototype sub procedure Soft |2C Config(dimbyref Port as byte, const SDA, const SCL)
Description = Configure the |2C master mode.

Parameter <Port> specifies port of MCU on which SDA and SCL pinswill be located,;
parameters <SCL> and <SDA> need to bein range 0..7 and cannot point at the same pin;

Example Sof t _I 2C_Confi g( PORTD, 3, 4)

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (102 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.18.2 Soft_12C_Start — Issues START condition

Prototype  sub procedure Soft |2C Start

Description = Issues START condition.

Example Soft | 2C _Start

5.2.18.3 Soft_12C_Write — Send data byte via I2C bus

Prototype  sub function Soft 12C Wite(dimData as byte) as byte

Description = After you have issued a start signal you can send <Data> byte via|2C bus. The function returns O if there are no
errors.

Example Soft 12C Wite($A3)

5.2.18.4 Soft_12C_Read — Receives byte from slave

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (103 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype  sub function Soft |2C Read(di m Ack as byte) as byte

Description = Receives 1 byte from slave and sends not acknowledge signal if <Ack> is0; otherwise, it sends acknowledge.

Example EE data = Soft | 2C Read(0)

5.2.18.5 Soft_12C_Stop — Issues STOP condition

Prototype  sub procedure Soft_I2C_Stop

Description = Issues STOP condition.

Example Soft _| 2C_St op

5.2.19 Software SPI Library

BASIC provides routines which implement software SPI. These routines are hardware independent and can be used with any
MCU. Y ou can easily communicate with other devicesvia SPI - A/D converters, D/A converters, MAX7219, LTC1290 etc.
Simply use the following functions and procedures.

5.2.19.1 Soft_SPI_Config — Configure MCU for SPI communication

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (104 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure Soft SPI Config(dimbyref Port as byte, const
SDO, const SCK)

Description = Routine configures and initializes software SPI with the following defaults:

« Set MCU to master mode,

« Clock = 50kHz,

. Datasampled at the middle of interval,
. Clock idle state low

. Datatransmitted at low to high edge.

SDI pin, SDO pin, and SCK pin are specified by the appropriate parameters.

Example Soft _SPI _Config(PORTB, 1, 2, 3)
' SDI pinis RB1, SDO pin is RB2, and SCK pin is RBS.

5.2.19.2 Soft_SPI_Read — Reads the received data

Prototype  sub function Soft SPlI read(di mBuffer as byte) as byte

Description = Routine provides clock by sending <Buffer> and reads the received data at the end of the period.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (105 sur 112)05/11/2004 02:20:55

SO,

const



Programming PIC Microcontrollersin BASIC - mikroElektronika

Example Sof t _SPI _Read(dat)

5.2.19.3 Soft_SPI_Write — Sends data via SPI

Prototype @ sub procedure Soft SPI Wite(dimData as byte)

Description = Routine writes <Data> to SSPBUF and immediately starts the transmission.

Example Soft SPI _Wite(dat)

5.2.20 Software UART Library

BASIC provides routines which implement software UART. These routines are hardware independent and can be used with any
MCU. Y ou can easily communicate with other devices via RS232 protocol . Simply use the functions and procedures described
below.

5.2.20.1 Soft_UART _Init — Initializes UART

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/05.htm (106 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub procedure Soft UART Init(dimbyref Port as byte, const RX, const TX,
const Baud_Rat e)

Description = Initializes PIC MCU UART at specified pins establishes communication at <Baud Rate>.

If you specify the unsupported baud rate, compiler will report an error.

Example Soft UART Init(PORTB, 1, 2, 9600)

5.2.20.2 Soft. UART_Read — Receives a byte

Prototype  sub function Soft_ UART_Read(di m byref Msg received as byte) as byte
Description = Function returns areceived byte. Parameter <Msg_received> will take true if transfer was succesful.

Soft UART_Read is a non-blocking function call, so you should test <Msg_received> manually (check the
example below).

Example Recei ved_byte = Sof t _UART_Read( Rec_ok)

5.2.20.4 Soft_ UART_Write — Transmits a byte

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (107 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype  sub procedure Soft USART Wite(di mData as byte)

Description = Procedure transmits byte <Data>.

Example Soft UART Wite(Received byte)

5.2.21 Sound Library

BASIC provides a sound library which allows you to use sound signalization in your applications.
5.2.21.1 Sound_Init — Initializes sound engine

Prototype sub procedure Sound Init(dimbyref Port, dimPin as byte)

Description = Procedure Sound_ | ni t initializes sound engine and prepares it for output at specified <Port> and <Pin>.
Parameter <Pin> needs to be within range 0..7.

Example PORTB =0 ' O ear PORTB
TRISB =0 " PORTB i s output
Sound_I nit (PORTB, 2) “Initialize sound on PORTB. RB2

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (108 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

5.2.21.2 Sound_Play — Plays sound at specified port

Prototype

Description

Example

sub procedure Sound Play(dimbyref Port, dimPin as byte)

Procedure Sound_Pl ay playsthe sound at the specified port pin. <Period_div_10> isasound period givenin
MCU cycles divided by ten, and generated sound lasts for a specified number of periods (<Num_of Periods>).

For example, if you want to play soundof 1IKHz: T = 1/f = 1nms = 1000 cycles @ 4MHz<.
code>. This gives us our first paraneter: 1000/10 = 100. Then, we could
play 150 periods |ike this: Sound Pl ay(100, 150).

Sound_I ni t (PORTB, 2) " Initialize sound on PORTB. RB2
while true
adcVal ue = ADC Read( 2) " Get lower byte from ADC
Sound_ Pl ay(adcVal ue, 200) ' Play the sound
wend

5.2.22 Trigonometry Library

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (109 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

BASIC provides atrigonometry library for applications which involve angle calculations. Trigonometric routines take an angle (in
degrees) as parameter of type word and return sine and cosine multiplied by 1000 and rounded up (as integer).

5.2.22.1 SIinE3 — Returns sine of angle

Prototype  sub function sinE3(dimAngle as word) as integer

Description = Function takes a word-type number which represents angle in degrees and returns the sine of <Angle> as
integer, multiplied by 1000 (1E3) and rounded up to nearest integer: r esul t = round_up(si n( Angl e)
*1000) . Thus, the range of the return values for these functions is from -1000 to 1000.

Note that parameter <Angle> cannot be negative. Function isimplemented as lookup table, and the maximum
error obtained is 1.

Example di mangle as word
dimresult as integer

angle = 45

result = sinE3(angl e) ‘" result is 707

5.2.22.2 CosE3 — Returns cosine of angle

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (110 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype sub function cosE3(di m Angle as word) as integer

Description = Function takes a word-type number which represents angle in degrees and returns the cosine of <Angle> as
integer, multiplied by 1000 (1E3) and rounded up to nearest integer: r esul t = round_up(cos( Angl e)
*1000) . Thus, the range of the return values for these functions is from -1000 to 1000.
Note that parameter <Angle> cannot be negative. Function isimplemented as lookup table, and the maximum
error obtained is+1.

Example di mangle as word
dimresult as integer
angle = 90
result = cosE3(angl e) "'result is O

5.2.23 Utilities

BASIC provides a utility set of procedures and functions for faster development of your applications.

5.2.23.1 Button — Debounce

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (111 sur 112)05/11/2004 02:20:55



Programming PIC Microcontrollersin BASIC - mikroElektronika

Prototype  sub function Button(di mbyref PORT as byte, dimPin as byte, dimTine as
byte, dim Astate as byte) as byte

Description = Function eliminates the influence of contact flickering due to the pressing of a button (debouncing).

Parameters <PORT> and <Pin> specify the location of the button; parameter <Time> represents the minimum
time interval that pin must be in active state in order to return one; parameter <Astate> can be only zero or one,
and it specifiesif button is active on logical zero or logical one.

Example I f Button(PORTB, 0, 1, 1) then
flag = 255
end if

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc. USA. Microchip logo and name
are the registered tokens of the Microchip Technology. mikroBasic is aregistered trade mark of mikroElektronika. All other tokens mentioned
in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/05.htm (112 sur 112)05/11/2004 02:20:55


mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

Chapter 6: Examples with PIC Integrated Peripherals

. Introduction
. 6.1Interrupt Mechanism

. 6.2Internal AD Converter

. 6.3TMRO T Timer

. 64ATMR1 Timer

. 6.5PWM Module

. 6.6 Hardware UART module (RS-232 Communication)

Introduction

It iscommonly said that microcontroller is an “entire computer on asingle chip”, which impliesthat it has more to offer
than a single CPU (microprocessor). This additional functionality is actually located in microcontroller’s subsystems, aso
called the “integrated peripherals’. These (sub)devices basically have two major roles: they expand the possibilities of the
MCU making it more versatile, and they take off the burden for some repetitive and “ dumber” tasks (mainly
communication) from the CPU.

Every microcontroller is supplied with at least a couple of integrated peripherals — commonly, these include timers,
interrupt mechanisms and AD converters. More powerful microcontrollers can command a larger number of more diverse
peripherals. In this chapter, we will cover some common systems and the ways to utilize them from BASIC programming
language.

6.1 Interrupt Mechanism

Interrupts are mechanisms which enable instant response to events such as counter overflow, pin change, data received,
etc. In normal mode, microcontroller executes the main program as long as there are no occurrences that would cause an
interrupt. Upon interrupt, microcontroller stops the execution of main program and commences the special part of the
program which will analyze and handle the interrupt. This part of program is known as the interrupt (service) routine.

In BASIC, interrupt service routine is defined by procedure with reserved namei nt er r upt . Whatever code is stored in

that procedure, it will be executed upon interrupt.

First, we need to determine which event caused the interrupt, as PIC microcontroller calls the same interrupt routine
regardless of the trigger. After that comes the interrupt handling, which is executing the appropriate code for the trigger
event.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (1 sur 12)05/11/2004 02:26:24



Programming PIC Microcontrollersin BASIC - mikroElektronika

I
a a
] g 1 u s
[ ra2 rAT[T
] 17
[] a3 RADT] AMHz
3 16
[ RAATOCK] 05c1 Iﬁ_—il_l
T Reset d 16 |
o 0— MCLR. 05c2
‘ ‘ —LWCIR pie ] ._I3 o
o —— vz {16FBd v [
& 13 amn An
—[ REOANT RET
7 12 20m A
[ rE1 RER
- g 11
. [| re2 RES[]
Fressing the button T causes ] ]
the intemupt INT [} re3 RE4[]

Example of using the
external interrupt INT

Hereisasimple example:

t —— LED_ run

]—:—H—.- 4— LED_int

In the main loop, program keeps LED_run diode on and LED_int diode off. Pressing the button T causes the interrupt —
microcontroller stops executing the main program and starts the interrupt procedure.

program testinterrupt

synbol LED run = PORTB. 7
7
synbol LED int = PORTB. 6
6

sub procedure interrupt

if INTCON.RBIF = 1 then
I NTCON. RBIF = 0O

else if INTCON.INTF = 1 then
LED run = 0
LED int = 1
Del ay_ns(500)
I NTCON. I NTF = O

else if INTCON. TOIF = 1 then
| NTCON. TOIF = O
else if INTCON.EEIF = 1 then
| NTCON. EEIF = 0O
end if

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (2 sur 12)05/11/2004 02:26:24

LED run is connected to PORTB pin

LED i nt

is connected to PORTB pin

Interrupt service routine

Changes on RB4-RB7 ?

Ext er nal

interupt (RBO pin) ?

TMRO interrupt occurred ?

s EEPROM wite cycle finished ?



Programming PIC Microcontrollersin BASIC - mikroElektronika

end if
end if
end if
end sub
mai n
TRISB = 990111111 ' Pins RB6 and RB7 are out put
OPTI ON_REG = 940000000 " Turn off pull-up resistors
' and set interrupt on falling edge
' of RBO si gnal
| NTCON = 940010000 ' Enabl e external interrupts
PORTB = 0 " Initial value on PORTB
el oop: " Wiile there is no interrupt, programruns in

endl ess | oop:
LED run = 1 ' LED run is on
LED int =0 ' LED int is off
goto el oop

end.

Now, what happens when we push the button? Our interrupt routine first analyzes the interrupt by checking flag bits with
coupleof i f. .t hen instructions, because there are several possible interrupt causes. In our case, an external interrupt
took place (pin RBO/INT state changes) and therefore bit INTF in INTCON register is set. Microcontroller will change
LED states, and provide a half second delay for us to actually see the change. Then it will clear INTF bit in order to
enable interrupts again, and return to executing the main program.

In situations where microcontroller must respond to events unrelated to the main program, it is very useful to have an
interrupt service routine. Perhaps, one of the best examples is multiplexing the seven-segment display — if multiplexing
code istied to timer interrupt, main program will be much less burdened because display refreshesin the background.

6.2 Internal AD Converter

A number of microcontrollers have built in Analog to Digital Converter (ADC). Commonly, these AD converters have 8-
bit or 10-bit resolution allowing them voltage sensitivity of 19.5mV or 4.8mV, respectively (assuming that default 5V
voltage is used).

The simplest AD conversion program would use 8-bit resolution and 5V of microcontroller power as referent voltage
(value which the value "read" from the microcontroller pin is compared to). In the following example we measure voltage
on RAOQ pin which is connected to the potentiometer (see the figure below).

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (3 sur 12)05/11/2004 02:26:24



Programming PIC Microcontrollersin BASIC - mikroElektronika

oy __ bt
[ | MCLRApR THY RE7AGD| ]
— REEPGC| |
g H [ Ravtant RES [ ]
- [| Rezeamz et RE4| ]
[| Resmmz et REsPGM] |
[ rasmock re2 | ]
Reszet [ rosang RE1[]
‘U [| REO/RD NS - REOANT |
[| FE1MRANE == i | |
Q 3 [] re2@aemnr Q sz [
\—[ wdd % ROTPSPT [ ]
[ss &  RDEPSPE| |
O5C1ACLKIM ﬂ rRosPsPs | |
O5C2ACLKOUT RD4PsP4| ]
N s [|reomiosomick  RoTRADT |
0 % [|rcrmios RCEBTHACH] |
R [ Rroatcer e
[|Rcs RC4[]
[| rooespo RDSPSP3] |
RDM/PSP1 ro2PsP2| |

Use the potentiometer to
change voltage on RAD

g
=
L]
u
]
-
m
o

I

()
=
o
o
u
-
m
o

]

L
=
(]
o
u
-
m
o

I

L)
=
L]
d
u
-
m
o

]

[Ex]
=
L]
]
]
-
m
]

I

g
=
o
o
u
-
m
o

I
—

I

()
=
o
o
u
-
m
o

]

L
=
bl
“ul
"l
-
m
)

1

Potentiometer gives OV in oneterminal position and 5V in the other — since we use 8-bit conversion, our digitalized
voltage can have 256 steps. The following program reads voltage on RAO pin and displaysit on port B diodes. If not one
diodeison, result iszero and if al of diodes are on, result is 255.

program ADC 8

mai n
TRISA = %411111 ' Port A is input
PORTD = 0
TRI SD = 990000000
ADCON1 = 931000010 ' Port Ais in anal og node,
' 0 and 5V are referent voltage val ues,
‘ and the result is aligned right
‘ (higher 6 bits of ADRESH are zero).
ADCONO = 941010001 ' ADC clock is generated by internal RC

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (4 sur 12)05/11/2004 02:26:24



Programming PIC Microcontrollersin BASIC - mikroElektronika

circuit; voltage is neasured on RA2 and

all ows the use of AD converter

Del ay_ns (500) ' 500 nms pause
el oop:

ADCOND. 2 =1 ' Conversion starts
wai t ;

"'wait for ADC to finish

Del ay_ns(5)
if ADCONO.2 = 1 then
goto wait
end if
PORTD = ADRESH " Set lower 8 bits on port D
Del ay _ns(500) ' 500 ns pause
goto el oop ' Repeat all
end. ' End of program

First, we need to properly initialize registers ADCON1 and ADCONO. After that, we set ADCONO.2 bit which initializes
the conversion and then check ADCONO.2 to determine if conversion isover. If over, the result is stored into ADRESH
and ADRESL where from it can be copied.

Former example could also be carried out via ADC_Read instruction. Our following example uses 10-bit resolution:

program ADC 10

di m AD_Res as word

mai n:

TRISA = 9%11111111 " PORTA is input

TRISD = 990000000 " PORTD i s out put

ADCON1 = 94000010 " PORTA is in anal og node,
' 0 and 5V are referent voltage val ues,
' and the result is aligned right

el oop:

AD Res = ADC read(2) ' Execute conversion and store result

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (5 sur 12)05/11/2004 02:26:25



Programming PIC Microcontrollersin BASIC - mikroElektronika

in variable AD Res.

PORTD = Lo(AD_Res) " Display |ower byte of result on PORTD
Del ay _ns(500) ' 500 ns pause
got o el oop Repeat all

end. End of program

Asone port isinsufficient, we can use LCD for displaying all 10 bits of result. Connection schemeis below and the
appropriate program follows. For more information on LCD routines, check Chapter 5.2: Library Routines.

43 Ilze potentiometer for
changing the voltage on

RAD
| | 5«
= [muw'rm'u FETIFED :l L +§
| Femarn FeaFas |
E [ renasn Fes | E
[JFeanrmurnes FEaFa [ Iezn
[Jramrace Fez [
Razal [Jreas ret 1 BCSaT
‘ [Rﬁuni:ms - FEamT [
o . fuErg B - < g
I—[l.r.u ﬂ ROMFERT ]g;— =
| S " % FOEFSFE ]T -
J_E?Jﬁm e O FleL RNl Istelel LI LT ]| [+
i PO i | INNERRNNNNERENEN
O | = [reumize reaTHCE | b
LJE [JFeacce Fs [ L
[ mef]
[JroarsFo FOAFEFI e e e
= RoFSF R 2 eee0000890909 1 o
| +3y
3
. ‘P[IL_I LCO contrast
bracklight
L
program ADC on_LCD
di m AD_Res as word
di m dummyCh as char|[ 6]
mai n
TRISA = 9%4111111 " PORTA is input
TRISB =0 " PORTB is output (for LCD)
ADCON1 = 940000010 " PORTA is in anal og node,

0 and 5V are referent voltage val ues,

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (6 sur 12)05/11/2004 02:26:25



Programming PIC Microcontrollersin BASIC - mikroElektronika

and the result is aligned right.

Lcd_I ni t ( PORTB) " Initialize LCD

Lcd Cnd(LCD_CLEAR) " Clear LCD

Lcd Cnd(LCD_CURSOR _OFF) ' and turn the cursor off

el oop:

AD Res = ADC Read(2) ' Execute conversion and store result

to variabl e AD Res

LCD Qut (1, 1, " ") " Clear LCD from previous result
WordToSt r (AD_Res, dummyCh) ' Convert the result in text,

LCD Qut (1, 1, dummycCh) ' and print it inline 1, char 1
Del ay _ns(500) ' 500 ns pause

goto el oop " Repeat all

end. End of program

6.3 TMRO Timer

TMRO timer is an 8-bit special function register with working range of 256. Assuming that 4MHz oscillator is used,
TMRO can measure 0-255 microseconds range (at 4MHz, TMRO increments by one microsecond). This period can be
increased if prescaler is used. Prescaler divides clock in a certain ratio (prescaler settings are made in OPTION_REG
register).

Our following program example shows how to generate 1 second using TMRO timer. For visual purposes, program
toggles LEDs on PORTB every second.

Before the main program, TMRO should have interrupt enabled (bit 2) and GIE bit (bit 7) in INTCON register should be
set. Thiswill enable global interrupts.

program Ti ner 0_1sec

dimcnt as byte
dim a as byte
dim b as byte

sub procedure interrupt

cnt = cnt + 1 I ncrement value of cnt on every interrupt

TVRO = 906
| NTCON = $20 ' Set TOIE, clear TOIF
end sub

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (7 sur 12)05/11/2004 02:26:25



Programming PIC Microcontrollersin BASIC - mikroElektronika

mai n

a=2=0

b =1

OPTI ON_REG = $84 " Assign prescaler to TMRO
TRISB = 0 ' PORTB as out put

PORTB = $FF " Initialize PORTB

cnt = 0 " Initialize cnt

TMRO = 096

| NTCON = $A0 ' Enabl e TMRO i nterrupt

" If cnt is 200, then toggle PORTB LEDs and reset cnt
do

if cnt = 200 then
PORTB = not ( PORTB)
cnt =0
end if
| oop until 0 =1

end.

Prescaler is set to 32, so that internal clock is divided by 32 and TMRO increments every 31 microseconds. If TMRO is
initialized at 96, overflow occursin (256-96)* 31 us = 5 ms. We increase cnt every time interrupt takes place, effectively
measuring time according to the value of this variable. When cnt reaches 200, time will total 200*5 ms = 1 second.

6.4 TMR1 Timer

TMRL1 timer is a 16-bit specia function register with working range of 65536. Assuming that 4MHz oscillator is used,
TMRL1 can measure 0-65535 micraseconds range (at 4MHz, TMR1 increments by one microsecond). This period can be
increased if prescaler is used. Prescaler divides clock in a certain ratio (prescaler settings are made in TLCON register).

Before the main program, TMR1 should be enabled by setting the zero bit in TACON register. First bit of the register
defines the internal clock for TMR1 — we set it to zero. Other important registers for working with TMR1 are PIR1 and
PIEL. Thefirst contains overflow flag (zero bit) and the other is used to enable TMR1 interrupt (zero bit). With TMR1
interrupt enabled and its flag cleared, we only need to enable global interrupts and peripheral interruptsin the INTCON
register (bits 7 and 6, respectively).

Our following program example shows how to generate 10 seconds using TMR1 timer. For visual purposes, program
toggles LEDs on PORTB every 10 seconds.

program Ti mer1_10sec

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (8 sur 12)05/11/2004 02:26:25



Programming PIC Microcontrollersin BASIC - mikroElektronika

dimcnt as byte

sub procedure interrupt
cnt = cnt + 1

pirl.0 =0 " Clear TMRLIF
end sub
mai n
TRISB = 0
TICON = 1
PIRL. TMRLIF = O " Cear TMRLIF
PIE1 = 1 ' Enable interrupts
PORTB = $FO
cnt = 0 "Initialize cnt

| NTCON = $C0

" If cnt is 152, then toggle PORTB LEDs and reset cnt
do

if cnt = 152 then
PORTB = not ( PORTB)
cnt =0
end if
l oop until 0 =1

end.

Prescaler is set to 00 so there is no dividing the internal clock and overflow occurs every 65.536 ms. We increase cnt
every time interrupt takes place, effectively measuring time according to the value of this variable. When cnt reaches 152,
time will total 152* 65.536 ms = 9.96 seconds.

6.5 PWM Module

Microcontrollers of PIC16F87X series have one or two built-in PWM outputs (40-pin casing allows 2, 28-pin casing
alows 1). PWM outputs are located on RC1 and RC2 pins (40-pin MCUs), or on RC2 pin (28-pin MCUSs). Refer to PWM
library (Chapter 5.2: Library Routines) for more information.

The following example uses PWM library for getting various light intensities on LED connected to RC2 pin. Variable
which represents the ratio of on to off signalsis continually increased in the loop, taking values from 0 to 255. This results
in continual intensifying of light on LED diode. After value of 255 has been reached, process begins anew.

program PWM LED Test

http://www.mikroel ektronika.co.yu/english/product/books/picbasi chook/06.htm (9 sur 12)05/11/2004 02:26:25



Programming PIC Microcontrollersin BASIC - mikroElektronika

dimj as byte

mai n
TRISB = 0 " PORTB is output
PORTB = 0 ' Set PORTB to O
] =0
TRISC = 0 " PORTC i s output
PORTC = $FF " Set PORTC to $FF
PWM | ni t (5000) "Initialize PWM nodul e
PWM St art " Start PWV
while true " Endl ess | oop
Del ay_ns(10) " Wait 10mns
j =] +1 " Increnment |
PWM Change_Duty(j) ' Set new duty ratio
PORTB = CCPR1L ' Send val ue of CCPRLL to PORTB
wend
end.

6.6 Hardware UART module (RS-232 Communication)

The easiest way to transfer data between microcontroller and some other device, e.g. PC or other microcontroller, isthe
RS-232 communication (also referred to as EIA RS-232C or V.24). RS232 is a standard for serial binary datainterchange
between aDTE (Dataterminal equipment) and a DCE (Data communication equipment), commonly used in personal
computer serial ports. It is a serial asynchronous 2-line (Tx for transmitting and Rx for receiving) communication with
effective range of 10 meters.

Microcontroller can establish communication with serial RS-232 line via hardware UART (Universal Asynchronous
Receiver Transmitter) which isan integral part of PIC16F87X microcontrollers. UART contains specia buffer registers
for receiving and transmitting data as well as a Baud Rate generator for setting the transfer rate.

This example shows data transfer between the microcontroller and PC connected by RS-232 line interface MAX 232
which hasrole of adjusting signal levels on the microcontroller side (it converts RS-232 voltage levels +/- 10V to TTL
levels 0-5V and vice versa).

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/06.htm (10 sur 12)05/11/2004 02:26:25



Programming PIC Microcontrollersin BASIC - mikroElektronika

4TLF +51f s
+ 71 . T —{ | meLRnppTHY RETPGD | ]
Ll [ reneenn REEPGE |
3 [ F et REs | |
u =
+ —] o Wee - [ Faeemz e REd | |
ks I — EHD ]1 [ rostonsamee REsPeM | ]
. + I—\:I i
SUB-D conneciar 9-pin et Tou {1 | [ rearoct ez [ ]
E“-Fﬁ o rin [T = Reset [] esiana Rl ]
f I—'_I—[ e Riaw ] [| rEo#uans - REANT [
g Thin {1 ‘ [|rermifisns = vt [ ]
; F Taa Tain [ o e [ rezkzont 9 wss [
o Rzi Rzau [ f—
: " g " T—[ witd $1 RoTeseT | ]
P |—|—| M A2
P o +T ] ﬂ roepsee | |
rmohe oscictkin =4 RDseses |
Do L DSCECLEOUT Roapsea | |
; i = REOMIOSOMICKL  ReTkanT | F——
o RC1TI0S! Reemack | —
P RiC2ACCR Res |
P FiC:3 Fitd :|
o 1 RO0FSR ros®ses |
P —E_ receives data I{E‘.H]II:::- Rl F5P1 RozFske [
. ki
i eal {1 sends data (Tx)
: s
i EN

e,

i

Our following program example illustrates use of hardware serial communication. Data received from PC is stored into
variable dat and sent back to PC as confirmation of successful transfer. Thus, it is easy to check if communication works
properly. Transfer format is 8N1 and transfer rate is 2400 baud.

program USART_Echo

di m dat as byte

mai n
USART | ni t (2400) " Initialize USART nodul e
while true
i f USART Data Ready = 1 then " If data is received
dat = USART_ Read ' Read the received data
USART Wi te(dat) ' Send data via USART
end if
wend
end.

In order to establish the communication, PC must have a communication software installed. One such communication
terminal is part of mikroBasic IDE. It can be accessed by clicking Tools > Terminal from the drop-down menu. Terminal

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/06.htm (11 sur 12)05/11/2004 02:26:25



Programming PIC Microcontrollersin BASIC - mikroElektronika

allows you to monitor transfer and to set all the necessary transfer settings. First of all, we need to set the transfer rate to
2400 to match the microcontroller's rate. Then, select the appropriate communication port by clicking one of the 4
available (check where you plugged the serial cable).

After making these adjustments, clicking Connect starts the communication. Type your message and click Send Message
— message will be sent to the microcontroller and back, where it will be displayed on the screen.

Note that serial communication can also be software based on any of 2 microcontroller pins— for more information, check
the Chapter 9: Communications.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc. USA. Microchip logo
and name are the registered tokens of the Microchip Technology. mikroBasic is aregistered trade mark of mikroElektronika. All
other tokens mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/06.htm (12 sur 12)05/11/2004 02:26:25


mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

Chapter 7. Examples with Displaying Data

. Introduction

. 7.1LED Diode

. 7.2 Seven-Segment Display

. 7.3LCD Display, 4-bit and 8-bit Interface
. 7.4 Graphical LCD

. 7.5Sound Signalization

Introduction

Microcontrollers deal very well with 0'sand 1's, but humans do not. We need indicator lights, numbers, letters, charts,
beepers... In order to comprehend the information presented quicker and better, we need that information to be displayed
to usin many different ways. In practice, human - machine communication can require substantial (machine) resources,
S0 it is sometimes better to dedicate an entire microcontroller to that task. This device is then called the Human -
Machine Interface or smply HMI. The second microcontroller is then required to get the human wishes from HMI, “do
the job” and put the results back to HMI, so that operator can seeiit.

Clearly, the most important form of communication between the microcontroller system and aman is the visua
communication. In this chapter we will discuss various ways of displaying data, from the simplest to more elaborate
ones. You'll see how to use LED diodes, Seven-Segment Displays, character- and graphic LCDs. We will also consider
using BASIC for sound signalization necessary in certain applications.

Just remember: the more profound communication you wish to be, the more MCU resourcesit’ll take.

7.1 LED Diode

One of the most frequently used componentsin electronicsis surely the LED diode (LED stands for Light Emitting
Diode). Some of common LED diode features include: size, shape, color, working voltage (Diode voltage) Ud and
electric current Id. LED diode can be round, rectangular or triangular in shape, although manufacturers of these
components can produce any shape heeded for specific purposes. Sizei.e. diameter of round LED diodes ranges from 3
to 12 mm, with 3 - 5 mm sizes most commonly used. Common colorsinclude red, yellow, green, orange, blue, etc.
Working voltageis 1.7V for red, 2.1V for green and 2.3 for orange color. This voltage can be higher depending on the
manufacturer. Normal current Id through diode is 10 mA, while maximal current reaches 25 mA. High current
consumption can present problem to devices with battery power supply, so in that case low current LED diode (Id ~ 1-2
mA) should be used. For LED diode to emit light with maximum capacity, it is necessary to connect it properly or it
might get damaged.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (1 sur 16)05/11/2004 02:27:45



Programming PIC Microcontrollersin BASIC - mikroElektronika

48y
LIr +5
iy Y o 15-Ud
Ur R H Id T T Cath{ R[] [

44

A M— A,
Ud )

K K
- - _L

The positive pole is connected to anode, while ground is connected to cathode. For matter of differentiating the two,
cathode is marked by mark on casing and shorter pin. Diode will emit light only if current flows from anode to cathode;
in the other case there will be no current. Resistor is added serial to LED diode, limiting the maximal current through
diode and protecting it from damage. Resistor value can be calculated from the equation on the picture above, where Ur
represents voltage on resistor. For +5V power supply and 10 mA current resistor used should have value of 330e.

LED diode can be connected to microcontroller in two ways. One way isto have microcontroller "turning on" LED
diode with logical one and the other way iswith logical zero. The first way is not so frequent (which doesn't mean it
doesn't have applications) because it requires the microcontroller to be diode current source. The second way works with
higher current LED diodes.

L 1]
oz rai ]
17T
Fibd R :IL aldils
RRAT K] %] H‘ |
15 | [ ::’7
WL 05C2 [t
PIC . I_I +5
ws 16F84 wf— 1
[Fl 0 A3 e
RECAMT RET
[F
RE1 REG T =
:lll Icd
REZ RES [ . .
w  LED diode isturned
REZ RE4[]  on by & logical one
L 1]
oz R[]
T
Fiba Z2T] akvz

R AT K] 05C

[

[— |

15 I =
WIR pjc 93C2 :I|‘_T_| | ey
wss 16 F84 Uddiﬁ

1] m LED
REQANT RET

12 W

Id N

REA res[]
REZ rES[] . .

w  LED diode i=turned
RE3 RE4]]  on by a logical zero

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (2 sur 16)05/11/2004 02:27:45



Programming PIC Microcontrollersin BASIC - mikroElektronika

+ih .

T 1 w 5 LED diodes are conected to
E[] 1 rRa1[] port B and are turned on by a
! z 17 logical one

?l.:H‘&'a RAl :1|E 4hiHz
[RAMTOCKI  DSCT 4|_,_—|' |
4 15 =
Reset ‘u—ﬁ[m PIC Qgcl 14—T—|| | +§[V
0— |z 16F84  vdd[d o .
i = i3 33000 A LED LED diode iz connected to pin
— | REIANT RET o RET in the sarmple
7 12 z3m0 AA B0
L —{|RE1 REG[—T—+——+
= g 11 3300 AR LED
[]FE2 REA T ————p—
4 10 zm0 A LEO
RE3 RBA—
3300 AR B0
o —M——
3300 ﬁ LED
E AR ED
s 'i;- LED

The following example toggles LEDs of PORTB every second.

program LED Bl i nki ng

mai n:
TRISB = 0 " PORTB i s out put
PORTB = 941111111 " Turn ON di odes on PORTB
Del ay_ns(1000) " Wait for 1 second
PORTB = 990000000 " Turn OFF di odes on PORTB
Del ay_ns(1000) " Wait for 1 second
goto mai n " Endl ess | oop

end.

7.2 Seven-Segment Displays

Seven-segment digits represent more advanced form of visual communication. The name comes from the seven diodes
(there is an eighth diode for adot) arranged to form decimal digits from 0to 9. Appearance of a seven-segment digit is
given on a picture below.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (3 sur 16)05/11/2004 02:27:45



Programming PIC Microcontrollersin BASIC - mikroElektronika

Towards the microcantraller pin
controlling this segment

wﬂE 0|
'F I
l l

As seven-segment digits have better temperature tolerance and visibility than LCD displays, they are very common in
industrial applications. Their use satisfies al criteriaincluding the financial one. They are commonly used for displaying

value read from sensors, €etc.

One of the waysto connect seven-segment display to the microcontroller is given in the figure below. System is
connected to use seven-segment digits with common cathode. This means that segments emit light when logical oneis
brought to them, and that output of all segments must be atransistor connected to common cathode, as shown on the
picture. If transistor isin conducting mode any segment with logical one will emit light, and if not no segment will emit

light, regardless of its pin state.

the microcontroller

Tens
digit
Example of connecting Cllj_nens
seven-segment displays 9
in multiplex mode with T1
MEQ
alr|xla p I
L
Rz Fid S
Rz A0 '-'
RAHT K] Qg , '
{Jicl® pyc osce o P
ws  16F84 w1 HEIGE |d|:| BEIEE ldp
1 mm h
REOANT RET
2 mm J
FEA FEG|b—/—F+——
" hi] f
[:) RES | —T—1
LU o =]
REz RE4| —T1
mo  d
o C
m b
ma A

Bases of transistors T1 and T2 are connected to pin0 and pinl of PORTA. Setting those pins turns on the transistor,

to "h", with logical one onit, to emit light. If zero is on transistor base, none of the
segments will emit light, regardless of the pin state.

alowing every segment from "a"

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (4 sur 16)05/11/2004 02:27:45



Programming PIC Microcontrollersin BASIC - mikroElektronika

Using the previous scheme, we could display a sequence of nine digitslikethis:

program seven_seg _onedi gi t

dimi as byte

Function mask returns nmask of paraneter 'nuni
for conmon cat hode 7-seg. display

sub function mask(di m num as byte) as byte

sel ect case num

case 0 result = $3F
case 1 result = $06
case 2 result = $5B
case 3 result = $4F
case 4 result = $66
case 5 result = $6D
case 6 result = $7D
case 7 result = $07
case 8 result = $7F
case 9 result = $6F

end sel ect
end sub

| NTCON =
TRISA =
TRISB =
PORTB =
PORTA =

Di sable PEIE, INTE, RBIE, TOIE

N O O O O

do
for i =0to 9
PORTB = mask(i)
Del ay_ns(1000)
next i

| oop until false Endl ess | oop

end.

Purpose of the program isto display numbers 0 to 9 on the ones digit, with 1 second delay. In order to display a number,

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (5 sur 16)05/11/2004 02:27:45



Programming PIC Microcontrollersin BASIC - mikroElektronika

its mask must be sent to PORTB. For example, if we need to display "1", segments b and ¢ must be set to 1 and the rest
must be zero. If (according to the scheme above) segments b and ¢ are connected to the first and the second pin of
PORTB, values 0000 and 0110 should be set to PORTB. Thus, mask for number "1" is value 0000 0110 or 06
hexadecimal. The following table contains corresponding mask values for numbers 0-9:

Digit Seg.h Seg.g Seg.f Seg.e Seg.d Segc Seg.b Sega HEX

0 0 0 1 1 1 1 1 1 $3F
1 0 0 0 0 0 1 1 0 $06
2 0 1 0 1 1 0 1 1 $5B
3 0 1 0 0 1 1 1 1 $4F
4 0 1 1 0 0 1 1 0 $66
5 0 1 1 0 1 1 0 1 $6D
6 0 1 1 1 1 1 0 1 $7D
7 0 0 0 0 0 1 1 1 $07
8 0 1 1 1 1 1 1 1 $7F
9 0 1 1 0 1 1 1 1 $6F

Y ou are not, however, limited to displaying digits. Y ou can use 7seg Display Decoder, a built-in tool of mikroBasic, to
get hex code of any other viable combination of segments you would like to display.

But what do we do when we need to display more than one digit on two or more displays? We have to put amask on one
digit quickly enough and activate its transistor, then put the second mask and activate the second transistor (of course, if
one of the transistorsis in conducting maode, the other should not work because both digits will display the same value).
The process is known as “multiplexing”: digits are displayed in away that human eye getsimpression of simultaneous
display of both digits — actually only one display emits at any given moment.

Now, let’s say we need to display number 38. First, the number should be separated into tens and ones (in this case,
digits 3 and 8) and their masks sent to PORTB. The rest of the program is very similar to the last example, except for
having one transition caused by displaying one digit after another:

program seven_seg twodigits

dim % as byte
dim porl as byte
di m por2 as hyte

sub procedure interrupt
begi n
if v =0 then
PORTB = por2 ' Send nask of tens to PORTB

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (6 sur 16)05/11/2004 02:27:45



Programming PIC Microcontrollersin BASIC - mikroElektronika

PORTA = 1 " Turn on 1st 7seg, turn off 2nd
v =1
el se
PORTB = porl ' Send nask of ones to PORTB
PORTA = 2 Turn on 2nd 7seg, turn off 1st
v =0
end if
TVRO = 0 " Clear TMRO
| NTCON = $20 ' Clear TMROIF and set TMROIE
end sub
mai n
OPTI ON_REG = $80 " Pull-up resistors
TRI SA = 0 " PORTA i s output
TRI SB = 0 " PORTB i s output
PORTB = 0 ' Clear PORTB (nmeke sure LEDs are off)
PORTA = 0 ' O ear PORTA (make sure both displays are off)
TVRO = 0 ' Clear TMRO
por 1 = $7F " Mask for '8 (check the table above)
por 2 = $4F " Mask for "3 (check the table above)
| NTCON = $A0 ' Enable TOIE
while true " Endl ess loop, wait for interrupt
nop
wend
end.

The multiplexing problem is solved for now, but your program probably doesn’'t have a sole purpose of printing constant
values on 7seg display. It is usually just a subroutine for displaying certain information. However, this approach to
printing data on display has proven sto be very convenient for more complicated programs. Y ou can also move part of

the program for refreshing the digits (handling the masks) to the interrupt routine.

The following example increases variable i from 0 to 99 and printsit on displays. After reaching 99, counter begins anew.

progr am seven_seg_counting

di m [ as byte
di m | as byte
di m v as byte

dim porl as byte

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (7 sur 16)05/11/2004 02:27:46



Programming PIC Microcontrollersin BASIC - mikroElektronika

di m por2 as hyte

This function returns masks
for conmon cat hode 7-seg displ ay

sub function mask(di m num as byte) as byte

sel ect case num
case 0 result
case 1 result
case 2 result
case 3 result
case 4 result
case 5 result
case 6 result
case 7 result
case 8 result
case 9 result
end sel ect

end sub

$3F
$06
$5B
$4F
$66
$6D
$7D
$07
$7F
$6F

sub procedure interrupt

if v =0 then
PORTB = por2
PORTA = 1
VvV =
el se
PORTB = porl
PORTA = 2
VvV =
end if
TMRO = O
| NTCON = $20
end sub
mai n
OPTI ON_REG = $80
por 2 = $3F
] = 0
TVRO = 0
| NTCON = $A0
TRI SA = 0

Prepare mask for digit

Turn on 1st, turn off 2nd 7seg

Prepare mask for digit

Turn on 2nd, turn off 1st 7seg

Di sabl e PEIE, INTE, RBIE, TOIE

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (8 sur 16)05/11/2004 02:27:46



Programming PIC Microcontrollersin BASIC - mikroElektronika

1]
o

TRI SB
PORTB
PORTA

I
o O

do
for i =0 to 99 " Count fromO to 99

" Prepare ones digit

j =i nmod 10

porl = mask(j)

" Prepare tens digit

j = (i div 10) nod 10
por2 = mask(j)

Del ay_ns(1000)

next i
| oop until false

end.

In the course of the main program, programmer doesn’t need to worry of refreshing the display. Just call the subroutine
mask every time display needs to change.

7.3 LCD Display, 4-bit and 8-bit Interface

One of the best solutions for devices that require visualizing the datais the “smart” Liquid Crystal Display (LCD). This
type of display consists of 7x5 dot segments arranged in rows. One row can consist of 8, 16, 20, or 40 segments, and
LCD display can have 1, 2, or 4 rows.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (9 sur 16)05/11/2004 02:27:46



Programming PIC Microcontrollersin BASIC - mikroElektronika

+i
+Hitt S
—— | TP Rppmy REfieD |
; E::“:::“ e % Example of connecting LCD display :
- [Jreztananimi- red [ =
[rasizaimr rediren | ER /)
[Jredmock rez []
Reset [|rastens re [ BCAST
‘ [ RmrnErms - RENNT [
o i EEZ:‘SLT: § :: % I:) CI E[]
L[ N ﬂ ROTIFEPT ]L =
b [lw= &K roarse :{% o
! ~ | — —
S ] T Al RIclE|L el TR EAl | |
ETﬂﬁ 7 Il CLER DL el | | o
" [Jreaicce rci ] 1
[Jrca red [ ] =
[ roaresr ROIFER] ES e
= RO BRI ROIPER ] ? ﬁﬁﬁﬁﬁﬁﬂﬂﬁ?ﬁﬁ 1 )]
! ‘ sy
1
hacklight »[j LCD contrast
L

L CD connects to microcontroller via 4-bit or 8-bit bus (4 or 8 lines). R/W signa is on the ground, because
communication is one-way (toward LCD). Some displays have built-in backlight that can be turned on with RD1 pin via
PNP transistor BC557.

Our following example prints text on LCD via4-bit interface. Assumed pin configuration is default.

program LCD defaul t _test

di m Text as char|[ 20]

mai n

TRISB = 0 ' PORTB i s output

LCD I ni t ( PORTB) "Initialize LCD at PORTB
LCD Cnd( LCD_CURSCR_OFF) " Turn off cursor

Text = "m kroel ektroni ka"

LCD Qut (1, 1, Text) " Print text at LCD

end.

Our second example printstext on LCD via 8-hit interface, with custom pin configuration.

program LCD8_t est

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (10 sur 16)05/11/2004 02:27:46



Programming PIC Microcontrollersin BASIC - mikroElektronika

di m Text as char[ 20]

mai n:
TRISB = 0 PORTB i s out put
TRI SD = PORTD i s out put

" Initialize LCD at PORTB and PORTD wi th custom pin settings
LCD8_Confi g( PORTB, PORTD, 2, 3,0, 7,6,5,4,3,2,1,0)

LCD8_Cnd( LCD_CURSOR_OFF) " Turn off cursor
Text = "m kroEl ektroni ka"
LCD8_Qut (1, 1, Text) " Print text at LCD
end.
PIC MCU
any port (with 8 pins)
Control Port Data Port
PIND PINZ PIN3 PIND PIN1 PIMZ PIN3 FINd PING PINE PINT
E
RNV
RS
o +BY
n
g
m]
S

HNGEEEAREEEERBEE

ANNRERNNNRNNNEED

O

7.4 Graphical LCD (PIC18 only)

Most commonly used Graphical LCD (GLCD) has screen resolution of 128x64 pixels. This allows creating more
elaborate visual messages than usual LCD can provide, involving drawings and bitmaps.

The following figure shows GLCD HW connection by default initialization (using GLCD_LCD_Init routine); if you
need different pin settings, refer to GLCD_LCD_Config.

http://www.mikroel ektronika.co.yu/english/product/books/picbasi cbook/07.htm (11 sur 16)05/11/2004 02:27:46



Programming PIC Microcontrollersin BASIC - mikroElektronika

O O
0 |
/ \
\ /
! ]
(0 KOOA ;5000000000000000000;()

éﬁ@EEEEEEEEE”§£§§U
10k
: ]
_E GND
10
+ 5V

BASIC offers acomprehensive library for GLCD — refer to Chapter 5: Built-in and Library Routines for more
information. Our following example demonstrates the possibilities of GLCD and the mentioned library. Note that the
library works with PIC18 only.

program GLCD t est
' For PIC18

i ncl ude "GLCD_128x64. pbas" " You need to include GLCD 128x64 |ibrary

di mtext as string[25]

PORTC
PORTB
PORTD
TRI SC
TRI SD
TRI SB

[ | I ||
O O O © o o

GLCD_LCD I nit (PORTC, PORTD) ' default settings
GLCD_Set _Font ( FONT_NORVAL1)

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/07.htm (12 sur 16)05/11/2004 02:27:46



Programming PIC Microcontrollersin BASIC - mikroElektronika

while true
GLCD Cl ear _Screen
" Draw Circles
GLCD Cl ear _Screen
text = "Circle"
GLCD Put _Text (0, 7, text, NON NVERTED TEXT)
G.CD Circl e(63, 31, 10)

Del ay_Ms(4000)

Dr aw Rect angl es
GLCD O ear _Screen
text = "Rectangle”
GLCD_Put _Text (0, 7, text, NONI NVERTED TEXT)

GL.CD_Rect angl e(10, 0, 30, 35)

Del ay_Ms(4000)
GLCD _Cl ear _Screen
" Draw Lines

GLCD _Cl ear _Screen

text = "Line"

GLCD Put _Text (55, 7, text, NON NVERTED TEXT)

GLCD _Line(0, 0, 127, 50)

GLCD_Li ne(0, 63, 50, 0)

Del ay_Ms(5000)
" Fonts Deno
GLCD _Cl ear _Screen
text = "Fonts DEMD
GLCD_Set _Font ( FONT_TI NY)
GLCD Put Text (0, 4, text, NONI NVERTED TEXT)
GLCD Put _Text (0, 5, text, | NVERTED TEXT)
GLCD _Set Font (FONT_BI G
GLCD Put _Text (0, 6, text, NON NVERTED_ TEXT)
GLCD Put Text (0, 7, text, |NVERTED TEXT)
Del ay_ns(5000)
wend
end.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (13 sur 16)05/11/2004 02:27:46



Programming PIC Microcontrollersin BASIC - mikroElektronika

7.5 Sound Signalization

Some applications require sound signalization in addition to visual or instead of it. It is commonly used to alert or
announce the termination of some long, time-consuming process. The information presented by such meansisfairly
simple, but relieves the user from having to constantly look into displays and dials.

BASIC's Sound library facilitates generating sound signals and output on specified port. We will present asimple
demonstration using piezzo speaker connected to microcontroller’s port.

progr am Sound

The followi ng three tones are cal cul ated for 4MHz crysta
sub procedure Tonel

Sound_Pl ay(200, 200) " Period
end sub

2ns <=> 500Hz, Duration = 200 peri ods

sub procedure Tone2

Sound_Pl ay(180, 200) " Period
end sub

1. 8ms <=> 555Hz

sub procedure Tone3

Sound_Pl ay(160, 200) " Period
end sub

1. 6ms <=> 625Hz

sub procedure Ml ody Pl ays the nel ody "Yell ow house"
Tonel
Tone2
Tone3
Tone3

Tonel
Tone?2
Tone3
Tone3

Tonel
Tone2
Tone3

Tonel
Tone?2
Tone3
Tone3

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (14 sur 16)05/11/2004 02:27:46



Programming PIC Microcontrollersin BASIC - mikroElektronika

Tonel
Tone2
Tone3

Tone3
Tone3
Tone2
Tonel
end sub

mai n:
TRI SB = $FO0

Sound_|I ni t (PORTB, 2)

GN\D
Sound_Pl ay(50, 100)

while true
if Button(PORTB,7,1,1)
Tonel
end if
whi | e TestBit (PORTB, 7)
nop
wend

i f Button(PORTB, 6,1, 1)
Tone2

end if

whi |l e TestBit (PORTB, 6)
nop

wend

if Button(PORTB,5,1,1)
Tone3

end if

whi | e Test Bi t (PORTB, 5)
nop

wend

i f Button(PORTB, 4,1, 1)
Mel ody

end if

whi | e Test Bit (PORTB, 4)
nop

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/07.htm (15 sur 16)05/11/2004 02:27:46

t hen

t hen

t hen

t hen

Connect speaker on pins RB2 and

RB7 pl ays Tonel

Wait for button to be rel eased

RB6 pl ays Tone2

Wait for button to be rel eased

RB5 pl ays Tone3

Wait for button to be rel eased

RB4 pl ays Mel ody

Wait for button to be rel eased



Programming PIC Microcontrollersin BASIC - mikroElektronika

wend
wend
end.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc. USA. Microchip logo
and name are the registered tokens of the Microchip Technology. mikroBasic is aregistered trade mark of mikroElektronika. All
other tokens mentioned in the book are the property of the companies to which they belong.

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroel ektronika.co.yu/english/product/books/pichasi cbook/07.htm (16 sur 16)05/11/2004 02:27:46


mailto:office@mikroelektronika.co.yu

Programming PIC Microcontrollersin BASIC - mikroElektronika

Chapter 8: Examples with Memory and Storage
Media

. Introduction

. 8.1 EEPROM Memory
. 8.2Flash Memory

. 8.3 Compact Flash

Introduction

Thereis no program on thisworld that doesn’t interact with memory in some way. First, during its
execution, it retains the operational data from, uses or atersit, and putsit back into the program
memory. Second, it is often necessary to store and handle large amount of data that can be obtained
from various sources, whether it is the car engine temperature acquisition data or some bitmap image
to be displayed on the GLCD. In this chapter we will focus on the latter problem, i.e. we'll go through
the techniques of manipulating data on the so-called memory storage devices and systems.

8.1 EEPROM Memory

Data used by microcontroller is stored in the RAM memory as long as there is a power supply present.
If we need to keep the data for later use, it has to be stored in a permanent memory. An EEPROM
(E2PROM), or Electrically-Erasable Programmable Read-Only Memory is a non-volatile storage chip,
commonly used with PIC microcontrollers for this purpose. An EEPROM can be programmed and
erased multiple times electrically — it may be erased and reprogrammed only a certain number of
times, ranging from 100,000 to 1,000,000, but it can be read an unlimited number of times.

8.1.1 Internal EEPROM
Some PIC microcontrollers have internal EEPROM allowing you to store information without any

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (1 sur 12)05/11/2004 02:28:29



Programming PIC Microcontrollersin BASIC - mikroElektronika
extierna naraware.

BASIC hasalibrary for working with internal EEPROM which makes writing and reading data very
easy. Library function EEPROM _Read reads data from a specified address, while library procedure
EEPROM W i t e writes data to the specified address.

Note: Be awarethat al interrupts will be disabled during execution of EEPROM W i t e routine (G E
bit of | NTCON register will be cleared). Routine will set this bit on exit. Ensure minimum 20ms delay
between successive use of routines EEPROM W i t e and EEPROM Read. Although EEPROM wiill
write the correct value, EEPROM_Read might return undefined result.

In our following example, we will write a sequence of numbers to successive locations in EEPROM.
Afterwards, we'll read these and output to PORTB to verify the process.

pr ogr am EEPROM t est

dimi as byte
dimj as byte

mai n
TRISB = 0
for i =0 to 20
EEPROM Wite(i, 1 + 6)
next i
Del ay_ns(30)
for i =0 to 20

PORTB = EEPROM Read(i)
for j =0 to 200
Del ay_us(500)
next j
next i

end.

8.1.2 Serial EEPROM

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (2 sur 12)05/11/2004 02:28:29



Programming PIC Microcontrollersin BASIC - mikroElektronika

Occasionally, our needs will exceed the capacity of PIC’sinternal EEPROM. When we need to store a

larger amount of data obtained by PIC, we have an option of using external seriadl EEPROM. Serid

means that EEPROM uses one of the serial protocols (12C, SPI, microwire) for communication with
microcontroller. In our example, we will work with EEPROM from 24Cxx family which uses two
lines and 12C protocol for communication with MCU.

12C address of EEPROM

10K Ea

+5

10k Ea

10k Ea

Fesat

|

+5

I o N e I Y |

is $A2
+O
1 L g

—g A0 WG ];r—
—g Al Ti'F r
-—g MG SGL%
+—| GMD s0A T

L 2404 L

Example of connecting
serial EEPROM

i —
IL'_ll

ZH Wt
11 1101

L

_ L
MCLRNppTHY

FiAMBHD
Fid J1
RN P
Fi 5 Pk
RAMTOCK]
FibSiH
REOFDMRNS
RE1 AN
REZACHMNT
Wil

Wag

£2849101d

QSC1CLEIN
Q32 CLEOUT
RCOM1050T1CK]
RC1T10:]
RC2CCP

RC3

RO0PSPO
RO1FSP

RETRGD
REERGE
RES

FEd
RESPCM
RE2

RE
REOANT
wid

hizg
ROTPSPT
OGRS
ROSPSPS
RO4PSP
RCTROT
RCET 2K
RCE

RCd
ROSPEPS
ROZPSPY

I_II_II_ITI_II_II_II_II_II_II_II_II_II_II_II_II_II_II_II_I

Serial EEPROM connects to microcontroller via SCL and SDA lines. SCL lineisaclock for
synchronizing the transfer via SDA line, with frequency going up to IMHz.

A [RAY

M=EB

|2C communication allows connecting multiple devices on asingle line. Therefore, bits Al and AO

EEPROM address

LSE

have an option of assigning addresses to certain 12C devices by connecting the pins A1 and AO to the
ground and +5V (one I2C line could be EEPROM on address $A2 and, say, real time clock PCF8583
on address $A0). R/W bit of address byte selects the operation of reading or writing datato memory.

More detailed data on 12C communication can be found in the technical documentation of any 12C

device.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (3 sur 12)05/11/2004 02:28:29



Programming PIC Microcontrollersin BASIC - mikroElektronika

Our following program sends datato EEPROM at address 2. To verify transfer, we'll read datavia

|2C from EEPROM and send its value to PORTD. For more information on 12C Library consult

Chapter 5: Built-in and Library Routines.

progr am EEPROM t est

di m EE_adr as byte
di m EE data as byte
dimjj as word

| 2C_i ni t (100000)
TRISD = 0

PORTD = $ff

| 2C Start

| 2C_W ( $a2)

EE adr = 2

| 2C W ( EE _adr)
EE data = $aa

| 2C W ( EE dat a)

| 2C_St op

for jj = 0 to 65500
nop
next jj

| 2C Start

| 2C_ W ($a2)

EE adr = 2

| 2C W ( EE _adr)

| 2C Repeated_Start

| 2C_W ( $a3)

EE data = 12C Rd(1)
| 2C St op

PORTD = EE data

noend:
got o noend

Initialize full master node

PORTD i s out put

Initialize PORTD

| ssue | 2C start signal

Send byte via | 2C(command to 24cQ2)

Send byt e(address of EEPROV)

Send data(data that will be witten)
| ssue |1 2C stop signal

Pause whil e EEPROM wites data

| ssue | 2C start signal
Send byte via | 2C

Send byt e(address for EEPROV)

| ssue 12C repeated start signal
Send byte(request data from EEPROV
Read the data

| ssue | 2C St op signal

Print data on PORTD

Endl ess | oop

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (4 sur 12)05/11/2004 02:28:29



Programming PIC Microcontrollersin BASIC - mikroElektronika

end.

8.2 Flash Memory

Flash memory isaform of EEPROM that allows multiple memory locations to be erased or written in
one programming operation. Normal EEPROM only allows one location at atime to be erased or
written, meaning that Flash can operate at higher effective speeds when the systems using it read and
write to different locations at the same time.

Flash memory stores information on a silicon chip in away that does not need power to maintain the
information in the chip. This means that if you turn off the power to the chip, the information is
retained without consuming any power. In addition, Flash offers fast read access times and solid-state
shock resistance. These characteristics make it very popular for microcontroller applications and for
applications such as storage on battery-powered devices like cell phones.

Many modern PIC microcontrollers utilize Flash memory, usually in addition to normal EEPROM
storage chip. Therefore, BASIC provides alibrary for direct accessing and working with MCU’s
Flash. Note: Routines differ for PIC16 and PIC18 families, please refer to Chapter 5: Built-in and
Library Routines.

The following code demonstrates use of Flash Memory library routines:

for PIC18

program fl ash_pi cl8 test

const FLASH ERROR $FF
const FLASH OK = $AA

di mtoRead as byte
dimi as byte
dimtoWite as byte[ 64]

mai n:
TRISB = 0 " PORTB i s out put
for i =0to 63 "initialize array
toWite[i] =1

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (5 sur 12)05/11/2004 02:28:30



Programming PIC Microcontrollersin BASIC - mikroElektronika

next i
Flash Wite($0D00, toWite)

array to the address 0x0DOO
"verify wite

PORTB =0
t oRead = FLASH ERROR
for i =0 to 63

t oRead = Fl ash_Read( $0D00+i )

| ocations starting from Ox0ODOO
if toRead <> toWite[i] then

PORTB = FLASH ERROR
Del ay _ns(500)

el se
PORTB = FLASH OK
end if
next i
end.

For PIC16 family, the corresponding code looks like this:

" for PICl6

program fl ash_pi cl16_t est

const FLASH ERROR
const FLASH K

$FF
$AA

dimtoRead as word
dimi as word

mai n:
TRISB = 0
for i =0 to 63

wite contents of the

turn of f PORTB

initialize error state

read 64 consecutive

stop on first error

i ndi cate error

i ndicate there is no error

PORTB i s out put

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (6 sur 12)05/11/2004 02:28:30



Programming PIC Microcontrollersin BASIC - mikroElektronika

Fl ash_Wite(i +$0A00, i) " wite the value of i
starting fromthe address 0x0AOO
next i

verify wite

PORTB = 0 " turn off PORTB
t oRead = FLASH ERROR "initialize error state
for i =0to 63
t oRead = Fl ash_Read( $0A00+i ) ' Read 64 consecutive
| ocations starting from OxOAOO
If toRead <> 1 then ' Stop on first error
i =i + $0A00 " 1 contains the address of
t he erroneous | ocation
PORTB = FLASH ERROR " indicate error
Del ay_ns(500)
el se
PORTB = FLASH K " indicate there is no error
end if
next i
end.

8.3 Compact Flash

Compact Flash (CF) was originally atype of data storage device, used in portable electronic devices.
As astorage device, it typically uses Flash memory in a standardized enclosure. At present, the
physical format is used in handheld and laptop computers, digital cameras, and awide variety of other
devices, including desktop computers. Great capacity (8MB ~ 8GB, and more) and excellent access
time of typically few microseconds make them very attractive for microcontroller applications.

Flash memory devices are non-volatile and solid state, and thus are more robust than disk drives,
consuming only about 5% of the power required by small disk drives. They operate at 3.3 voltsor 5
volts, and can be swapped from system to system. CF cards are able to cope with extremely rapid
changes in temperature — industrial versions of flash memory cards can operate at arange of -45°C to
+85°C.

BASIC includes alibrary for accessing and handling data on Compact Flash card. In CF card, datais
divided into sectors, one sector usually comprising 512 bytes (few older models have sectors of 256B).
Read and write operations are not performed directly, but successively through 512B buffer. These

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbhook/08.htm (7 sur 12)05/11/2004 02:28:30



Programming PIC Microcontrollersin BASIC - mikroElektronika

routines are intented for use with CF that have FAT16 and FAT32 file system. Note: routines for file
handling (CF_File Wite Init, CF File Wite_Byte,

CF File Wite_ Conpl et e)canonly be used with FAT16 file system, and only with PIC18
family!

Sactor Address
Sector 0 | 512 bytes
Byte Addass  £12 5
Sector 1|
I Ij‘:’."'n- |
Sector 2
1534

File accessing routines can write file. File names must be exactly 8 characterslong and written in
uppercase. User must ensure different names for each file, as CF routines will not check for possible
match. Before write operation, make sure you don't overwrite boot or FAT sector asit could make
your card on PC or digital cam unreadable. Drive mapping tools, such as Winhex, can be of a great
assistance.

FSW
-!_.
=
— T
ROZ2 ="
PIC MCU FDi =
/‘I—\\\ RO — ..-'
- S - RB —
| P — — %
R'-_-i:" o T —_) .
- © e——
== Compact Flash Card
| — —— |
RET — —_— & -
REA —_—
& m——
L 9
RBS ' =
#5\ = A —
—_— - "
RE3 =%
RO7 —
eemembues
ur RD& — 1
RO4 —
ROG —7
BB L — - —
* F —_—

Compact Flash Connector
(TOP VIEW)

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (8 sur 12)05/11/2004 02:28:30



Programming PIC Microcontrollersin BASIC - mikroElektronika

Here' s an example for using Compact Flash card from BASIC. A set of filesiswritten on CF card.
This can be checked later by plugging the CF card on a PC or adigital camera. Observe the way the
fileisbeing written:

. First, write-to-fileisinitialized, telling to PIC that all consecutiveCF_Fil e Wite Byte

instructions will write to anew file;
. Then, actual write of datais performed (withCF_Fil e W ite_ Byte);

. Finaly, finish of write-to-filecycleissignallizedwithcall toCF_Fil e Wite Conpl ete
routine. At that moment, the newly created file is given its name.

program Conpact Fl ash_Fi |l e
for PIC18

dimil as word

di mindex as byte

di m f nane as char|[ 9]
di m ext as char][ 4]

sub procedure Init
TRISC = 0 " PORTC is output. We'll

use it only to signal
' end of our program

CF_Init_Port (PORTB, PORTD) " Initialize ports
do
nop
| oop until CF_DETECT(PORTB) = true " WAt until CF card is
I nserted
Del ay_ns(50) " Wait for a while until
the card is stabilized
end sub ' i.e. its power supply

is stable and CF card
' controller is on

mai n:

ext = "txt" " File extensions wll be
"txt"

i ndex = 0 " Index of file to be
witten

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (9 sur 12)05/11/2004 02:28:30



Programming PIC Microcontrollersin BASIC - mikroElektronika

while index < 5
PORTC = 0
I nit
PORTC = i ndex
CF File_ Wite_Init(PORTB, PORTD) '
Initialization for witing to newfile
11 =0
while i1 < 50000
CF_ File_Wite_Byte(PORTB, PORTD, 48+i ndex) ' Wites 50000

bytes to file

I nc(i 1)
wend
fname = "Rl LEPROX" " Must be 8
character |ong in upper case
fname[ 8] = 48 + index " Ensure that

files have different nane
CF File Wite_ Conpl et e( PORTB, PORTD, fnanme, ext) ' C ose

the file
I nc(i ndex)
wend
PORTC = $FF
end.

If you do not wish to use your CF card in PCs and digicams but ruther as a simple storage device for
your PIC MCU only, you can then ignore the entire FAT system and store data directly to CF memory
sectors:

program cf _t est

dimi as word

mai n:
TRISC = 0 " PORTC i s out put
CF_Init_Port ( PORTB, PORTD) " Initialize ports

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (10 sur 12)05/11/2004 02:28:30



Programming PIC Microcontrollersin BASIC - mikroElektronika

do
nop
| oop until CF_Detect(PORTB) = true " WAt until CF

card is inserted

Del ay_ns(500)

CF Wite_Init(PORTB, PORTD, 590, 1) "Initialize wite
at sector address 590
of 1 sector
(512 bytes)

for i =0 to 511 " Wite 512 bytes

to sector (590)
CF Wite Byte(PORTB, PORTD, i + 11)

next i

PORTC = $FF

Del ay_ns(1000)

CF_Read_Init (PORTB, PORTD, 590, 1) “Initialize wite
at sector address 590
of 1 sector

(512 bytes)

for i =0 to 511 ' Read 512 bytes
fromsector (590)
PORTC = CF_Read_Byt e( PORTB, PORTD) ' and di spl ay
It on PORTC
Del ay_ns(1000)
next i
end.

PIC, PIC, PICmicro, and MPLAB are registered and protected trademarks of the Microchip Technology Inc.
USA. Microchip logo and name are the registered tokens of the Microchip Technology. mikroBasicisa
registered trade mark of mikroElektronika. All other tokens mentioned in the book are the property of the
companies to which they belong.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (11 sur 12)05/11/2004 02:28:30



Programming PIC Microcontrollersin BASIC - mikroElektronika

mikroElektronika © 1998 - 2004. All rights reserved. If you have any questions, please contact our office.

http://www.mikroel ektronika.co.yu/english/product/books/pi chasi cbook/08.htm (12 sur 12)05/11/2004 02:28:30


mailto:office@mikroelektronika.co.yu

	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika

	Acr12E.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika


	Acr133.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika


	Acr138.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika


	Acr13C.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika


	Acr140.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika


	Acr146.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika


	Acr14A.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika


	Acr14E.tmp
	www.mikroelektronika.co.yu
	Programming PIC Microcontrollers in BASIC - mikroElektronika



