

tinyAVR®

Microcontroller
Projects for

the Evil Genius™

Evil Genius™ Series

Bike, Scooter, and Chopper Projects for the Evil Genius

Bionics for the Evil Genius: 25 Build-It-Yourself Projects

Electronic Circuits for the Evil Genius, Second Edition: 64 Lessons with Projects

Electronic Gadgets for the Evil Genius: 28 Build-It-Yourself Projects

Electronic Sensors for the Evil Genius: 54 Electrifying Projects

50 Awesome Auto Projects for the Evil Genius

50 Green Projects for the Evil Genius

50 Model Rocket Projects for the Evil Genius

51 High-Tech Practical Jokes for the Evil Genius

46 Science Fair Projects for the Evil Genius

Fuel Cell Projects for the Evil Genius

Holography Projects for the Evil Genius

Mechatronics for the Evil Genius: 25 Build-It-Yourself Projects

Mind Performance Projects for the Evil Genius: 19 Brain-Bending Bio Hacks

MORE Electronic Gadgets for the Evil Genius: 40 NEW Build-It-Yourself Projects

101 Outer Space Projects for the Evil Genius

101 Spy Gadgets for the Evil Genius

125 Physics Projects for the Evil Genius

123 PIC® Microcontroller Experiments for the Evil Genius

123 Robotics Experiments for the Evil Genius

PC Mods for the Evil Genius: 25 Custom Builds to Turbocharge Your Computer

PICAXE Microcontroller Projects for the Evil Genius

Programming Video Games for the Evil Genius

Recycling Projects for the Evil Genius

Solar Energy Projects for the Evil Genius

Telephone Projects for the Evil Genius

30 Arduino Projects for the Evil Genius

25 Home Automation Projects for the Evil Genius

22 Radio and Receiver Projects for the Evil Genius

tinyAVR®

Microcontroller
Projects for

the Evil Genius™

Dhananjay V. Gadre and Nehul Malhotra

New York Chicago San Francisco Lisbon London Madrid
Mexico City Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part
of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher.

ISBN: 978-0-07-174455-3

MHID: 0-07-174455-X

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174454-6,
MHID: 0-07-174454-1.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To
contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is not
responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use of this
work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may
not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any
other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will
meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone
else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility
for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect,
incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been
advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.

McGraw-Hill

TAB BOOKS
Make Great Stuff!

PROGRAMMING
AND CUSTOMIZING
THE MULTICDnE

PROPELLER
MICROCONTROLLER

PROGRAMMING AND CUSTOMIZING
THE MULTICORE PROPELLER
MICROCONTROLLER: THE OFFICIAL
GUIDE

by Parallax, Inc.

Electricity
Experiments

ELECTRICITY EXPERIMENTS
YOU CAN DO AT HOME

byStan Gibitisco

PROGRAMMING
THE PROPELLER
WITH SPIN

PROGRAMMING THE PROPELLER
WITH SPIN: A BEGINNER'S GUIDE TO

PARALLEL PROCESSING

by Harprit Sandtm

HOLOGRAPHY PROJECTS
FOR THE EVIL GENIUS

by Gavin Harper

3D FIROLJINO
PROJECTS

-EVIL
GENIUS

30 ARDUINO PROJECTS
FOR THE EVIL GENIUS

by Simon Monk

CNC MACHINING HANDBOOK: BUILDING,
PROGRAMMING, AND IMPLEMENTATION

by Alan Overby

TEARDOWNS: LEARN HOW ELECTRONICS
WORK BY TAKING THEM APART

by Bryan Bergeron

DESIGNING AUDIO POWER AMPLIFIERS

by Bob Cordeit

ELECTRONIC

CIRCUITS
EVIL

GENIUS

ELECTRONIC CIRCUITS FOR THE EVIL
GENIUS, SECOND EDITION

by Dave Cutcrier

Learn more. Do more.

UNPROFESSIONAL.COM

McGraw-Hill

TAB BOOKS
Make Great Stuff!

PICRXE
mi CROCONIROLLER

P R O J E C T S
-EVIL

GENIUS

PICAXE MICROCONTROLLER PROJECTS
FOR THE EVIL GENIUS

byRonHackett

PRINCIPLES OF DIGITAL AUDIO,
SIXTH EDITION

by Ken Ponlmann

MAKING THINGS MOVE: DIV
MECHANISMS FOR INVENTORS,
HOBBYISTS, AND ARTISTS

by Dustyn Roberts

^RECYCLING
" P R O J E C T S

EVIL
GENIUS

RECYCLING PROJECTS
FOR THE EVIL GENIUS

by Alan Gerfc/ie

PROGRAMMING AND
CUSTOMIZING THE

PICAXE

PROGRAMMING & CUSTOMIZING
THE PICAXE MICROCONTROLLER,
SECOND EDITION

by David Lincoln

BATTERY
BOOK

THE TAB BATTERY BOOK: AN IN-DEPTH
GUIDE TO CONSTRUCTION, DESIGN,
AND USE

by Michael Root

RUNNING
SMALL MOTORS

MICROCONTROLLERS

RUNNING SMALL MOTORS WITH
PIC MICROCONTROLLERS

by Harprit Singh Sandhu

MAKING PIC
INTRDLLER

INSTRUMENTS
5 CONTROLLERS

MAKING PIC MICROCONTROLLER
INSTRUMENTS & CONTROLLERS

by Harprit Singh SanOttu

TEACH YOURSELF ELECTRCITY AND
ELECTRONICS, FOURTH EDITION

by Stan Gibilisco

Learn more. Do more.
MHPROFESSIONAL.COM

This book is dedicated to Professor Shailaja M. Karandikar (1920–1995),
in whose spacious home with a mini library I was always welcome to
browse and borrow any book.

And to Professor Neil Gershenfeld, who made it possible to write this one!

—Dhananjay V. Gadre

To my parents, who have given me my identity. And to my sister, Neha,
who is my identity!

—Nehul Malhotra

Dhananjay V. Gadre (New Delhi, India) completed his MSc (electronic science) from the
University of Delhi and MEng (computer engineering) from the University of Idaho. In his
professional career of more than 21 years, he has taught at the SGTB Khalsa College,
University of Delhi, worked as a scientific officer at the Inter University Centre for
Astronomy and Astrophysics (IUCAA), Pune, and since 2001, has been with the Electronics
and Communication Engineering Division, Netaji Subhas Institute of Technology, New
Delhi, currently as an associate professor. He is also associated with the global Fablab
network and is a faculty member at the Fab Academy. Professor Gadre is the author of
several professional articles and three books. One of his books has been translated into
Chinese and another into Greek. He is a licensed radio amateur with the call sign VU2NOX
and hopes to design and build an amateur radio satellite someday.

Nehul Malhotra (New Delhi, India) completed his undergraduate degree in electronics and
communication engineering from the Netaji Subhas Institute of Technology, New Delhi. He
worked in Professor Gadre’s laboratory, collaborating extensively in the ongoing projects. He
was also the founder CEO of a startup called LearnMicros. Nehul once freed a genie from a
bottle he found on a beach. As a reward, he has been granted 30 hours in a day. Currently,
Nehul is a graduate student at the Indian Institute of Management, Ahmedabad, India.

About the Authors

Contents at a Glance

1 Tour de Tiny. 1

2 LED Projects . 29

3 Advanced LED Projects . 55

4 Graphics LCD Projects. 99

5 Sensor Projects . 129

6 Audio Projects. 169

7 Alternate Energy Projects . 191

A C Programming for AVR Microcontrollers. 213

B Designing and Fabricating PCBs . 225

C Illuminated LED Eye Loupe . 239

Index . 247

vii

This page intentionally left blank

Contents

Acknowledgments . xiii

Introduction . xv

1 Tour de Tiny . 1
About the Book . 1
Atmel’s tinyAVR Microcontrollers . 2
tinyAVR Devices . 2
tinyAVR Architecture . 3
Elements of a Project. 8
Power Sources . 11
Hardware Development Tools . 17
Software Development. 20
Making Your Own PCB. 24
Project 1 Hello World! of Microcontrollers . 26
Conclusion . 28

2 LED Projects. 29
LEDs . 29
Types of LEDs . 31
Controlling LEDs. 32
Project 2 Flickering LED Candle . 35
Project 3 RGB LED Color Mixer . 41
Project 4 Random Color and Music Generator . 45
Project 5 LED Pen . 49
Conclusion . 54

3 Advanced LED Projects . 55
Multiplexing LEDs . 55
Charlieplexing . 65
Project 6 Mood Lamp . 67
Project 7 VU Meter with 20 LEDs . 72
Project 8 Voltmeter . 76
Project 9 Celsius and Fahrenheit Thermometer . 80
Project 10 Autoranging Frequency Counter . 82
Project 11 Geek Clock. 84
Project 12 RGB Dice . 90
Project 13 RGB Tic-Tac-Toe . 93
Conclusion . 97

ix

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

4 Graphics LCD Projects . 99
Principle of Operation . 99
Nokia 3310 GLCD. 101
Project 14 Temperature Plotter . 105
Project 15 Tengu on Graphics Display . 109
Project 16 Game of Life . 113
Project 17 Tic-Tac-Toe. 117
Project 18 Zany Clock . 119
Project 19 Rise and Shine Bell . 123
Conclusion . 128

5 Sensor Projects . 129
LED as a Sensor . 129
Thermistor . 130
LDR . 130
Inductor as Magnetic Field Sensor . 131
Project 20 LED as a Sensor and Indicator . 131
Project 21 Valentine’s Heart LED Display with Proximity Sensor 136
Project 22 Electronic Fire-free Matchstick . 140
Project 23 Spinning LED Top with Message Display. 144
Project 24 Contactless Tachometer . 149
Project 25 Inductive Loop-based Car Detector and Counter 153
Project 26 Electronic Birthday Blowout Candles . 159
Project 27 Fridge Alarm . 164
Conclusion . 168

6 Audio Projects . 169
Project 28 Tone Player. 171
Project 29 Fridge Alarm Redux. 176
Project 30 RTTTL Player . 178
Project 31 Musical Toy . 185
Conclusion . 189

7 Alternate Energy Projects . 191
Choosing the Right Voltage Regulator . 192
Building the Faraday Generator . 194
Experimental Results and Discussion . 195
Project 32 Batteryless Infrared Remote. 196
Project 33 Batteryless Electronic Dice . 201
Project 34 Batteryless Persistence-of-Vision Toy . 206
Conclusion . 212

A C Programming for AVR Microcontrollers 213
Differences Between ANSI C and Embedded C. 214
Data Types and Operators . 214
Efficient Management of I/O Ports . 217
A Few Important Header Files . 220
Functions . 220

x tinyAVR Microcontroller Projects for the Evil Genius

Interrupt Handling . 221
Arrays. 222
More C Utilities . 222

B Designing and Fabricating PCBs . 225
EAGLE Light Edition . 225
EAGLE Windows . 225
EAGLE Tutorial. 226
Adding New Libraries . 227
Placing the Components and Routing . 228
Roland Modela MDX-20 PCB Milling Machine . 228

C Illuminated LED Eye Loupe . 239
Version 2 of the Illuminated LED Eye Loupe. 242
Version 3 of the Illuminated LED Eye Loupe. 244

Index . 247

xi

Contents xi

This page intentionally left blank

Acknowledgments

WE STARTED BUILDING PROJECTS with tinyAVR microcontrollers several years ago.
Designing projects using feature-constrained microcontrollers was a thrill. Slowly, the
number of projects kept piling up, and we thought of documenting them with the idea
of sharing them with others. The result is this book.

Many students helped with the development of the projects described in this book.
They are Anurag Chugh, Saurabh Gupta, Gaurav Minocha, Mayank Jain, Harshit Jain,
Hashim Khan, Nipun Jindal, Prateek Gupta, Nikhil Kautilya, Kritika Garg, and Lalit
Kumar. As always, Satya Prakash at the Centre for Electronics Design and
Technology (CEDT) at NSIT was a great help in fabricating many of the projects.

Initially, the project circuit boards were made on a general-purpose circuit board, or
custom circuit boards were ordered through PCB manufacturers. Since 2008, when
Neil Gershenfeld, professor at the Center for Bits and Atoms, Media Labs,
Massachusetts Institute of Technology, presented me with a MDX20 milling machine,
the speed and ease of in-house PCB fabrication increased significantly. With the
MDX20 milling machine, we are able to prototype a circuit in a few hours in contrast
to our previous pace of one circuit a week. The generous help of Neil Gershenfeld and
his many suggestions is gratefully acknowledged. Thanks are also due to Sherry
Lassiter, program manager, Center for Bits and Atoms, for supporting our activities.

Lars Thore Aarrestaad, Marco Martin Joaquim, and Imran Shariff from Atmel
helped with device samples and tools.

I thank Roger Stewart, editorial director at McGraw-Hill, for having great faith in
the idea of this book and Joya Anthony, acquisitions coordinator, for being persuasive
but gentle even when all the deadlines were missed. Vaishnavi Sundararajan did a
great job of editing the manuscript at our end before we shipped each chapter to the
editors. Thank you, guys!

Nehul Malhotra, a student collaborating in several of the projects, made significant
contributions to become a co-author. His persistence and ability to work hard and long
hours are worth emulating by fellow students.

This book would not have been possible without Sangeeta and Chaitanya, who are
my family and the most important people in my life. Thank you for your patience and
perseverance!

xiii

This page intentionally left blank

Introduction

MORE THAN TEN YEARS AGO , when I wrote a book
on AVR microcontrollers, AVRs were the new kids
on the block and not many people had heard of
these chips. I had to try out these new devices
since I was sick of using 8051 microcontrollers,
which did not offer enough features for complex
requirements. Even though AVRs were new, the
software tools offered by Atmel were quite robust,
and I could read all about these chips and program
my first application in a matter of days. Since
these devices had just debuted, high-level language
tools were not easily available, or were too buggy,
or produced too voluminous a code even for
simple programs. Thus, all the projects in that AVR
book were programmed in assembly language.
However, things are quite different now. The AVR
microcontroller family has stabilized and currently
is the second-largest-selling eight-bit
microcontroller family in the whole world! Plenty
of quality C compilers are available, too, for the
AVR family. AVR is also supported by GCC
(GNU C Compiler) as AVRGCC, which means one
need not spend any money for the C compiler
when choosing to use AVRGCC.

When I started using the AVR more than ten
years ago, several eight-pin devices caught my
attention. Up to that point, an eight-pin integrated
circuit meant a 741 op-amp or 555 timer chip. But
here was a complete computer in an eight-pin
package. It was fascinating to see such small
computers, and even more fascinating to design
with them. The fascination has continued over the
years. Also, Atmel wasn’t sitting still with its small
microcontroller series. It expanded the series and
gave it a new name, tinyAVR microcontrollers, and
added many devices, ranging from a six-pin part to

a 28-pin device. These devices are low-cost
offerings and, in volume, cost as little as 25 cents
each.

Today, microcontrollers are everywhere, from
TV remotes to microwave ovens to mobile phones.
For the purpose of learning how to program and
use these devices, people have created a variety of
learning tools and kits and environments. One such
popular environment is the Arduino. Arduino is
based on the AVR family of microcontrollers, and
instead of having to learn an assembly language or
C to program, Arduino has its own language that is
easy to learn—one can start using an Arduino
device in a single day. It is promoted as a “low
learning threshold” microcontroller system. The
simplest and smallest Arduino platform uses a
28-pin AVR, the ATMega8 microcontroller, and
costs upwards of $12. However, if you want to
control a few LEDs or need just a couple of I/O
pins for your project, you might wonder why you
need a 28-pin device. Welcome to the world of
tinyAVR microcontrollers!

This book illustrates 34 complete, working
projects. All of these projects have been
implemented with the tinyAVR series of
microcontrollers and are arranged in seven
chapters. The first chapter is a whirlwind tour of
the AVR, specifically, the tinyAVR microcontroller
architecture, the elements of a microcontroller-
based project, power supply considerations, etc.
The 34 projects span six themes covering LED
projects, advanced LED projects, graphics LCD
projects, sensor-based projects, audio projects, and
finally alternative energy–powered projects. Some
of these projects have already become popular and
are available as products. Since all the details of

xv

these projects are described in this book, these
projects make great sources of ideas for hackers
and DIY enthusiasts to play with. The ideas
presented in these projects can, of course, be used
and improved upon. The schematic diagrams and
board files for all of the projects are available and
can be used to order PCBs from PCB
manufacturers. Most of the components can be
ordered through Digikey or Farnell.

The project files such as schematic and board
files for all the projects, videos, and photographs
are available on our website: www.avrgenius.com/
tinyavr1.

Chapter 1: Tour de Tiny

■ tinyAVR architecture, important features of
tinyAVR microcontrollers, designing with
microcontrollers, designing a power supply
for portable applications

■ Tools required for building projects, making
circuit boards, the Hello World! of
microcontrollers

Chapter 2: LED Projects

■ Types of LEDs, their characteristics,
controlling LEDs

■ Four projects: LED candle, RGB LED color
mixer, random color and music generator,
LED pen

Chapter 3: Advanced LED Projects

■ Controlling a large number of LEDs using
various multiplexing techniques

■ Eight projects: mood lamp, VU meter with
20-LED display, voltmeter, autoranging
frequency counter, Celsius and Fahrenheit
thermometer, geek clock, RGB dice, RGB
tic-tac-toe

Chapter 4: Graphics LCD Projects

■ Operation of LCD displays, types of LCDs,
Nokia 3310 graphics LCD

■ Six projects: temperature plotter, Tengu on
graphics display, Game of Life, tic-tac-toe,
zany clock, school bell

Chapter 5: Sensor Projects

■ Various types of sensors for light, temperature,
magnetic field, etc., and their operation

■ Eight projects: LED as a sensor and indicator,
Valentine’s LED heart display with proximity
sensor, electronic fire-free matchstick, spinning
LED top with message display, contactless
tachometer, inductive loop-based car detector
and counter, electronic birthday blowout
candles, fridge alarm

Chapter 6: Audio Projects

■ Generating music and sound using a
microcontroller

■ Four projects: tone player, fridge alarm
revisited, RTTTL player, musical toy

Chapter 7: Alternate Energy Projects

■ Generating voltage using Faraday’s law and
using it to power portable applications

■ Three projects: batteryless TV remote,
batteryless electronic dice, batteryless POV toy

Appendix A: C Programming for AVR
Microcontrollers

■ A jump-start that enables readers to quickly
adapt to C commands used in embedded
applications and to use C to program the
tinyAVR microcontrollers

xvi tinyAVR Microcontroller Projects for the Evil Genius

Appendix B: Designing and
Fabricating PCBs

■ EAGLE schematic capture and board routing
program. All of the PCBs in the projects in this
book are made using the free version of
EAGLE. The boards can be made from PCB
vendors or using the Modela (or another) PCB
milling machine. Alternative construction
methods also are discussed.

Appendix C: Illuminated LED Eye Loupe

■ Building a cool microcontroller-based LED
eye loupe

We hope you have as much fun building these
projects as we have enjoyed sharing them with you.

Introduction xvii

This page intentionally left blank

Tour de Tiny

C H A P T E R 1

THANKS TO MOORE’S LAW, silicon capacity is still
doubling (well, almost) every 18 months. What
that means is that after every year and a half,
semiconductor integrated circuits (IC)
manufacturers can squeeze in twice the number of
transistors and other components in the same area
of silicon. This important hypothesis was first laid
down by Gordon Moore, the co-founder of Intel,
in the mid-1960s, and surprisingly, it still holds
true—more or less. The size of the desktop
personal computers (PC) has been shrinking. From
desktops to slim PCs, to cubes and handheld PCs,
we have them all. Lately, another form of even
smaller computers has been making the rounds:
small form factor (SFF) PCs. The SFF concept
shows the availability of small, general-purpose
computer systems available to individual
consumers, and these need not be specialized
embedded systems running custom software.
The impact of Moore’s law is felt not only on the
size of personal computers, but also on the
everyday electronic devices we use; my current
mobile phone, which offers me many more
features than my previous one, is much smaller
than its predecessor!

When we use the term “computer,” it most often
means the regular computing device we use to
perform word processing, web browsing, etc.
But almost every electronic device these days is
equipped with some computing capabilities inside.
Such computers are called embedded computers,
since they are “embedded” inside a larger device,

making that device smarter and more capable than
it would have been without this “computer.”

In our quest for even smaller and sleeker
computer systems and electronic gadgets, we draw
our attention towards computers with an even
smaller footprint: the Tiny form factor computers.
Unlike the rest, these are specialized computer
systems, small enough to fit in a shirt pocket.
Many manufacturers provide the bare bones of
such computers, and Microchip and Atmel are
front-runners. With footprints as small as those of
six-pin devices, not bigger than a grain of rice, all
they need is a suitable power source and interface
circuit. Throw in the custom software, and you
have your own personal small gadget that can be
as unique as you want it to be.

What can such small embedded computers do?
Can they be of any use at all? We show how small
they can be and what all they can do.

About the Book

The book has six project chapters. The projects in
each chapter are arranged around a particular
theme, such as light-emitting diodes (LEDs) or
sensors. There is no particular sequence to these
chapters, and they can be read in random order.
If you are, however, a beginner, then it is
recommended that you follow the chapters
sequentially. Chapter 1 has introductory
information about the project development process,

1

2 tinyAVR Microcontroller Projects for the Evil Genius

tools, power supply sources, etc., and it is highly
recommended even if you are an advanced reader,
so that you can easily follow the style and
development process that we employ in later
chapters.

Atmel’s tinyAVR
Microcontrollers

The tinyAVR series of microcontrollers comes in
many flavors now. The number of input/output
(I/O) pins ranges from 4 in the smallest series,
ATtiny4/5/9/10, to 28 in ATtiny48/88. Some
packages of ATtiny48/88 series have 24 I/O pins
only. A widely used device is ATtiny13, which has
a total of eight pins, with two mandatory pins for
power supply, leaving you with six I/O pins. That
doesn’t sound like much, but it turns out that a lot
can be done even with these six I/O pins, even
without having to use additional I/O expansion
circuits.

From the table of tinyAVR devices presented
later in this chapter, we have selected ATtiny13,
ATtiny25/45/85, and ATtiny261/461/861 for most
of the projects. They represent the entire spectrum
of Tiny devices. All of these devices have an on-
chip static random access memory (SRAM), an
important requisite for programming these chips
using C. Tiny13 has just 1K of program memory,
while Tiny861 and Tiny85 have 8K. Tiny13 and
Tiny25/45/85 are pin-compatible, but the devices
of latter series have more memory and features.
Whenever the code doesn’t fit in Tiny13, it can
be replaced with Tiny25/45/85, depending on
memory requirements.

The projects that are planned for this book have
a distinguishing feature: Almost all of them have
fascinating visual appeal in the form of large
LED-based displays. A new technique of
interfacing a large number of LEDs using a
relatively small number of I/O pins, called

Charlieplexing, makes it possible to interface up
to 20 LEDs using just five I/O pins. This technique
has been used to create appealing graphical
displays or to add a seven-segment type of readout
to the projects. Other projects that do not have
LED displays feature graphical LCDs.

Each project can be built over a weekend and
can be used gainfully in the form of a toy or an
instrument.

tinyAVR Devices

tinyAVR devices vary from one another in several
ways, such as the number of I/O pins, memory
sizes, package type like dual in-line package
(DIP), small outline integrated circuit (SOIC) or
micro lead frame (MLF), peripheral features,
communication interfaces, etc. Figure 1-1
shows some tinyAVRs in DIP packaging, while
Figure 1-2 shows some tinyAVRs in surface mount
device (SMD) SOIC packaging. The complete list

tinyAVR microcontrollers in DIP
packaging

Figure 1-1

of these devices is highly dynamic, as Atmel keeps
adding newer devices to replace the older ones
regularly. The latest changes can always be tracked
on www.avrgenius.com/tinyavr1.

Most of these devices are organized in such a
way that each member of the series varies from the
others only in a few features, like memory size,
etc. Some major series and devices of the tinyAVR
family that are the main focus of this book have
been summarized in Table 1-1, and are shown in
Figures 1-1 and 1-2.

If you see the datasheet of any device and find
that its name is suffixed by “A,” it implies that it
belongs to the picoPower technology AVR
microcontroller class and incorporates features to
reduce the power consumption on the go.

tinyAVR Architecture

This section deals with the internal details of the
Tiny devices. It may be noted that this section
follows a generic approach to summarize the
common features of the Tiny series. Certain

Chapter 1 ■ Tour de Tiny 3

S. No. Series/Device Features

1 ATtiny4/5/9/10 Maximum 4 I/O pins, 1.8–5.5V operation, 32B SRAM, up to 12 MIPS

throughput at 12 MHz, Flash program memory 1KB in ATtiny9/10 and

512B in ATtiny4/5, analog to digital converter (ADC) present in

ATtiny5/10

2 ATtiny13 Maximum 6 I/O pins, 1.8–5.5V operation, 64B SRAM, 64B EEPROM, up

to 20 MIPS throughput at 20 MHz, 1KB Flash program memory, ADC

3 ATtiny24/44/84 Maximum 12 I/O pins, 1.8–5.5V operation, 128/256/512B SRAM and

128/256/512B EEPROM in ATtiny24/44/84, respectively, up to 20 MIPS

throughput at 20 MHz, Flash program memory 2KB in ATtiny24, 4KB in

ATtiny44, and 8KB in ATtiny84, ADC, on-chip temperature sensor,

universal serial interface (USI)

4 ATtiny25/45/85 Maximum 6 I/O pins, 1.8–5.5V operation, 128/256/512B SRAM and

128/256/512B EEPROM in ATtiny25/45/85, respectively, up to 20 MIPS

throughput at 20 MHz, Flash program memory 2KB in ATtiny25, 4KB in

ATtiny45, and 8KB in ATtiny85, ADC, USI

5 ATtiny261/461/861 Maximum 16 I/O pins, 1.8–5.5V operation, 128/256/512B SRAM and

128/256/512B EEPROM in ATtiny261/461/861, respectively, up to 20

MIPS throughput at 20 MHz, Flash program memory 2KB in ATtiny261,

4KB in ATtiny461, and 8KB in ATtiny861, ADC, USI

6 ATtiny48/88 Maximum 24/28 I/O pins (depending upon package), 1.8–5.5V

operation, 256/512B SRAM in ATtiny48/88, respectively, 64B EEPROM,

up to 12 MIPS throughput at 12 MHz, Flash program memory 4KB in

ATtiny48 and 8KB in ATtiny88, ADC, serial peripheral interface (SPI)

7 ATtiny43U Maximum 16 I/O pins, 0.7–1.8V operation, 256B SRAM, 64B EEPROM,

up to 1 MIPS throughput per MHz, 4KB Flash program memory, ADC,

on-chip temperature sensor, USI, ultra low voltage device, integrated

boost converter automatically generates a stable 3V supply voltage

from a low voltage battery input down to 0.7V

TABLE 1-1 Some Major Series/Devices of the tinyAVR Family

features may be missing from some devices, while
some additional ones may be present. For more
information on these features, refer to the datasheet
of the individual devices.

Memory

The AVR architecture has two main memory
spaces: the data memory and the program memory
space. In addition, these devices feature an
electrically erasable programmable read-only
memory (EEPROM) memory for data storage. The
Flash program memory is organized as a linear
array of 16-bit-wide locations because all the AVR
instructions are either 16 bits or 32 bits wide. The
internal memory SRAM uses the same address
space as that used by register file and I/O registers.
The lowermost 32 addresses are taken by registers,
the next 64 locations are taken by I/O registers,
and then the SRAM addressing continues from
location 0x60. The internal EEPROM is used for

temporary nonvolatile data storage. The following
illustration shows the memory map of Tiny
controllers.

I/O Ports

Input/Output (I/O) ports of AVR devices are
comprised of individual I/O pins, which can be
configured individually for either input or output.
Apart from this, when the pin is declared as an
input, there is an option to enable or disable the
pull-up on it. Enabling the pull-up is necessary to
read the sensors that don’t give an electrical signal,
like microswitches. Each output buffer has a sink
and source capability of 40mA. So, the pin driver
is strong enough to drive LED displays directly.
All I/O pins also have protection diodes to both
VCC and Ground. The following illustration shows
the block diagram of the AVR I/O ports.

4 tinyAVR Microcontroller Projects for the Evil Genius

tinyAVR microcontrollers in SMD
packaging

Figure 1-2

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Timers

tinyAVR devices generally have eight-bit timers
that can be clocked either synchronously or
asynchronously. The synchronous clock sources
include the device clock or its factors (the clock
divided by a suitable prescaler), whereas
asynchronous clock sources include the external
clock or phase lock loop (PLL) clock, which goes
up to 64 MHz. Some devices also include 10-bit or
16-bit timers. Besides counting, these timers also
have compare units, which generate pulse width
modulation on I/O pins. These timers can be run in
various modes, like normal mode, capture mode,
pulse width modulation (pwm) mode, clear timer
on compare match, etc. Each timer has several
interrupt sources associated with it, which are
described in the next section on interrupts. The
following illustration shows the block diagram of
the AVR timer.

Interrupts

The AVR provides several different interrupt
sources. These interrupts have separate vector
locations in the program memory space. The
lowest addresses in the program memory space
are, by default, defined as the interrupt vectors.
The lowest address location (0x0000) is allotted to
the reset vector, which is not exactly an interrupt
source. The address of an interrupt also determines
its priority. The lower the address, the higher its
priority level. So, reset has the highest priority.
When two or more interrupts occur at the same

time, the interrupt with the higher priority is
executed first, followed by the interrupt with lower
priority. Interrupts are used to suspend the normal
execution of the main program and take the
program counter to the subroutine known as the
interrupt service routine (ISR). After the ISR is
executed, the program counter returns to the main
loop. The following illustration shows how the
code in an ISR is executed.

All interrupts are assigned individual enable
bits, which must be set to logic one (as is the
global interrupt enable bit in the status register) in
order to enable the interrupt. When an ISR is
executing, the global interrupt enable bit is cleared
by default, and hence, no furthers interrupts are
possible—unless the user program has specifically
enabled the global interrupt enable bit to allow
nested interrupts, that is, an interrupt within
another interrupt. Various peripherals of AVR
devices like timers, USI, ADC, analog comparator,
etc., have different interrupt sources for different
states of their values or status.

USI: Universal Serial Interface

The universal serial interface, or USI, provides
the basic hardware resources needed for serial
communication. This interface can be configured
to follow either a three-wire protocol, which is

Chapter 1 ■ Tour de Tiny 5

compliant with the serial peripheral interface (SPI),
or a two-wire protocol, which is compliant with
the two-wire interface (TWI). Combined with a
minimum of control software, the USI allows
significantly higher transfer rates and uses less
code space than solutions based on software only.
Interrupts are included to minimize the processor
load.

Analog Comparator

AVR devices provide a comparator, which
measures the analog input voltage on two of its
terminals and gives digital output logic (0 or 1),
depending on whether the voltage on the positive
terminal is high or that on the negative terminal is
high. The positive and negative terminals can be
selected from different I/O pins. The change in
output of the comparator can be used as an
interrupt source. The output of the comparator is
available on the analog comparator output (ACO)
pin. The following illustration shows the block
diagram of the analog comparator.

Analog to Digital Converter

These devices have a ten-bit, successive
approximation–type ADC with multiple single-
ended input channels. Some devices also have
differential channels to convert analog voltage
differences between two points into a digital value.
In some devices, to increase the resolution of
measurement, there is a provision to amplify the
input voltage before conversion occurs. The
reference voltage for measurement can be

configured to be taken from the AREF pin, VCC,
and the internal bandgap references. The following
illustration shows the block diagram of the ADC.

Clock Options

The system clock sources in the AVR devices
include the calibrated resistor capacitor (RC)
oscillator, the external clock, crystal oscillator,
watchdog oscillator, low-frequency crystal
oscillator, and phase lock loop (PLL) oscillator.
The main clock can be selected to be any one of
these through the fuse bits. The selected main
clock can be further prescaled by setting suitable
bits in the clock prescaler register during the
initialization part of the user software. The selected
main clock is distributed to various modules like
CPU, I/O, Flash, and ADC.

■ CLK_CPU It is routed to parts of the system
concerned with the operation of the AVR core,
like register file, status register, etc.

■ CLK_I/O It is used by the majority of the
I/O modules, like timer/counter, USI and
synchronous external interrupts, etc.

■ CLK_FLASH The Flash clock controls
operation of the Flash interface.

■ CLK_ADC Unlike other I/O modules, the
ADC is provided with a dedicated clock so that
other clocks can be halted to reduce the noise
generated by digital circuitry while running
the ADC. This gives more accurate ADC
conversion results. The following illustration
shows the various clock options.

6 tinyAVR Microcontroller Projects for the Evil Genius

Power Management and Sleep Modes

It is necessary for the modern generation of
controllers to manage their power resources in the
utmost efficient manner, and AVR devices cannot
afford to lag behind in this race of optimization.
They support certain sleep modes, which can be
configured by user software and allow the user to
shut down unused modules, thereby saving power.

The sleep modes supported include power
down, power save, idle, ADC noise reduction, etc.
Different devices support different modes, and the
details can always be found in the datasheets.

Furthermore, each mode has a different set of
wakeup sources to come out of that mode and go
to full running state.

System Reset

AVR devices can be reset by various sources,
summarized here:

■ Power-on reset The microcontroller unit
(MCU) is reset when the supply voltage is
below the power-on reset threshold.

■ External reset The MCU is reset when a low
level is present on the RESET pin.

■ Watchdog reset The MCU is reset when the
watchdog is enabled and the watchdog timer
period expires.

■ Brown-out reset The MCU is reset when the
brown-out detector is enabled and the supply
voltage VCC is below the brown-out reset
threshold.

After reset, the source can be found by software
by checking the individual bits of the MCU status
register. During reset, all I/O registers are set to
their initial values, and the program starts
execution from the reset vector. The following
illustration shows the block diagram of various
reset sources.

Chapter 1 ■ Tour de Tiny 7

Memory Programming

Programming the AVR device involves setting the
lock bits, setting the fuse bytes, programming the
Flash, and programming the internal EEPROM.
This data can also be read back from the controller
along with signature bytes for identification of the
device. Tiny devices can be programmed using
serial programming or high-voltage parallel
programming. Unless otherwise mentioned,
throughout this book we have used serial
programming for the Tiny microcontrollers. This
method can be further divided into two other
methods: in-system programming (ISP) and high-
voltage serial programming (HVSP). HVSP is only
applicable to eight-pin microcontrollers as an
alternative to parallel programming, because these
devices have too few pins to use parallel
programming.

In-system programming uses the AVR internal
serial peripheral interface (SPI) to download code
into the Flash and EEPROM memory segments of
the AVR. It also programs the lock bits and fuse
bytes. ISP programming requires only VCC, GND,
RESET, and three signal lines for programming.
There are certain cases when the RESET pin must
be used for I/O or other purposes. If the RESET
pin is configured to be I/O (through the
RSTDISBL fuse bit), ISP programming is
unavailable and the device has to be programmed
through parallel programming or high-voltage
serial programming, whichever is applicable.

There is one more method to program these
devices—the debugWIRE on-chip debug system,
which is described in the next section. The recent
series of six-pin devices from Atmel—ATtiny
4/5/9/10—doesn’t support any of the previously
mentioned methods of programming, but has a
new tiny programming interface (TPI) built in for
programming.

The lock bits are used for protection of the user
software in order to prevent duplicity, and fuse
bytes are used for initial settings of the controller

that cannot and should not be performed by user
software. The following illustration shows the
signals for ISP serial programming.

DebugWIRE On-Chip Debug System

The debugWIRE on-chip debug system is a one-
wire interface for hardware debugging and
programming the Flash and EEPROM memories.
This interface is enabled by programming the
debugWIRE enable (DWEN) fuse. After enabling
this interface, the RESET pin becomes the
communication gateway between the target and
emulator. Thus, external reset doesn’t work if this
interface is enabled. This interface uses the same
protocol as that used by JTAG ICE mkII, a popular
debug tool from Atmel. The following illustration
shows the debug WIRE interface.

Elements of a Project

This book shows several projects spanning a wide
spectrum of ideas and involving several application
domains. These projects can be built for fun as
well as education. However, it is important to
dwell upon the design and development process.

8 tinyAVR Microcontroller Projects for the Evil Genius

How does one go about making a system or a
project that no one has thought of before? Of
course, you have to think what you need.
Sometimes, the trigger for this need might come
by looking at other people’s projects. It’s an
abstract process, but an example might help to
illustrate it. Suppose you saw LEDs being used in
some system: bright, blinking LEDs that capture
your imagination, and you think, hey! what if I
could have these pretty LEDs on my cap in some
pattern and make them blink or change intensity?
This idea for something unique is the most
important thing. The illustration on this page
shows the design and development process.

Once an idea germinates in your mind, you can
continue to evolve it. At the same time, an Internet
search is recommended to ensure that no one else
has already thought of the same idea. There is no
point in reinventing the wheel. If the idea has been
already implemented, maybe it would be good to
think how it can be further improved. If you do
indeed take up the implementation and improve
upon it, a good plan of action would be to share it
with the original source of the implementation, so
as to acknowledge the work and also to put on
record your own contribution. This way, one can
enrich the system by contributing back to it. These

ideas apply to projects that are available on the
Internet under some sort of “freeware” license. In
other cases, you may need to check up on the
appropriate thing to do. It would be all right in
most cases if you intend to use the original or your
adaptation for personal use. If you intend to use it
for commercial applications, however, it is
absolutely necessary to check with the original
source to avoid future problems.

There are two distinct elements in a project,
as seen in the illustration, namely the hardware
components and the software. The hardware part
can be implemented in many ways, but using a
microcontroller is an easy option, and since this
book is about using microcontrollers in projects,
that is what we are going to concentrate on. Apart
from the microcontroller, the system needs a
source of power to operate. It would also need
additional hardware components specific to the
project even though modern microcontrollers
integrate a lot of features, as seen in the next
illustration. For example, even though a
microcontroller has digital output pins to control a
bank of seven-segment displays, it does not have
the capability to provide the large enough current
that may be needed, so you will have to provide
external current drivers. Similarly, if you want to

Chapter 1 ■ Tour de Tiny 9

Testing

Testing
Fabrication

Great Idea!
Research

Firm up the
Idea. Itemize
TODO list

Hardware
Components,
Software

Software
Development

Hardware
Development

PCB

Hardware
+ Software
Integration

use an external sensor that provides an analog
voltage to measure a physical parameter, the
voltage range from the sensor may not be
appropriate for use with the microcontroller’s
on-board ADC, so you would need an external
amplifier to provide gain to the sensor output
voltage. The illustration on this page shows the
elements of a modern microcontroller.

The software component refers to the application
program that runs on the microcontroller, but
may also refer to a custom program that runs on
a PC, for example, to communicate with the
microcontroller.

The project development process requires that the
two elements of the project, the hardware elements
and the software elements, be developed in parallel.
The software component that runs on the
microcontroller is developed on a host PC, and a
large section of the code can be developed even
without the hardware prototype completed. The

software code can be tested on the PC host for
logical errors, etc. Some parts of the code that
require external signals or synchronization with
other hardware events cannot be tested, and this
testing must be postponed until the software is
integrated with the hardware. Once the hardware
prototype is ready, it must be integrated with the
software part and the integrated version of the
project tested for compliance with the requirements.
The integration may not be smooth and may require
several iterative development cycles.

Apart from the hardware components, which
would be specific to a given project and the
software, some hardware components are common
across most projects. These are related to the
power supply and a clock source for the
microcontroller. These elements of the project are
shown in the next illustration. The power supply
source and the regulation of the supply voltage are
discussed in detail in a later section. The clock

10 tinyAVR Microcontroller Projects for the Evil Genius

Sensor

Motor

PC

LED

Timer

CPU

RAM

RTC

Program
Memory

Audio Output
Analog Display

Serial Port

Watchdog
Timer

Clock,
Oscillator

Reset,
Brown-out
detector Analog I/O Port

Digital I/O Port

Seven-segment
Display

5x7 Dot-matrix
Display Switch

Time of the Day

source is critical to the operation of the project.
Fortunately, some sort of clock source is often
integrated in the microcontroller itself. This is
usually an RC oscillator that is not very accurate
and whose actual value depends on the operating
voltage, but is quite suitable for many applications.
Only if the application requires critical time
measurements does one need to hook up an
external clock oscillator. All of the
microcontrollers in the AVR family have an on-
chip clock source, and in most projects in this
book, we use the same. The rate of program
execution is directly dependent upon the clock
frequency; a high clock frequency means your
program executes faster. However, a high clock
frequency also has a downside: the system
consumes more power. There is a linear
dependence of power and clock frequency.
If you double the clock frequency, the power
consumption would also double. So, it is not very
wise to choose the highest available frequency of
operation, but rather to determine the frequency
based on the program execution rate requirement.
As we illustrate in Project 1 later in this chapter,
by choosing to use the lowest available clock
frequency, we are able to keep the required
operating power to a minimal level. The following
illustration shows the elements of a project.

Apart from the clock source, power supply
source, and voltage regulator, the project requires
input and output devices and a suitable enclosure
for housing the project, as shown in the
illustration.

Power Sources

For any system to run, a power supply is needed.
Without the required supply, the system is only as
good as a paperweight. Selecting the right source
of power is important. For a portable system,
connecting it to the main grid would tie it up to a
physical location, and it would hardly be classified
as a portable system then.

Batteries

Batteries are the most common source of energy
for portable electronics applications. They are
available in a variety of types, packages, and
energy ratings. The energy rating of a battery
refers to the amount of energy stored in it. Most
batteries are of two types: primary and secondary.
Primary batteries are disposable batteries. These
batteries can provide energy as soon as they are
assembled and continue to provide energy through
their lifetimes or until they are discharged. They
cannot be recharged and must be discarded.
Secondary batteries, on the other hand, need to be
charged before they can be used. They can be
recharged several times in their usable lifetime
and, therefore, are preferred over primary batteries,
although secondary batteries are more expensive.
Also, the energy density of a primary battery is
better than that of a secondary battery. Energy
density refers to the amount of energy stored in a
battery per unit weight. So a primary battery with
the same weight as a secondary battery can
provide operating voltage for a longer time than
the secondary battery can.

Chapter 1 ■ Tour de Tiny 11

Source of
Power

Voltage
Regulator

Micro−Input
Devices Devices

Output
Controller

Suitable Enclosure!

Clock
Oscillator
(Optional)

A popular primary battery is the zinc-carbon
battery. In a zinc-carbon battery, the container is
made out of zinc, which also serves as the negative
terminal of the battery. The container is filled with
a paste of zinc chloride and ammonium chloride,
which serves as the electrolyte. The positive
terminal of the battery is a carbon or graphite rod
surrounded by a mixture of manganese dioxide and
carbon powder. As the battery is used, the zinc
container becomes thinner and thinner due to the
chemical reaction (leading to the oxidation of zinc)
and eventually the electrolyte starts to leak out of
the zinc container. Zinc-carbon batteries are also
the cheapest primary batteries. Another popular
primary battery is the alkaline battery. Alkaline
batteries are similar to zinc-carbon batteries, but
the difference is that alkaline batteries use
potassium hydroxide as an electrolyte rather than
ammonium chloride or zinc chloride. Figure 1-3
shows some alkaline batteries. The nominal open
circuit voltage of zinc-carbon and alkaline batteries
is 1.5 volts.

Other common primary battery chemistries
include the silver oxide and lithium variant. The
silver oxide battery offers superior performance
compared to the zinc chloride battery in terms of
energy density. It has an open circuit terminal
voltage of 1.8 volts. The lithium battery, on the
other hand, uses a variety of chemical compounds,
and depending upon these compounds, it has an
open circuit terminal voltage between 1.5 and 3.7
volts. Figure 1-4 shows lithium and alkaline
batteries in the form of button cells.

The only issue with primary batteries is that
once the charge in the battery is consumed, it must
be disposed of safely. This is where the use of
secondary batteries looks very attractive: they can
be recharged several times before you need to
dispose of them. Rechargeable batteries are
available in standard as well as custom sizes and
shapes. Common rechargeable batteries are lead-
acid, Ni-Cd, NiMH, and lithium-ion batteries.
Figure 1-5 shows a lithium-ion battery. Charging
these batteries requires a specialized charger, and
only a suitable charger should be used with a
particular battery. Charging a lithium-ion battery
with a battery charger meant for, say, NiMH
batteries, is not advisable and would certainly

12 tinyAVR Microcontroller Projects for the Evil Genius

Alkaline battery in 9V- and
AAA-size packages

Figure 1-3
The smaller LR44 cell is an alkaline
battery. The bigger CR2032 cell is a
lithium battery.

Figure 1-4

damage the battery as well as lead to the
possibility of fire or battery explosion.

Primary and rechargeable batteries are available
in many standard sizes. A few of the more
common ones are listed in Table 1-2.

When selecting a battery for your application,
the following issues need to be considered:

■ Energy content or capacity This is
expressed in Ah (or mAh) (ampere hour or
milliampere hour). This is an important
characteristic that indicates how long the
battery can last before it discharges and
becomes useless. For a given battery type, the
capacity also dictates the battery size. A battery
with a larger Ah rating will necessarily be
bigger in volume than a similar battery with a
smaller Ah rating.

■ Voltage The voltage provided by the battery.

■ Storage This indicates how the battery needs
to be stored when not being used.

■ Shelf life This indicates how long the battery
will last before it discharges on its own. There
is no point in buying a stock of batteries for the
next ten years if the shelf life of the batteries
is, say, only one year.

■ Operating temperature Batteries have
notoriously poor temperature characteristics.
This is because the batteries depend upon
a chemical reaction to produce power and the
chemical reaction is temperature dependent.
Batteries perform rather poorly at low
temperatures.

■ Duty cycle Some batteries perform for a
longer period if they are used intermittently.
The duty cycle of the battery indicates if the
battery can be used continuously or not,
without loss of performance.

Chapter 1 ■ Tour de Tiny 13

Lithium-ion batteryFigure 1-5

Nomenclature Shape Length Diameter/Width Height

AAA Cylinder 44.5 mm 12 mm —

AA Cylinder 50.5 mm 14.5 mm —

9V Rectangular cuboid 48.5 mm 17.5 mm 26.5 mm

C Cylinder 50 mm 26.2 mm —

D Cylinder 61.5 mm 34.2 mm —

TABLE 1-2 Battery Nomenclature and Dimensions

14 tinyAVR Microcontroller Projects for the Evil Genius

Fruit Battery

Some of the fruits and vegetables we eat can be
used to make electricity. The electrolytes in many
fruits and vegetables, together with electrodes
made of various metals, can be used to make
primary cells. One of the most easily available
fruits, the lemon, can be used to make a fruit cell
together with copper and zinc electrodes. The
terminal voltage produced by such a cell is about
0.9V. The amount of current produced by such a
cell depends on the surface area of the electrodes
in contact with the electrolyte as well as the
quality/type of electrolyte.

Preparing the Battery

For the battery, we need a few lemons for the
electrolyte and pieces of copper and zinc to form the
electrodes. For the copper, we just use a bare printed
circuit board (PCB), and for the zinc we chose to
use zinc strips extracted from a 1.5V battery.

1. Start with a piece of bare PCB. The size of the
PCB should be large enough so that you can
create three or four islands on it. Each island
will be used to hold a half-cut lemon.

2. Next, open up a few 1.5V AA size cells
for the zinc strips and clean them up with
sandpaper. Solder wire to each strip. Instead
of these zinc strips, you can also use
household nails. Nails are galvanized with
zinc and can be easily used for making the
battery.

3. On the bare copper PCB, cut islands with a
file or hacksaw and solder the other end of the
wire from the zinc strip to each copper island.
For each cell, you need half a lemon, one
island of copper, and one zinc strip.

4. Place the lemons on each copper island with
the cut facedown as seen in Figure 1-6. Make
incisions in the lemons to insert the zinc
strips. The photograph in Figure 1-6 shows a
lemon battery with four cells.

AC Adapter

If you use an alternating current (AC) output
adapter, then the rectifier and filter capacitor
circuit must be built into the embedded
application, as shown in Figure 1-7. The rectifier
could be built with discrete rectifier diodes (such
as 1N4001), or a complete rectifier unit could be
used. The rectifier should be suitably rated,
keeping in mind the current requirements. If the
power supply unit is to provide 500mA of current,
the diodes should be rated at least 1A. The other
rating of the diode to consider is the PIV (peak
inverse voltage). This is the maximum peak reverse
voltage that the diode can withstand before
breaking down. A 1N4001 diode has a PIV of
50V, and 1N4007 is rated to 1000V.

Lemon batteryFigure 1-6

+Vcc

Filter

Rectifier

AC in

Polarity proof DC in

Or

Rectifier and filter capacitor circuit:
It can be used with AC input as well
as DC input voltage.

Figure 1-7

The peak rectified voltage that appears at the
filter capacitor is 1.4 times the AC input voltage
(AC input voltage is a root mean square [RMS]
figure). A 10V AC will generate about 14V direct
current (DC) voltage on the filter capacitor. The
filter capacitor must be of sufficiently large
capacity to provide sustained current. The filter
capacitor must also be rated to handle the DC
voltage. For a 14V DC, at least a 25V rating
capacitor should be employed. The rectifier filter
circuit shown in Figure 1-7 can also be used with a
DC input voltage. With this arrangement, it would
not matter what polarity of the DC voltage is
applied to the input of the circuit.

Once raw DC voltage is available, it must be
regulated before powering the embedded
application. Integrated voltage regulator circuits
are available. Voltage regulators are broadly
classified as linear or switching. The switching
regulators are of two types: step up or step down.
We shall look at some of the voltage regulators,
especially the so-called micropower regulators.

It is common to use the 78XX type of three-
terminal regulator. This regulator is made by
scores of companies and is available in many
package options. To power the AVR processor, you
would choose the 7805 regulator for 5V output
voltage. It can provide up to 1A output current and
can be fed a DC input voltage between 9V and
20V. You could also choose an LM317 three-
terminal variable voltage regulator and adjust the
output voltage to 1.25V and above with the help of
two resistors.

A voltage regulator is an active component, and
when you use this to provide a stable output
voltage, it also consumes some current. This
current is on the order of tens of milliamperes and
is called the quiescent or bias current. Micropower
regulators are special voltage regulators that have
extremely low quiescent current. The LP2950 and
LP2951 are linear, micropower voltage regulators
from National Semiconductor, with very low

quiescent current (75mA typ.) and very low
dropout voltage (typ. 40mV at light loads and
380mV at 100mA maximum current). They are
ideally suited for use in battery-powered
applications. Furthermore, the quiescent current of
the LP2950/LP2951 increases only slightly at
higher dropout voltages. These are the most
popular three-terminal micropower regulators, and
we use them in many of the projects.

USB

The Universal Serial Bus (USB) is a popular and
now ubiquitous interface. It is available on PCs
and laptop computers. It is primarily used for
communication between the PC as the host and
peripheral devices such as a camera, keyboard, etc.
The USB is a four-wire interface with two wires
for power supply and the other two for data
communication. The power supply on the USB is
provided by the host PC (or laptop or netbook).
The nominal voltage is +5V, but is in the range of
+4.4V to +5.25V for the USB 2.0 specifications.
The purpose of providing a power supply on the
USB is to provide power to the external devices
that wish to connect to and communicate with the
PC. For example, a mouse requires a power supply
for operation and it can use the USB power.
However, this voltage can be used to power
external devices also, even if the device is not
going to be used by the PC. We use USB power to
provide operating voltage to an embedded
application, especially if it is going to be operated
in the vicinity of a PC or laptop. The embedded
circuit can draw up to 100mA from the USB
connector; although the USB can provide larger
current, it cannot do so without negotiation (i.e., a
request) by the device. Table 1-3 shows the pins of
the USB port that provide power and signal.

Chapter 1 ■ Tour de Tiny 15

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

16 tinyAVR Microcontroller Projects for the Evil Genius

Solar Power

Solar energy could be used to power electronic
circuits by using photovoltaic cells. They provide
power as long as the cell is exposed to sunlight.
Solar cells provide a range of power, from less
than a watt to hundreds of watts. The output power
of a solar cell is directly proportional to the
incident light and inversely proportional to the cell
temperature. To ensure maximum ambient light,
the solar cell must be held perpendicular to the
incident light. A conversion circuit is often used to
regulate the output of the cell. The most common
use of a solar cell is to charge a battery so that
continuous power from the battery can be derived.
More details on the use of solar cells are covered
in a later chapter.

Faraday-based Generator

The operating voltage required for many small
embedded portable projects can be met by an
interesting device that converts mechanical energy
into electrical energy. This uses the famous
Faraday’s law. The device based on this principle
is shown in Figure 1-8. The system uses a hollow
Perspex tube of suitable diameter and length.
Inside the tube is placed a rare earth magnet. The
tube is wound with several hundred turns of copper
enameled wire. The ends of the tube are sealed. To
generate the voltage, the tube is simply shaken. As
the magnet traverses the length of the tube, it

produces AC voltage across the copper wire, which
can be rectified and filtered using the circuit shown
in Figure 1-7 to provide DC voltage. The only
issue with this method is you have to keep shaking
the tube for as long as you want to power the
circuit. Once you stop shaking the tube, it will stop
producing the voltage and only the residual voltage
on the capacitor will be available. In many
applications, this may not be an issue. One
possible solution is to use supercapacitors instead
of normal capacitors. However, it would take a
long time and a lot of effort to charge the
supercapacitors to the required voltage.

The DC voltage produced at the capacitor
terminals may further require a voltage regulator
before the voltage is connected to the application
circuit, and a low dropout and low quiescent voltage
regulator such as the LP2950 is recommended.

The photograph in Figure 1-9 shows the output of
the Faraday generator captured on an oscilloscope.
The output is more than 17V peak to peak.

RF Scavenging

Radio frequency (RF) waves are ubiquitous, and
therefore it is possible to receive the radio
frequency energy using a suitable antenna and
convert this to DC operating voltage.
Unfortunately, this scheme requires a large
transmitted power from the source, or a large
antenna, or close proximity to the source. In many

Connecting
Pin Name Wire Color Purpose

1 Vcc Red +5V

2 D White Data signal –ve

3 D+ Green Data signal +ve

4 ID None Device

identification

5 Gnd Black Ground

TABLE 1-3 Pins of the USB Mini- or
Microconnector

Magnet

Perspex
Tube

Enameled
Copper Wire

AC Voltage Output

Faraday-based voltage generatorFigure 1-8

commercial applications, the RF energy is
deliberately transmitted for use by such receivers.
One such application is the radio frequency
identification device (RFID) systems. The block
diagram of such a system is shown in Figure 1-10.

The system consists of an unmodulated radio
frequency transmitter transmitting RF power at a
suitable frequency. The frequency of operation is
determined by the quartz crystal used. A higher
frequency of operation would require a smaller
transmission antenna. The transmitter is powered
with a DC supply voltage of a suitable value. The
radiated signal is received by a tuned circuit
consisting of an inductor and a variable capacitor
in parallel that is tuned to the frequency of the
transmitter. The tuned circuit feeds a diode
rectifier, filter, and a suitable low-power voltage
regulator. The output of the regulator provides the

operating supply voltage to the desired circuit.
Such a system can provide few milliwatts of power
across distances in the range of few tens of
centimeters.

A practical system based on this approach is
described in the following EDN Design Idea:
“Wireless battery energizes low-power devices”:
www.edn.com/article/CA6501085.html.

Hardware Development Tools

To develop and make prototypes for the projects
described in this book, we have used some
commonly available tools. These tools are:

■ Solder iron, 35 watts, with a fine solder tip
A soldering station is highly recommended, but
is not mandatory. The soldering station offers
isolated supply to the solder iron heater, thus
reducing the leakage currents from the tip of
the solder iron.

■ Solder wire A thin-gauge solder wire is
recommended. We use 26 SWG solder wire.
The photograph in Figure 1-11 shows the
solder wire and iron.

■ Copper braid This is often useful in
desoldering components.

■ Eye loupe To inspect PCBs, solder joints,
etc. Eye loupe and copper braid are shown in
Figure 1-12.

Chapter 1 ■ Tour de Tiny 17

Output of a Faraday generatorFigure 1-9

RF Oscillator
and
Transmitter

Quartz
Crystal

Antenna

+Vcc

Power Broadcasting Circuit Power Receiver Circuit

Tuned
Circuit

L

C

Rectifier
and
Low Power
Regulator

Voltage
Output

DC

+

Power supply from a radio frequency sourceFigure 1-10

18 tinyAVR Microcontroller Projects for the Evil Genius

Solder wire and solder ironFigure 1-11

Copper braid and eye loupeFigure 1-12

■ Multimeter A digital multimeter with
voltage, current, and resistance measurement
facilities is useful for testing and
measurements. It is shown in Figure 1-13.

■ Fine tweezers For bending component leads.

■ Nipper To cut the component leads. This is a
fancy name for the regular lead cutter. A nipper
has sharp edges that make a neat cut.

■ Needle-nose pliers Generally useful for
tightening screws, etc.

■ Screwdriver set Tweezers, nipper, needle-
nose pliers, and screwdriver set are shown in
Figure 1-14.

■ M3 nuts and bolts For fastening brackets
onto the PCB as well as to support the PCB.

■ Drill machine (hand operated will do), with
an assorted collection of drill bits Used for
drilling holes in the PCB, enclosures, etc.

Chapter 1 ■ Tour de Tiny 19

MultimeterFigure 1-13

More toolsFigure 1-14

■ Bench vice with a three-inch jaw For
holding the PCB steady, filing hardware or
PCB, etc. It is shown in Figure 1-15.

Software Development

The advantage of developing a programmable
system cannot be realized without writing efficient
code for the programmable devices of your system,
in this case, tinyAVR microcontrollers. Throughout
this book, we will use C language for programming
them. The syntax is in compliance with GNU’s
AVR-GCC compiler.

C is a high-level programming language, and
code written in C language has to be converted
into machine language that your target controller
understands and can execute. The tool that does
this conversion is called a compiler. The Tiny
controllers understand only binary format and have
to be fed in bytes. A common way of storing a
collection of bytes to be transferred to the
controller is to use a hex file that contains the
bytes in the form of hexadecimal notation. So there
must be a tool that can convert C code into the hex
file. Many varieties of C compilers for AVR
microcontrollers are available, but we have focused
on the AVR-GCC for obvious reasons. WinAVR

gives a good integrated development environment
(IDE) for using AVR-GCC on Windows.

WinAVR, apart from giving you nice tutorials
on the AVR C library, provides the following two
main utilities:

■ Programmer’s Notepad It’s a general-
purpose IDE for programming in numerous
languages. This software comes integrated with
the WinAVR compiler. To run Programmer’s
Notepad, go to Windows | Programs | WinAVR
(version) | Programmers Notepad. Figure 1-16
is the screen shot of Programmer’s Notepad.
As you can see, it has various tabs. The most
important tab, Tools, is shown displayed. As
you can see, it has three important commands:

■ Make All To compile the program by
running the MAKEFILE and generate the
hex file.

■ Make Clean To remove all the hex files
and other dependencies. Generally used
before recompiling the program.

■ Make Program This can be used for
burning your hex file into the microcontroller,
but it requires a special-purpose ISP
programmer.

■ MAKEFILE Template Converting your C
code into the hex files involves numerous tasks
like preprocessing, compiling, linking, and
finally loading. GCC (GNU C compiler)
compilers generally require commands to be
given for each process to be carried out. If you
give all the commands each time, one by one,
when you compile your code, your task would
become cumbersome. In this situation, a utility
called MAKEFILE helps. It integrates all its
commands in one place and does the complete
job by giving instructions one by one to the
compiler. WinAVR gives you the basic
MAKEFILE template, which you can modify
for your own needs. To run this, go to
Windows | Programs | WinAVR (version) |
mFile. Set your options and save the file. Note

20 tinyAVR Microcontroller Projects for the Evil Genius

Bench viceFigure 1-15

that making the MAKEFILE from scratch can
be tough for beginners. Hence, if you are not
comfortable with MAKEFILE options, you can
use the MAKEFILE provided in the codes of
this book with slight modifications to suit your
needs.

Working with WinAVR and its components can
be a little tricky during the initial stages. On the
other hand, AVR Studio from Atmel allows easy
management of C projects with automatic handling
of make commands (required to compile the code
written for the GCC compiler). However, AVR
Studio still uses WinAVR GCC at the back end to
compile your C language code, as it doesn’t have a
built-in C compiler and only offers a built-in
assembler to run Assembly language programs. So
you need to install both WinAVR GCC and AVR
Studio to get started with programming. The latest

version of AVR Studio can be downloaded from
http://www.atmel.com/dyn/Products/tools_card
.asp?tool_id=2725 and that of WinAVR from
http://sourceforge.net/projects/winavr/files. The
projects in this book have been directly compiled
through WinAVR’s Programmer’s Notepad, with
manual handling of make commands through
MAKEFILE. However, you can use either of
the two methods. A quick-start introduction to
Embedded C programming for AVR microcontrollers
is given in Appendix A. The instructions for
getting started with both methods are given next.

Getting Started with a
Project on AVR Studio

To run AVR Studio, go to Windows | Programs |
Atmel AVR Tools | AVR Studio 4.

Chapter 1 ■ Tour de Tiny 21

Programmer’s NotepadFigure 1-16

1. To create a new project, select New Project
from the Project menu as shown here:

2. After clicking New Project, a pop-up menu
appears, as shown in the next illustration. In
the Project Type field, select either AVR GCC
or Atmel AVR Assembler, depending on the
language to be used. Here, settings are shown
for making a C language project. Select both
the Create Initial File and Create Folder check
boxes, and give the project a suitable name.
Click Next.

3. After clicking Next, a pop-up menu, shown
next, appears. Click AVR Simulator, and
from the Device section select the suitable
controller. Click Finish, and you will see the
main source file open and you can start
writing your code.

4. Often, you need to break your code into
sections for portability and readability. So you
divide your code into several code files. To
include further additional source files, right-
click Source Files in the AVR GCC section,
and select either Add Existing Source File or
Create New Source File, depending upon your
requirement. If you are using existing source
files, make sure that they are copied in the
same folder as your main source file (the
folder that you created in step 2).

5. Write your code in the main source file.

6. From the Build menu, select the Build
command (or press F7) to start compilation of
your program. If you see “Build succeeded with
0 Warnings” in the Build window, it means
there is no error and your hex file has been
created. If you see “Build succeeded” along
with some warnings, it means that your hex file
has been created but with some warnings. It is
recommended that the source of the warnings
be investigated to remove them, if possible. The
hex file is located inside the subdirectory
“default” in the main project folder.

7. You can also select the Build And Run
command from the Build menu to simulate
your program (or press CTRL-F7). The single
instruction step-over is performed using the
F11 key. During simulation, the contents of the
controllers’ register, I/O ports, and memory
can also be monitored after each instruction
execution.

22 tinyAVR Microcontroller Projects for the Evil Genius

Getting Started with a
Project on WinAVR

To start a new project using WinAVR, the
following steps should be followed:

1. Make a new folder at any location in your PC.

2. In this folder, copy the MAKEFILE from any
project of this book (let’s say Chapter 1).
Experienced users can make their own
MAKEFILE. This MAKEFILE will match
most of your requirements. The critical
locations where you may want to make a
change in the MAKEFILE for different
projects are shown here. Lines beginning with
are treated as comments in the MAKEFILE.

MCU name

MCU = your device

Example

MCU name

MCU = attiny861 (This tells the compiler
that the microcontroller for which the
application has to be compiled is Attiny861.)

#Output format. (Can be srec, ihex, binary)

FORMAT = ihex (The final output file has
to be in hex format.)

Target file name (Without extension)

TARGET = main (This is the name of your
hex file.)

List C source files here. (C dependencies
are automatically generated.)

SRC = $(TARGET).c (This line shows the
name of the source file. The command
$(TARGET) is replaced by the value of
TARGET that is main. Hence, you have to
keep the name of your source file as main.c.)

If there is more than one source file,

append them above, or modify and

uncomment the following:

#SRC += abc.c

SRC += def.c

As explained earlier, you often have to break
your code into several code files. To include
additional source files, add them as shown
here. In the previous example, abc.c is not
included, as the line SRC += abc.c is
commented out and def.c is included. You can
create your own source files and add them
here.

3. Next create an empty text document and name
it main.c, as explained earlier.

4. Modify the MAKEFILE as per your needs.

5. Write your code in the main.c file.

6. From the Tools tab, click Make All. If you see
the process exit code as 0, that means there is
no error and your hex file has been created. If
you see any other exit code, it means that
there is an error and you must remove it. If
the exit code is 0 and you see some warnings,
the hex file is still created. As stated earlier,
try to remove the warnings if possible.
Sometimes, warnings during the code
compilation lead to the project working
erratically.

ANSI C vs. Embedded C

ANSI C is the standard published by the American
National Standards Institute (ANSI) for the C
programming language. Software developers
generally follow this standard for writing portable
codes that run on various operating systems. Even
the original creator of C, Dennis Ritchie, has
conformed to this standard in the second edition of
his famous book, C Programming Language
(Prentice Hall, 1988). When software developers
write a C program for a personal computer, it is
run on an operating system. When the program has
finished, the operating system takes back control
of the CPU and runs other programs on it that are
in the queue. In case of multiprocessing (or
multithreading) operating systems, many different
programs are run simultaneously on a personal
computer. This is achieved by time slicing, that is,

Chapter 1 ■ Tour de Tiny 23

allowing each program in the queue access to the
CPU, memory, and I/O, one by one, for fixed or
variable durations.

When a program completes, it is removed from
the queue. This gives the impression that these
programs are running simultaneously, but in
reality, the CPU is executing only one sequence of
instructions (a program) at a given time. This
“scheduling” is controlled by the operating system,
which keeps the main CPU occupied all the time.

In contrast to the previous approach, when one
writes C code for low-end microcontrollers
(although the AVR has advanced processor
architecture, we are comparing it with the standard
PC processors here), they are the only programs
running on the hardware and have complete
control of all resources. The usage of the operating
system is not common in embedded systems.
These programs generally run in infinite loops and
do not terminate.

Hence, it is evident that the approaches to
programming have to differ (to a certain extent) in
both the cases. In spite of this fact, certain basic
features of C programming, like data types, loops,
control statements, functions, arrays, etc., are
similar in ANSI C compilers and embedded C
compilers.

Making Your Own PCB

Deciding on the software and hardware
requirements for your project is all very well, but
to actually implement your project, you need to
get the circuits ready, with all of the components
in their proper places for programming and
testing. Beyond a certain number of components,
prototyping on a breadboard no longer remains
feasible. Circuits made on a breadboard have more
chances of behaving in an erratic manner due to
undesirable shorts, loose connections, or no
connections. These problems can be difficult to
debug, and you spend extra time solving these

problems rather than testing your hardware design
idea and compatible software. The other stream of
circuit designing involves augmenting your
projects with the printed circuit boards (PCBs).
Circuits developed on PCBs are more durable and
less prone to failures compared to circuits made
on breadboards. Once fabricated and soldered
properly, you can be sure of all the connections
and focus on more important areas—system
design and software development. The process of
PCB designing and fabrication can be divided into
two broad categories, described in the following
sections.

Using a General-Purpose
Circuit Board

This approach is generally used by hobbyists and
university students to quickly solder their circuits.
Designing and fabricating a custom PCB takes up
considerable amounts of time and resources, which
are not available to everyone. A viable idea in such
cases is to place your components on a general-
purpose circuit board and then make the
connections by soldering insulated copper wires. A
single-strand, tinned copper wire, with Teflon
insulation, is quite sturdy and flexible, and is a
recommended option. The general-purpose circuit
board has holes arranged on a 0.1-inch pitch with
solder contacts on one side. These boards are of
several types, and two popular types are synthetic
resin bonded boards (called FR2) and glass epoxy
boards (FR4). The former are cheaper but less
durable than the latter. Hence, it is always a better
idea to use the glass epoxy board. Figure 1-17
shows a bare general-purpose glass epoxy circuit
board, and Figures 1-18 and 1-19 show two sides
of a general-purpose board with a circuit soldered
on it. Sometimes, it is a good to idea to test and
verify small modules of your designs on this board
before proceeding towards the custom PCB design
of the whole circuit. Wiring errors on such a board
can easily be corrected, as the connections are

24 tinyAVR Microcontroller Projects for the Evil Genius

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 1 ■ Tour de Tiny 25

made using wires that can always be changed from
one point to another. But in a custom PCB, once
the tracks are laid down, it is very difficult to
change the circuit connections.

Creating a Custom PCB

This is the more advanced method for designing
circuits. Circuits made on PCBs have a minimum
chance of failure due to faulty connections unless
there is some problem in the design. The first step
in making a custom PCB is to use custom software
on a PC for schematic design, layout, and routing
of the board. Many types of PCB designing

software are available, such as Proteus, Orcad, and
EAGLE. Throughout this book, we have used the
freeware version of EAGLE from CadSoft for
designing the boards of all the projects. The boards
have been routed so that the maximum tracks come
in a single layer to suit the single-side fabrication,
which is a lot cheaper and easier than double-sided
PCB fabrication. A quick-start tutorial on designing
PCBs using EAGLE is given in Appendix B.

The designed PCB can be fabricated by many
methods. These fall into two broad categories—
etching and milling processes. Etching methods
generally use chemicals, photographic films,
silkscreens, etc., to remove the unwanted copper
from the bare PCB while retaining the necessary
tracks, whereas milling processes physically mill
away the extra copper while leaving the copper for
tracks intact. Milling operations, unlike etching
processes, can be performed directly with the PCB
designing software. Most of the PCBs in this book
have been fabricated using a Roland Modela
MDX-20 PCB milling machine. This machine
supports single-side PCB fabrication, and all of the
PCBs for our projects here have been adapted to
suit the requirements of this machine. Milling
processes are slow for mass production, because
every PCB fabrication cycle has to be repeated

General-purpose circuit boardFigure 1-17

General-purpose board—
component side view

Figure 1-18

General-purpose board—solder side
view

Figure 1-19

26 tinyAVR Microcontroller Projects for the Evil Genius

from the start, but very quick for prototyping.
Etching processes tend to be faster for mass
production due to the reusability of intermediate
films but are expensive and slow when the number
of units required is small.

As a hobbyist, you may not be interested in
getting the custom PCBs made. But there are often
cases when you want multiple copies of your
circuit, or wiring a circuit on a general-purpose
board is cumbersome due to the complexity and
large number of connections, or you have to
submit your project for further evaluation. In such
cases, custom PCBs are the only alternative.

Project 1
Hello World! of
Microcontrollers

Now that we have described all the elements and
components of a project, along with specific
requirements to design the projects with AVR
microcontrollers, here is a simple project for
illustration. It has all the elements as shown in the
illustration at the end of the “Elements of a
Project” section earlier in the chapter. There are
two LEDs and two switches in the circuit along
with a reset switch. The aim of the project is to
toggle the state of each LED each time the
corresponding switch is pressed and released. The
project is named as such because it introduces you
to the world of tinyAVR microcontrollers.

Figures 1-20 and 1-21 show the schematic
diagram used for this introductory project. Both
schematics are identical, and they illustrate two
popular styles of drawing a schematic. In the
method illustrated in Figure 1-20, all connections
between various component signals are explicitly
shown using connecting lines. In the alternate style
of drawing a schematic as illustrated by Figure
1-21, the signals are assigned signal names, such
as PB3, which happens to be pin 2 of the

microcontroller. Pin 2 is supposed to connect to
LED1. So, signal name PB3 is assigned to pin 2 as
well as to the cathode of LED1. Similar signal
names are used for the rest of the connections.

Let us correlate the elements in the illustration
with the components in the schematic shown in
Figure 1-20 (or Figure 1-21). The circuit is
powered with two AA alkaline batteries. As
mentioned in the previous section, alkaline
batteries have a nominal terminal voltage of 1.5V.
Thus, the two batteries provide 3V operating
voltage. Tiny13V operating voltage range is
between 1.8V and 5.5V, so a 3V operating supply
voltage would work fine. Also, as the batteries
discharge, the terminal voltage would drop but the
circuit would continue to work until the supply
voltage drops to 1.8V. Also, the visible-spectrum
LEDs (as opposed to invisible LEDs such as
infrared) have a turn-on voltage, depending on the

1 (PB5/Reset)

2 (PB3)

3 (PB4)

4 (GND)

Tiny13

(Vcc) 8

(PB2) 7

(PB1) 6

(PB0) 5

Vcc

Reset

R1

R2LED2

LED1

SW1 SW2

1.5V

1.5V

S4 (On/Off)
Vcc

SW3

C1

Hello World!Figure 1-20

Hello World! alternate schematic
style

Figure 1-21

color of the LED between 1.8V (red) and 3.5V
(white). Thus, selecting red LEDs for this project
would be a good decision. The board layouts are
shown in Figures 1-22 and 1-23. Figure 1-22
shows the layout without the tracks in the
component layer (top), and Figure 1-23 shows the
layout without the tracks in the solder (bottom)
layer. As you can see, the board is mainly routed
in the solder layer, with just one jumper in the
component layer. It can easily be made using
the physical milling process described in the
previous section. The soldered prototype is shown
in Figure 1-24.

The board layout in Eagle, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The code has been written in a way that the left
switch toggles the left LED and the right switch
toggles the right LED. Thus, if the right LED is
off and you press and release the right switch
momentarily, it will turn the right LED on. The
Tiny13V is programmed with the following C code:

//Include Files

#include<avr/io.h>

#define F_CPU 128000UL

#include<util/delay.h>

int main(void)

{

DDRB |= 1<<2|1<<3;//Declare as outputs

PORTB |= 1<<2|1<<3;

//Switch off the LEDs

DDRB &= ~(1<<0|1<<1);//Input declared

PORTB |= (1<<0|1<<1);//Pull up Enabled

while(1)

{

//switch1

if(!(PINB&(1<<0))) //If pressed

{

_delay_ms(10);//debounce

while(!(PINB&(1<<0)));

//wait for release

_delay_ms(10);//debounce

PORTB^= (1<<3);//Toggle

}

//switch2

if(!(PINB&(1<<1)))//If pressed

{

Chapter 1 ■ Tour de Tiny 27

Hello World! PCB layout with solder
layer shown

Figure 1-22

Hello World! PCB layout with
component layer shown

Figure 1-23

Hello World! soldered boardFigure 1-24

(continued on next page)

28 tinyAVR Microcontroller Projects for the Evil Genius

_delay_ms(10);//debounce

while(!(PINB&(1<<1)));

//wait for release

_delay_ms(10);//debounce

PORTB^= (1<<2);//Toggle

}

}

}

This code represents the general style followed
in this book. The header files are specific to the
AVR-GCC compiler. The macro F_CPU is used to
convey the frequency of operation to the compiler.
The program runs in an infinite loop. There is one
single if block for each switch that first checks
whether the switch is pressed or not. If the switch
is pressed, it waits for it to be released, and on
release, it performs the necessary action (toggling
the LED). The 10ms delay after each switch press
and release is for preventing switch bounce.
Beginners who are new to C programming for
AVR microcontrollers are advised to read
Appendix A to better understand of this code. The
compiled source code, along with the MAKEFILE,
can be downloaded from www.avrgenius.com/
tinyavr1.

The AVR is programmed using STK500 in ISP
mode. The fuse settings are shown in Figure 1-25.
The Tiny13 is set up to operate at 128 KHz
internal RC clock. The idea is to clock the AVR at
the lowest possible clock speed, since the power
consumption of a complementary metal-oxide
semiconductor (CMOS) digital circuit (such as
this AVR) is directly proportional to the clock
frequency of operation and we want to minimize
the power dissipation.

Conclusion

We have now reached the end of the first phase of
this book and have covered a wide array of topics
required for sound project development. This
chapter covers all the basics for the following
chapters. This chapter also has one beginner’s
project, and we have given the full source code
and layout files here. The joyous ride of building
creative projects with tinyAVRs begins with
Chapter 2. For the rest of the projects, we haven’t
included the full source code and board layout in
text. These are available on the links provided with
each project. Crucial sections of the code, however,
are explained. The next chapter shows a few
simple LED-based projects.

Fuse bits for the Tiny13
microcontroller

Figure 1-25

LED Projects

C H A P T E R 2

29

IN THIS CHAPTER WE WILL describe a few simple
projects that use LEDs. LEDs are popular
electronic components, and recently, advances in
technology have created LEDs that emit light
spanning almost the entire visible spectrum. LEDs
were invented in the early 1960s, with the earliest
LEDs being red, which were followed by yellow
ones. Although blue LEDs were demonstrated in
the early 1970s, they weren•t bright enough for
practical use. Bright blue LEDs started becoming
available by the late 1990s. The current focus is on
white LEDs to provide lighting solutions. High-
power and high-brightness white LEDs with 10W
consumption providing 1,000 lumens of light are
currently available. The main advantage of white
LEDs for lighting is the promise of long life„
100,000 hours„as well as high efficiency. Thus,
LEDs offer great opportunities for interesting
projects, and in this chapter, we explore a few
simple projects involving LEDs, including
multicolor LEDs.

LEDs

A light-emitting diode (LED) is a fascinating
component. LEDs are available in a wide variety
of sizes and colors. Figure 2-1 shows some of
them. Many of the LEDs are available in clear
packaging and so one cannot tell the color of the
LED light simply by looking at the LED. An LED
emits light when it is forward-biased and some
current passes through it. The illustration here

Various types of LEDsFigure 2-1

Anode Cathode

Anode Cathode

shows what a typical small-size LED looks like
and also gives its electrical symbol. The two leads
of the LED are not of equal size. The longer lead
is the anode and the shorter one the cathode.

The intensity of the light emitted is proportional
to the current passing through the LED. The
forward voltage drop across the LED is dependent
upon the semiconductor material that is used to
make the LED, which is equivalent to saying that
the forward voltage drop across the LED depends
upon the color of the light produced by it. An LED
that produces red light has the smallest bandgap
(among the visible-light LEDs) compared to the
blue light LEDs, which have the greatest bandgap.
The forward voltage drop across a red LED is 2V
and across a blue LED is 3.7V. Table 2-1 lists the
LED color and typical electrical and optical
characteristics.

Since an LED is a special diode, it is natural to
expect the voltage and current characteristics to be
identical to that of a normal signal diode. Signal
diodes are made with silicon or germanium, and the
turn-on voltage is around 0.7V (or 0.2V for
germanium). The material used for making LEDs is
gallium arsenide (GaAs), with suitable impurities
added to get the desired light color. The band gap of
GaAs is 1.45eV while that of silicon is 1.1eV.
Therefore, the turn-on voltage of a diode made with
GaAs is expected to be larger than the turn-on
voltage of a silicon diode. The illustration here

shows the forward-bias characteristics of a 5-mm
red LED.

To use an LED, you need a suitable circuit and a
DC voltage source to forward-bias the LED. The
circuit is needed to determine the amount of
current passing through the LED. For a particular
LED, the forward current is chosen depending
upon the intensity required from the LED and the
amount of current that the LED can handle. One
cannot exceed the current rating over extended
periods without running a risk of damaging the
LED. The peak forward current rating should never
be exceeded. In its simplest form, the circuit
associated with the LED to determine the current
is just a simple resistor. For a supply voltage Vcc,
the LED voltage drop of, say, V(f) across the LED
and a desired current of 10mA, the value of the
series resistor would be R � {Vcc … V(f)}/10mA.

As an example, if the LED in question is the
one whose characteristics are plotted in the
previous illustration and assuming Vcc � 5V and

30 tinyAVR Microcontroller Projects for the Evil Genius

Forward Peak Typical Forward Viewing
Color Current I(av) Current I(pk) Voltage V(led) Angle Wavelength

Red 20mA 120mA 2.0V 30 635nm

Orange 20mA 60mA 2.05V 15 624nm

Yellow 20mA 90mA 2.0V 20 591nm

Green 20mA 100mA 3.5V 15 504nm

Blue 20mA 100mA 3.7V 20 470nm

White 20mA 100mA 3.5V 20 Wide spectrum

TABLE 2-1 5-mm LED Electrical and Optical Characteristics (Lite-On Optoelectronics)

0 0.5 1 21.5 2.5

12

10

8

6

4

2

0

LED Forward Voltage Drop (Volts)

L
E

D
 F

o
rw

ar
d

 C
u

rr
en

t
(m

A
) Series1

V(f) from the curve is 1.98V, the value of the
series resistor comes out to 302 Ohms. The
standard 5% resistor series has 270 Ohms and 33
Ohms resistance, which can be put in series to get
303 Ohms, and that would work just fine. Instead
of the series combination, if a single resistor of
270 Ohms is used, the LED current would increase
to about 11mA, and if a 330 Ohm standard
resistance is used, the current would be 9.15mA.

The intensity of light from an LED is
proportional to the current passing through the
LED when it is forward-biased. To illustrate this
feature, the schematic in the image shown next was
assembled and the readings were plotted. The
result of this small experiment is shown in the plot
in the second image. The significance of the
relationship between intensity and current will be
explored later in this section and in later projects.

Types of LEDs

Apart from the LEDs shown in Figure 2-1, LEDs
are also available in other forms, namely bicolor
and red, green, blue (RGB) LEDs. The next

illustration shows a common anode bicolor LED
and its electrical symbol.

Figure 2-2 shows a photograph of some bicolor
and RGB LEDs. Bicolor LEDs in a common
cathode configuration are also available. The two
LEDs inside the package can be chosen from a
wide variety of color combinations, such as red-
yellow, red-green, blue-yellow, blue-red, etc. A
single LED package with three color LEDs is also
available. The colors are red, green, and blue,
which are primary colors. In an RGB LED, there
are four pins: a common anode and three cathodes,
or a common cathode and three anodes. With a
bicolor LED, multiple colors can also be formed
by turning both LEDs on at the same time. So,
with a red-green bicolor LED, you can get yellow
by turning on the red and the green LEDs together.
Similarly, if the red LED is turned on at half the
intensity and the green is turned on at full
intensity, then other shades of yellow can be

Chapter 2 ■ LED Projects 31

1.5KOhm

0−30V
Variable
Power Supply

Red LED

Lux Meter

0 5 10 15 20

6000

5000

4000

3000

2000

1000

0

LED Forward Voltage Current (mA)

In
te

n
si

ty

Series1

Anode

Cathode−1 Cathode−2

Anode

Cathode−1

Cathode−2

32 tinyAVR Microcontroller Projects for the Evil Genius

created. On the other hand, RGB LEDs allow more
composite color possibilities through controlling
the intensity of the three primary colors. The
intensity control of LEDs is discussed in detail in
the next section. LEDs are also used to make
complex displays, such as seven-segment,
alphanumeric, bar, and dot matrix displays, which
are shown in the next chapter.

Controlling LEDs

Controlling LEDs refers to the ability of an
electronic circuit to turn an LED on or off. If you
wire up a circuit as shown in a previous illustration
and set the DC power supply voltage to 5V, then
the only way to turn the LED off is to turn the
power supply off. However, LEDs can be turned
on or off using the pins of a microcontroller, and
interesting lighting patterns can be created. The
next illustration shows a circuit diagram using a
Tiny13 microcontroller and five LEDs.

Each of the LEDs is connected to a pin of the
microcontroller with a series resistor. However,
two of the LEDs (LED1 and LED2) are connected
in the so-called current sink mode and the other
three (LED3, LED4, and LED5) in the current
source mode. These two different arrangements are
used for the purpose of illustration only. The 74
series of TTL gates (e.g., 7400 or 74LS00) had
more current sink capability than current source
capability. So when using those gates, it was
common to connect external loads (such as the
LED) in current sink mode than in source mode.
However, modern CMOS devices, such as the AVR
series of microcontrollers, have symmetrical output
current driving capability and, therefore, it does
not matter whether the LEDs are connected in
current sink or source mode.

Photograph of bicolor and RGB
LEDs

Figure 2-2

1 (PB5/Reset)

2 (PB3)

3 (PB4)

4 (GND)

Tiny13

(Vcc) 8

(PB2) 7

(PB1) 6

(PB0) 5

Vcc

Reset

R1

R2LED2

LED1

SW3

Vcc

LED3

LED5

LED4

Coming back to the circuit shown in the
previous illustration, LED1 and LED2 will light up
when the respective output pin is set to logic •0,Ž
while the rest of the LEDs will light up when the
respective output pin is set to logic •1.Ž The value
of the series resistor depends upon the amount of
current desired through the LED, but the value
should be no more than the output current
capability of the microcontroller. AVR
microcontrollers are capable of driving up to
40mA of current through each pin. The supply
voltage of the system should be chosen such that
the LED turn-on voltage is less than the supply
voltage (Vcc). As an example, choosing 3V as Vcc
(using two alkaline batteries) would be fine if you
plan to use red LEDs in the circuit. However, blue
LEDs won•t work in such a situation. If you plan
to use blue LEDs, the supply voltage Vcc should
be 5V.

The microcontroller can turn each LED on or
off at any rate. However, if the rate exceeds 20 Hz,
then the LEDs would appear to be constantly
turned on with an irritating flicker. On the other
hand, if the rate is increased to, say, 100 Hz, the
flicker would disappear and the LEDs would
appear to be continuously on. The LEDs are

indeed being turned on and off at a rate of 100 Hz,
but the human eye is unable to follow that high a
rate of change. This is an interesting phenomenon,
and we use it to change the intensity of the LED,
also called light intensity modulation.

The image on the bottom of this page illustrates
a pulse width modulated (PWM) signal.

The signal has a frequency that is set to a high
value. This frequency is F � 1/T, as shown in the
top trace of the figure. Say F is set to 100 Hz.
While keeping the frequency of the signal
constant, the on time of the signal (i.e., the time
for which the signal is at logic •1Ž) is changed. Let
T1 be the on time. The ratio of the on time (T1) to
total time period (T) is called the duty cycle of the
signal. Signals shown in the following illustration
can easily be generated by the microcontroller
circuit in the illustration on page 32. If the signal
with 50% label is applied to LED3 through pin
PB2 of the circuit, then the observer will perceive
an intensity of 50%, compared to the case when
the output at pin PB2 is permanently set to logic
•1Ž without any change ever (when the pin PB2 is
set permanently to logic •1,Ž the LED will work at
maximum intensity). This is because the average
current through the LED is now 50%. Similarly, if

Chapter 2 ■ LED Projects 33

0 1 3 4 0

T

50%

37.5%

75%

Variable

2

the signal labeled 75% is applied to LED3, its
intensity will be 75% of the maximum intensity.
The duty cycle of the signal can be set to any
arbitrary value between 0% (minimum intensity)
and 100% (maximum intensity). The PWM signal
can be generated either using program control or
through built-in hardware timers in the AVR
microcontroller. Using the hardware timer allows
the microcontroller to perform other additional
tasks. Use of PWM software as well as hardware
for LED light intensity control is illustrated in
many subsequent projects. The use of PWM-based
LED light intensity control is best illustrated in
projects that use multicolor LEDs (such as RGB
LEDs), where individual LED intensity control is
used to create a large number of intermediate
colors and shades.

Apart from intensity control, it is also pertinent
to discuss the various ways in which LEDs can be
connected. Until now, we have considered only a
single LED per pin. But sometimes it may be
required to connect multiple LEDs on a single pin
of the microcontroller. Multiple LEDs can be
connected together in two combinations: series or
parallel. Connecting LEDs in series with a single
resistor, as shown in this illustration, is possible.

The number of LEDs that can be connected in
series and connected to the microcontroller pin
will be determined by the LED turn-on voltage and
the supply voltage. For a Vcc of �5V, two red
LEDs can easily be connected in series. But two

blue LEDs cannot be connected, since the turn-on
voltage of two blue LEDs in series is more than
the �5V supply voltage. Similarly, three red LEDs
cannot be connected in series to a �5V supply for
precisely the same reason.

In case there is a need to connect three LEDs, a
better configuration would be to connect the LEDs
in parallel, as shown here:

Note that instead of using a single series resistor
and connecting the LEDs in parallel, we have
chosen to use one series resistor per LED and
connect the LED-resistor configuration in parallel.
This is because different LEDs of the same color
and batch may have marginally different turn-on
voltages and if a single resistor is used for the
entire parallel configuration of the LEDs, the LED
with the lowest turn-on voltage would dominate
the other LEDs; hence, it is consuming more
current and would thus appear to be brighter than
the others. In a more extreme condition, this
particular LED would hog all the current and may
not allow other LEDs to even turn on. When
connecting several LEDs in parallel, the sum of the
current through all the LEDs should be less than
the current source (or sink) capability of the
microcontroller pin. In case the current through
the LEDs exceeds the capability of the
microcontroller, the configuration shown in the
previous illustration (or the one that follows)
should be used.

34 tinyAVR Microcontroller Projects for the Evil Genius

Microcontroller

+Vcc

R1

+Vcc

Microcontroller
R1 R2 R3

The configuration in this illustration uses an
NPN transistor to drive many LEDs arranged in
series. The drive voltage for the LEDs„
V(Drive)„must be more than the sum of the turn-
on voltages of all the LEDs in series. The resistor
R1 sets the current through the LEDs. The NPN
transistor requires a base resistor (Rb) to limit the
base current, and the value of Rb is calculated
based on the collector current through the transistor
(which is also the current through the LEDs) and
the current gain of the transistor. Let•s take an
example: Assume that you want to connect five red
LEDs in series and drive 30mA through them.
From Table 2-1, the red LED turn-on voltage is 2V,
so 10V will be required to forward-bias the LEDs.
The transistor will have a drop of 0.5V across the
collector and emitter terminals V(ce). A V(Drive)
voltage of 15V would be desirable, and thus the
value of the resistor R1 � (15 … 10.5)V/30mA �
150 Ohms. A suitable low-power transistor such as
the BC547 would be suitable for this application.
Typical � for BC547 is 100; therefore, the base
current required would be 30mA/100 � 300µA. If
the microcontroller is powered with a supply
voltage of �5V, then the logic •1Ž voltage of 4.5V
can be reasonably assumed. The V(be) drop across
the base-emitter junction of the transistor is about
0.7V. Thus, Rb � (4.5 … 0.7)V/300µA � 12.6K .
So, a 10K resistor for Rb is quite appropriate. For

the configuration shown in the previous illustration,
it is not necessary that all the LEDs in series be the
same color. But in the calculation, the sum of
forward voltage drop of all these LEDs must be
taken into account to decide the V(Drive) voltage
and thus the values of R1 and Rb.

The next illustration shows how multiple LEDs
can be connected in parallel using an NPN driver
transistor. This configuration would be desirable in
case the sum of the currents through all the LEDs
is larger than the microcontroller pin can supply.
For example, suppose you want to drive 10 LEDs
in parallel, each with 20mA current. The current
requirement is 200mA, which is much more than a
single pin of the microcontroller can supply.
However, a medium-power NPN transistor with
maximum collector current (Ic(max)) of, say, 1A
would be suitable to drive these LEDs. The
calculations required for the value of the series
resistor for each of the LEDs, as well as the base
resistor Rb, would be as shown earlier.

Project 2
Flickering LED Candle

Even with all sorts of modern lighting methods,
candles still capture the human imagination. A
candle-lit dinner is considered more romantic than
one with (even dim) normal lighting. Perhaps it•s

Chapter 2 ■ LED Projects 35

Microcontroller

+V(Drive)

+Vcc

R1

Rb

Microcontroller

Rb

R1 R2 R3 R4

+Vcc

the way a candle flickers that makes it unique and
worthwhile to emulate. In this project we show
how an LED can be used to mimic candlelight.
The next illustration shows the block diagram of
the flickering LED candle. Lighting up the LED is
not a problem. The trick to mimicking a candle lies
in re-creating the way a candle flickers. The candle
flame sways randomly (or so it seems), and
sometimes the intensity of the flame seems to vary
with air currents. When using an LED to behave
like a candle, it may not be possible to make the
•flameŽ sway, but what can certainly be achieved
is the random variation of intensity, even in the
absence of air currents. The block diagram shows a
random number generator providing input to an
intensity control circuit for the LED.

Randomization has always been one of the most
confusing aspects of the implementation process.
There has been endless talk about whether any
number or noise generator can be truly random.
The answer is simply •no.Ž This is because every

•randomŽ number generator repeats itself after
some interval. If this periodicity is sufficiently
large, the source, which is not really random,
appears to be completely random. Hence, we call
such sources pseudo-random number generators.
Embedded systems generally use some hardware-
based pseudo-random number generators to
introduce nondeterministic behavior in their
working. However, a particular type of pseudo-
random generators known as linear feedback shift
registers (LFSRs) can be integrated easily in
software alone, without the requirement of
additional hardware resources.

The illustration at the bottom of the page shows
the block diagram of an LFSR-based pseudo-
random number generator. An LFSR is a shift
register, the input to which is the exclusive-or
(XOR) of some of the bits of the register itself.
The bit positions that are used for the XOR
operation to yield the input bit are called taps. The
LFSR must be initialized with a non-zero seed
value. If the seed is zero, LFSR would never leave
its initial state because XOR of any number of
zero-valued bits is zero. LFSRs have an interesting
property: if the feedback taps are chosen carefully,
outputs cycle through 2n … 1 sequences for an n-bit
LFSR. The sequence then repeats after 2n … 1
instances. If the output sequences are observed,
they appear to be random. A ten-bit LFSR is
shown in this image. It will have a sequence length
of 1,023. Similarly, a 16-bit LFSR would have a
length of 65,535, and so on.

The LFSR described previously is called the
Fibonacci LFSR. There is one more type of

36 tinyAVR Microcontroller Projects for the Evil Genius

Random
Number
Generator

Intensity
Control

Power
Supply

0123456789

XOR

Output

LFSR, known as the Galois LFSR, in which bits
that are not taps are shifted unchanged. The taps,
on the other hand, are XOR•d with the output bit
before they are shifted to the next position. This
project implements a Galois LFSR, while the
implementation of a Fibonacci LFSR is shown
in Project 4, later in this chapter.

Design Specifications

The aim is to develop a battery-operated flickering
LED candle that mimics a real candle as closely as
possible. The intensity of the LED can be varied
using a pseudo-random number generator
implemented using a suitable-length LFSR. The
size of the LFSR would determine how soon the
lighting pattern starts repeating. The pseudo-
random number generator and the intensity control
of the LED are to be implemented using one of the
tinyAVR microcontrollers with the smallest pin-
count. This illustration shows the final block
diagram of the implementation.

The pseudo-random number generator is
implemented by the tinyAVR microcontroller, and
the port pins of the microcontroller implement the
intensity control. To have light of a color similar to

that of a candle, a white or warm white LED is
suitable. However, this means that a supply voltage
of 5V or more would be required. AVR
microcontrollers operate up to 5.5V supply
voltage, and this can be met easily with four
AA 1.5V primary cells (such as alkaline) or
rechargeable batteries such as NiMH, which
have a terminal voltage of 1.2V.

The circuit, the LED, and batteries should also
be packaged to look like a candle. With these
specifications, let•s see how the project is
implemented.

Design Description

Figure 2-3 shows the schematic diagram of the
tinyAVR-controlled flickering LED candle. We
have used the Tiny13 controller, which is an eight-
pin device. Figure 2-4 shows the schematic of the
LED holder board. The circuit has been split into
two boards: the controller board and the LED
holder board. The idea was to arrange the LED
holder board on top of the controller board so as to
minimize the footprint of the circuit board. This
way, it occupies less space and can be packaged
easily in a tube to give the feel of a candle.

Chapter 2 ■ LED Projects 37

tinyAVR
Microcontroller

4 x 1.5V
Batteries

White or
Warm White
LED

Figure 2-3 shows connectors SL1, SL2, and
SL3, which are used to connect the LED on the
LED holder board. The LED is arranged in the
current sink mode and is placed on the second
board, as shown in the schematic in Figure 2-4.
The eight-pin controller has five I/O pins, and all
are used to connect to the LED with a series
resistance of 100 Ohms. The turn-on voltage of a
white LED is 3.5V, so assuming a 5.5V supply
voltage, each pin will sink around 20mA current,
which can be handled easily by an AVR controller
pin. Since five pins are used, the maximum current
through the LED is 100mA. We chose to use a
1W high-brightness warm white LED, which can
handle a maximum of 300mA current. The
controller board also has an ISP connector to
program the tinyAVR microcontroller and another

connector to connect the batteries. Switch SW1 is
used to turn the power on or off to the circuit.

Figure 2-4 shows the LED holder board. It
shows three connectors, and each of these

38 tinyAVR Microcontroller Projects for the Evil Genius

Flickering candle controller board: Schematic diagramFigure 2-3

LED holder board: Schematic
diagram

Figure 2-4

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

connectors mates with a corresponding connector
on the controller board. Thus, SL1 on the LED
holder board mates with the SL1 connector on the
controller board and so on. LED1 is a 1W white
high-power LED.

Fabrication

The layouts of both the boards in EAGLE, along
with the schematic diagrams, can be downloaded
from www.avrgenius.com/tinyavr1.

The controller board is mainly routed in the
solder layer with few jumpers in the component
layer. On the other hand, the LED holder board
is routed in the component layer because the
connectors have to be connected to the other side
for proper mating with the controller board.
Figures 2-5 through 2-9 show photographs of the
project in various stages. Both the circuits are
made on single-sided board. The tinyAVR chosen
for the controller board is an SMD version, as are
the resistors and capacitor.

Chapter 2 ■ LED Projects 39

The LED holder board mounted on
the controller board

Figure 2-5

The LED controller board. The
Tiny13 controller is soldered on the
solder side of the PCB. Notice the
three jumper wires.

Figure 2-6

Track side of the LED controller
board

Figure 2-7

Figure 2-8 shows the photograph of the LED
holder board. High-power LEDs, such as 1W
LEDs, are usually available with heat sinks.
Jumper wires were soldered to the pins of the LED
and then soldered onto the PCB. After soldering
the LED, a generous amount of hot glue melt was
poured on the LED. While the glue cooled, it was
gently drawn out to form a wicklike structure, as
seen in Figure 2-8. A video of the flickering LED
candle is available on our website.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 1.2 MHz.
The controller is programmed using STK500 in
ISP programming mode. During programming, the
clock frequency is set to 1.2 MHz by selecting the
oscillator frequency of 9.6 MHz and programming
the CKDIV8 fuse, which divides the clock by 8.
The control software for the flickering LED candle
is quite simple and straightforward. The random

number generator is a 32-bit Galois LFSR with
taps at 32, 31, 29, and 1 if the rightmost bit is
numbered 1. Based on the random values
generated by the LFSR, random numbers of LED
channels are switched on. Between two port
updates, a random amount of delay is executed.
The value of the delay time is also derived from
the LFSR value. The seed value of the LFSR is set
to 1. The complete source code is given here:

#include<avr/io.h>

#define F_CPU 1200000UL

#include<util/delay.h>

int main(void)

{

unsigned long lfsr = 1;

unsigned char temp;

DDRB= 0xff;

while(1)

{

lfsr = (lfsr >> 1) ^ (-(lfsr & 1u) &

0xd0000001u); /* taps 32 31 29 1 */

temp = (unsigned char) lfsr;

//take lowermost eight bits

DDRB = ~temp; //Declare those pins as

40 tinyAVR Microcontroller Projects for the Evil Genius

The LED holder board with a 1W
white LED covered with hot glue
drawn in a wick

Figure 2-8
The completed flickering candle
installed inside a Perspex tube. The
battery holder for four AA alkaline
batteries is below the LED
controller board.

Figure 2-9

//output where temp has zero

PORTB = temp; //Give the value of 0

//to the pins declared output

temp = (unsigned char) (lfsr >> 24);

_delay_loop_2(temp<<7);

}

}

The variable lfsr implements the actual LFSR.
The variable temp takes the lowermost eight bits
of the LFSR and switches on the random number
of current sinking channels. It further takes the
uppermost eight bits and provides random delays
between the two port updates.

Project 3
RGB LED Color Mixer

It is an established truth that all the colors one sees
are combinations of three primary colors„red,
blue, and green. We developed this project to show
how you can mix the primary colors in differing
proportions and thus make millions of colors.
Some of you might have already tested this
hypothesis by defining custom colors in the color
panels of popular PC graphics designing software

like Microsoft Paint, Adobe Photoshop, etc. The
displays of your PCs, laptops, or netbooks are also
specified by the number of colors they support.
Some support 15-bit colors, using 5 bits for each
primary color, which implies that they can make 25

combinations to make a total of 25 � 25 � 25

colors. Advanced displays support 24-bit colors or
even more. In this project, we demonstrate this
concept of color mixing on a single RGB LED.
The user software generates eight-bit colors. So we
can display 28 � 28 � 28 colors on a single LED,
but such a large number of colors cannot be
resolved by the human eye.

Design Specifications

The aim is to develop an RGB LED-based design
that allows us to mix variable percentages of red,
green, and blue colors (in the form of LED lights
here) to synthesize a plethora of colors. The
percentage of each color should be configurable
by the user. The technique used to control the
intensity of each LED (analogous to varying
the percentage of each color) is pulse width
modulation, which has been described earlier.
The block diagram is shown here:

Chapter 2 ■ LED Projects 41

Set Color

Red Red

Blue

Green

Blue

Green

Power Supply

AVR
Microcontrollers

Display

42 tinyAVR Microcontroller Projects for the Evil Genius

Design Description

Figure 2-10 shows the schematic diagram of the
RGB color mixer project. The input voltage can
vary from around 5.5V to 20V for the voltage
regulator LM2940 to give a constant output
voltage of 5V. Diode D1 is a Schottky diode
(IN5819) with a forward voltage drop of
approximately 0.2V. It protects the circuit in case
the input voltage is applied with reverse polarity.
Capacitors C2 and C8 are used to filter out the
spikes and unwanted noise in the power supply. C4
and C7 are used to stabilize the output of LM2940.
C3 is soldered near the supply pins of the
microcontroller to further decouple the noise
arising in the circuit. The heart of the project is the
ATtiny13 microcontroller. It has all the necessary
features like timers, ADC, I/O pins, etc., required
for the project. The code discussed in the next
section is small enough to fit into the 1KB Flash
memory of this controller. The LED used is a
common-anode RGB LED in a through-hole

package, and is connected to the microcontroller in
current sink mode. Resistors R1, R2, and R3 act as
current-limiting resistors for red, blue, and green
LEDs, respectively, and are 100 Ohms each. SL2,
SL3, and SL4 are the three potentiometers used
for deciding the intensity level of each color.
Capacitors C1, C5, and C6 are used to filter noise
across the output of potentiometers. The outputs of
all the potentiometers go to the ADC input
channels of the microcontroller.

The circuit can also be designed without the use
of any voltage regulator, but then the applied input
voltage should be between 4.5V and 6V. The
circuit diagram without the regulator is shown in
Figure 2-11. It is identical to Figure 2-10, except
the voltage regulator LM2940 and capacitors
required at its output are absent.

The source code of the project reads the values
of the potentiometers by using three channels of
the ATtiny13•s analog-to-digital converter and
reflects the corresponding change in intensity of

Color mixer: Schematic diagramFigure 2-10

three LEDs using a software-generated eight-bit
(256 levels) pulse width modulation (PWM). By
•software-generated PWM,Ž we mean that the
hardware PWM channels available on the
ATtiny13 have not been used. ATtiny13 offers only
two hardware PWM channels, but we require three
channels to control three LEDs; therefore, a
software-based approach has been adopted.
tinyAVRs have ADCs with a ten-bit resolution, but
only eight-bit resolution has been utilized in this
project. Each ADC channel converts the analog
voltage output from a potentiometer into a digital
value lying within the range of 0 to 255 (eight-bit
resolution), which can be mapped directly to the
intensity level of the corresponding LED.

Fabrication

The board layouts of both versions, along with the
schematic diagrams, can be downloaded from
www.avrgenius.com/tinyavr1.

Both the boards are mainly routed in the solder
layer with few jumpers in the component layer.
The circle drawn in the layouts is 40 mm in
diameter and used to make space for the standard
ping pong ball that we have used to cover the RGB
LED for proper diffusion and mixing of the colors.
Figures 2-12 and 2-13 show the component and
solder sides of the soldered board (with regulator),
respectively. Figure 2-14 shows the component
side with the LED covered by a ping pong ball.

Design Code

The compiled source code can be downloaded
from www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 9.6 MHz.
We have used the RESET pin of ATtiny13 as an
ADC input channel, so the reset functionality of
this pin has to be disabled by programming the
RSTDISBL fuse bit. As soon as this fuse bit is
programmed, the ISP interface becomes

Chapter 2 ■ LED Projects 43

Color mixer: Schematic diagram without the regulatorFigure 2-11

unavailable and the controller has to be further
programmed using a different interface. Hence, the
controller is programmed using STK500 in HVSP
programming mode. The important sections of the
code are explained here:

//Overflow routine for Timer 0

ISR(TIM0_OVF_vect)

{

//Value of e decides the no of levels

//of PWM.

//This has 256 levels for e - 0 to 255

//0 - completely on and 255 is

//completely off

if(e==255)

{

e=0;

PORTB |= (1<<0)|(1<<1)|(1<<2);

}

abc(pwm[0],pwm[1],pwm[2],e);

e++;

}

This piece of code is the Timer0 overflow
interrupt subroutine. This routine handles the three
software channels of PWM and is called whenever
Timer0 overflows. The variable e maintains the
state of the PWM cycle. When the value of e
becomes •255,Ž all the LEDs are switched off and
e is reinitialized to •0.Ž The array pwm specifies
the value of the duty cycle of each LED. The code
has been written in such a way that the value •0Ž
in any variable of array pwm corresponds to
maximum duty cycle (LED completely on) and
•255Ž corresponds to minimum duty cycle (LED
completely off).The function abc compares each
value of array pwm with e and if a match occurs,
it switches on the corresponding LED.

//This function reads the value of ADC

//from selected channel

unsigned char read_adc(unsigned char

channel)

{

unsigned char k;

unsigned int adcvalue=0;

ADMUX = ADMUX&(0b11111100);

44 tinyAVR Microcontroller Projects for the Evil Genius

Color mixer: Component layoutFigure 2-12

Color mixer: Solder sideFigure 2-13

Color mixer: Component side with
the LED covered

Figure 2-14

//clear channel select bits

ADMUX |= channel;

//neglect first reading after changing

//channel

ADCSRA |= 1<<ADSC;

while(ADCSRA&(1<<ADSC));//Wait

adcvalue=ADCH;

adcvalue=0;//neglect reading

for(k=0;k<=7;k++)

{

ADCSRA |= 1<<ADSC;

while(ADCSRA&(1<<ADSC));//Wait

adcvalue += ADCH;

}

return (adcvalue>>3); //divide by 8

}

This subroutine handles the conversion of the
analog input on the selected ADC channel (passed
to this function through the argument channel)
into a digital value between 0 and 255, and returns
this value to the calling function. The function first
selects the required ADC channel. It neglects the
first ADC reading and returns the average of the
next eight readings to the calling function. The
ADC is used in the single conversion mode here.
After selecting a new ADC channel, it is always
recommended to ignore the first reading in order to
avoid some conversion errors.

The main function runs in an infinite loop. It
takes the readings of the three ADC channels, one
by one, and assigns them to the corresponding
variables of the pwm array.

Working

The intensity of each LED can be varied from
minimum to maximum in 256 continuous levels by
using the potentiometers. Different intensities of
red, green, and blue LEDs produce different
colors. The ping pong ball ensures proper mixing
of the three components.

Project 4
Random Color and
Music Generator

We successfully incorporated an LFSR-based
pseudo-random number generator in a Tiny device
in Project 2, but the seed of the LFSR was fixed.
This means that each time you switch on the
board, it generates the same pattern periodically. In
this project, we show how a 16-bit LFSR can be
integrated in a device as small as an ATtiny13 with
a floating ADC channel used as its initial seed.
Using a floating ADC channel as a seed gives
different initial values to the LFSR each time the
circuit is switched on, and the patterns appear even
more random. Although a 16-bit LFSR can ideally
generate random numbers (excluding 0) with a
periodicity of 65,535, as explained before, this
requires the taps to be at specific locations. An n-
bit LFSR with a period of 2n … 1 is known as a
maximal LFSR, which is what this project uses.
Furthermore, the randomization in the output of
the LFSR is demonstrated by producing various
colors on an RGB LED and sounds on a speaker.

Design Specifications

The aim is to integrate an LFSR in a Tiny device
and demonstrate its random behavior on an RGB
LED and a speaker. The circuit should work at
input voltages as low as 3V. The technique used in
controlling the intensity of each LED to generate
random colors is again pulse width modulation, as
used in Project 3. Random sound is generated by
using square waves of different audible frequencies
to drive a speaker. The following illustration shows
the block diagram of the project.

Chapter 2 ■ LED Projects 45

Design Description

Figure 2-15 shows the schematic diagram of the
project. MAX756 is a step up dc-dc converter
operated in the 5V mode here. It generates 5V for
the circuit from an input source of voltages as low
as 3V. If the input voltage exceeds the desired
output voltage (5V), the output voltage follows the
input voltage. This can damage the other parts of
the circuit, including the MAX756, so it is
required that the input voltage never be allowed to
exceed 5V. Diode D1 and inductor L1 are required
for the operation of MAX756. The controller used
is again ATtiny13, having all the necessary features
required for the project. The LED used is a
common-anode RGB LED in SMD package,
connected to the microcontroller in current sink
mode. Resistors R5, R6, and R7 act as current-
limiting resistors for Red, Blue, and Green LEDs
respectively and are of 100 Ohms each. Part T1
(2SD789) is an NPN transistor which acts as the
driver for the speaker. It has to be used because the
I/O pins of the AVR can only source or sink 40mA
current, which is not sufficient for the speaker. The
speaker used is rated at 0.5W and has a resistance
of 8 Ohms. In order to keep the power dissipated
by the speaker within permissible limits, it should

be operated with a 10 Ohm resistor in series. PB4
pin of the controller is used as a floating ADC
channel to get the initial seed for the linear
feedback shift register (LFSR).

The project generates pseudo-random numbers
using a 16-bit Fibonacci LFSR. The numbers thus
generated are used to change the color of the RGB
LED and the tone of the speaker after every half a
second. The colors have been created using a
software-generated PWM of 10 levels, as opposed
to a 256-level PWM in Project 2. This means that
the LED can show 10 � 10 � 10 colors, but only
16 of these have been selected for display. The
tone for the speaker is generated by applying a
square wave of varying frequency. A total of nine
different frequencies or sounds have been selected.

Fabrication

The board layout, along with the schematic, can be
downloaded from www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with few
jumpers in the component layer. The component
layout is shown in Figure 2-16, and the solder side
is shown in Figure 2-17. In the soldered board, the

46 tinyAVR Microcontroller Projects for the Evil Genius

Power Supply

Music

Color

Red

Blue

Green

LFSR
Integrated
Inside
AVR
Microcontroller

Chapter 2 ■ LED Projects 47

Random color and music generator: Schematic diagramFigure 2-15

Random color and music generator:
Component layout

Figure 2-16 Random color and music generator:
Solder side

Figure 2-17

SMD RGB LED has been brought towards the
component side by using berg strips.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 9.6 MHz.
The controller is programmed using STK500 in
ISP programming mode. The important sections of
the code are explained here:

while(1)

{

//Wait for the seed from ADC

if(i==4)

{

//This is the software code for LFSR

bit = (reg & 0x0001) ^((reg & 0x0004)

>> 2) ^((reg & 0x0008) >> 3)^((reg&

0x0020) >> 5);

reg = (reg >> 1) | (bit << 15);

//Sound-generating code

PORTB |= 1<<3;

delay(t);

PORTB &= ~(1<<3);

delay(t);

}

}

This is the main infinite loop of the program. It
starts only when the value of i is 4, which means
that it takes the fourth value of the floating ADC as
its initial seed. The ADC interrupt executes four
times and increments the value of i by 1 each time.
When the value of i reaches 4, the value of the
floating ADC channel is assigned to the variable
reg and the ADC interrupt is then disabled. The
variable reg is a 16-bit integer that implements the
actual LFSR. The taps for the LFSR have been
taken at bit positions 16, 14, 13, and 11 if the
leftmost bit is numbered 1. The sound-generating
code simply generates the square wave of the
selected frequency.

//Timer0 overflow ISR

ISR(TIM0_OVF_vect)

{

//for color

if(e==9)

{

e=0;

//Start of new cycle

PORTB = PORTB|(1<<2)|(1<<1)|(1<<0);

}

abc();

//Time to change

//Approximately half a second

j++;

if(j==128)

{

a = reg%9;//get new value for sound

t = pgm_read_word(d+a);

a = reg%16;//get new value for color

blue = pgm_read_byte(k+a);

red = pgm_read_byte(l+a);

green = pgm_read_byte(m+a);

j=0;

}

}

This function is the Timer0 overflow interrupt
subroutine. It performs two main functions. First, it
handles the software PWM just as in Project 2, and
second, after every 128 overflows, it selects a new
value of color and tone by taking the modulus of
the reg variable. There are nine sounds stored in
the array d (in the form of time delays for square
wave), and taking modulo9 of reg assigns a
random value from 0 to 8 to a. Then, the
appropriate variable of array d is stored in t, which
is used as the delay variable in the main infinite
loop. Similarly, there are 16 colors and modulo16
of reg gives a random value from 0 to 15 to a. The
corresponding intensity levels of each color from
the arrays k, l, and m are stored in the
corresponding variables blue, red, and green.
Timer0 has been prescaled in such a way that
128 overflows occur in approximately half a
second. The functions pgm_read_byteand
pgm_read_wordare used to fetch the constants

48 tinyAVR Microcontroller Projects for the Evil Genius

Chapter 2 ■ LED Projects 49

stored in program memory instead of data memory.
pgm_read_byteis used for 8-bit variables, and
pgm_read_word is used for 16-bit variables. In
order to save data memory, it is a good idea to
store those variables that are constants (whose
values don•t change) in program memory by
applying the attribute PROGMEM after their
declaration. You can refer to the complete source
code to obtain further details.

Project 5
LED Pen

You might have seen advertisements by battery
manufacturers in which images are drawn in the air
and captured by a long-exposure camera. You
could do that with a flashlight and draw in the air
and capture it on a camera. Now imagine, instead
of a flashlight, you have a multicolor LED pen
with which to draw these pictures. This is exactly
what this project achieves. Some of the images
drawn with an LED pen and captured with a
camera are shown in Figure 2-18. Such images and
pictures are called light doodles.

Design Specifications

An LED light pen is expected to be easy to hold in
a hand so that one can draw and write easily, so
size was a critical issue in this design. To achieve
this objective, it was important to (a) use the
smallest batteries as possible and (b) reduce the
circuit complexity. The LED light pen is similar to
the random color and music project, but the
objective and implementation are totally different.
This project shows two implementations of the
LED light pen. We implemented the first version,
and the block diagram is shown here:

Photographs of some objects
drawn in the air and captured with
a long-exposure digital camera.

Figure 2-18

tinyAVR
Microcontroller

R
ed

B
lu

e

G
re

en

Enable LEDs

Set Color

After we made this version and used it for a
while, we realized the difficulties associated with it
and made the second version shown at the bottom
of this page.

Let•s first discuss the requirements. The idea of
a multicolor LED light pen came about after we
saw light doodles on a website. The doodles were
drawn using simple LED pens made with a few
fixed-color LEDs. We thought, instead of using
multiple LED pens, we could use a single pen with
an RGB LED. The intensity of the light from the
individual LEDs of the RGB LED could be
controlled with a microcontroller to provide
several colors, many more than are possible with
individual fixed-color LEDs. To draw these
images, you need a digital camera with an option
to set the exposure and aperture manually. The
maximum exposure time on the camera would
determine how long you can draw with the LED
pen. Typical compact cameras provide about a
minute of exposure time, which is sufficient for
simple light doodles. For more complex doodles, a
single lens refractor (SLR) camera, which allows
extremely long exposure time, is needed. Also,

when drawing the doodles, you might want to
change the color of the light. A single switch could
be used to select from a set of available colors
through toggling. In addition, when you draw, you
may want to turn the LED off while starting
another segment of the image or picture; thus, a
light on/off switch is also required. This is shown
in the first block diagram of our LED pen. The pen
has two switches: one to enable the LEDs and
another to select the color.

The first version of the LED pen offered 16
different colors. The problem we faced with this
version was that when you select a color and finish
drawing and say you want the previous color, you
have to step through all the colors to go back to
that last color. This wastes precious time. We
wanted a mechanism to quickly select the color
rather than step through all the possibilities. Thus,
we replaced the •set colorŽ switch with a
potentiometer, which can be rotated quickly to get
the desired color. This scheme is shown in the
second version. The rest of the features are the
same as in version 1 of the LED pen. To achieve
the objective of small size, we decided to use

50 tinyAVR Microcontroller Projects for the Evil Genius

tinyAVR
Microcontroller

R
ed

B
lu

e

G
re

en

Enable LEDs

V(bat)

V(bat)

Set Color

button cells to provide power to the circuit and to
use an eight-pin tinyAVR microcontroller in DIP
version with the help of a socket. Using a DIP
version of the microcontroller allows us the
freedom to remove the IC from the socket during
the development of the pen, and thus we could
avoid an on-circuit ISP connector to reduce the
PCB size.

Design Description

Figure 2-19 shows the schematic diagram of
version 1 of the LED pen. A Tiny13
microcontroller is used to read the two switches,
S1 and S2, and an RGB LED is used to provide
various colors. The circuit is powered with the help
of three LR44 coin cells. The circuit does not have
any power-on/-off switch. The microcontroller is
programmed such that if the LED light is turned
off (with the help of switch S2), the
microcontroller enters a low-power operating
mode„the power-down mode of operation„
which reduces the current consumption. Typically,

an AVR microcontroller in power-down mode
consumes only a few microamperes of current.

Figure 2-20 shows the schematic diagram of
version 2 of the LED pen. Here, switch S2 is
replaced with a potentiometer (labeled POT1). The
AVR13 microcontroller has several channels of the
ADC. The center tap of the potentiometer is
connected to an ADC channel input. The other two
terminals of the potentiometer are connected to the
Vcc and ground signals of the circuit. The center
tap of the potentiometer will provide a voltage
between Vcc and ground to the ADC channel
input. The microcontroller uses preset thresholds
on the input voltage provided by the potentiometer
to select the color by setting the duty cycle of the
PWM signal for each of the individual red, green,
and blue LEDs. The RGB LED, as represented by
SL1 in the figure, is connected in current sink
mode. For both versions of the LED pen, the
connector SL1 refers to a small circuit board with
an RGB LED, as shown in Figure 2-21.

Chapter 2 ■ LED Projects 51

LED pen version 1: Schematic diagramFigure 2-19

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Fabrication

The board layouts, along with the schematics, can
be downloaded from www.avrgenius.com/tinyavr1.

Both versions of the LED pen are fabricated on
a single-side PCB. The completed PCB is small
enough to be inserted into a Perspex tube of 20
mm diameter. Figures 2-22 and 2-23 show the
controller board of the LED pen version 2. Figure
2-24 shows the small PCB with the RGB LED
mounted at a right angle to the main controller
board. The circuit is powered with three LR44 coin
cell batteries. Figure 2-22 shows the way the
batteries are installed. The three batteries are held
together with small magnets and the end batteries
directly soldered to the PCB. The battery and
magnet arrangement is glued together with rubber
glue so that the batteries do not get disconnected.
Figure 2-25 shows the photograph of version 1 of
the LED pen.

52 tinyAVR Microcontroller Projects for the Evil Genius

LED pen version 2: Schematic diagramFigure 2-20

LED pen RGB LED board:
Schematic diagram

Figure 2-21

Design Code

The compiled source codes for both the versions
can be downloaded from www.avrgenius.com/
tinyavr1.

Both systems run at a clock frequency of 1.2
MHz. The codes of both versions are similar,
except that in version 1, the color change is
performed through a switch, while in version 2,
it is performed through a potentiometer. The
programming of the code and fuse bytes is done
using STK500 in ISP mode. Different colors are
generated, again, by using software PWM channels
for each color. Nine-level PWMs for each color
have been selected. Out of the 9 � 9 � 9 colors
possible, 16 have been selected and stored in the
program memory. Also, there is one additional
mode, called •run mode,Ž in which all the colors
appear one by one with a time gap of 500ms. The
important code sections are summarized here:

ISR(TIM0_OVF_vect)

{

DDRB &=~(1<<0|1<<1|1<<2);

if(e==8)

{

e=0;

xyz();

}

abc(pwm[0],pwm[1],pwm[2],e);

DDRB |=(1<<0|1<<1|1<<2);

e++;

if(i==15)//Run mode

{

counter++;

if(counter == 390)//500ms

{

counter = 0;

if(k==14)

k=0;

else k++;

pwm[0] = pgm_read_byte(&Blue[k]);

pwm[1] = pgm_read_byte(&Red[k]);

pwm[2] = pgm_read_byte(&Green[k]);

}

}

}

Chapter 2 ■ LED Projects 53

Photograph of the top view of
version 2 of the LED pen

Figure 2-22

Photograph of the bottom view of
version 2 of the LED pen

Figure 2-23

Photograph of the side view of
version 1 of the LED pen

Figure 2-25

The RGB LED PCB connected at a
right angle to the main circuit
board

Figure 2-24

This section of code is again the Timer0
overflow interrupt subroutine and handles the nine-
level software PWM, as explained in previous
projects. Apart from this, if the selected mode is
run mode, it scrolls through all the colors with a
time gap of 500ms. This subroutine is common to
both versions.

if(!(PINB&(1<<3)))

{

_delay_ms(30);

while(!(PINB&(1<<3))); //wait

_delay_ms(30);

TIMSK0 &= ~(1<<TOIE0);

//Clear timer interrupt

DDRB &=~(1<<0|1<<1|1<<2);

GIFR |= 1<<PCIF;

//Clear pending interrupt

GIMSK |= 1<<PCIE;

//Pin change interrupt enable

MCUCR |= (1<<SE|1<<SM1);

//Power down mode setting

sleep_cpu();

//CPU halted till interrupt

}

This segment runs in the main infinite loop
when the device is in active mode. It checks the
state of the switch on PB3. On press and release, it
disables the Timer0 interrupts and also configures
the I/O pins controlling the LED as floating. This
switches off the LED completely and enables the
pin-change interrupt. Although the pin-change
interrupt can be executed on all I/O pins of the
ATtiny13 controller, in the initialization part of the
code, it has been set so that only PB3 pin can
cause this interrupt. Then the setting in the
MCUCR register selects the sleep mode as power
down and sends the device into power-down mode
by calling the function sleep_cpu(), from which it
can only be woken up by the asynchronous pin
change interrupt, which is explained subsequently.
During the power-down mode, the code stops
executing. It only restarts when there is a wake-up
source, which, in this case, is the pin change
interrupt on PB3.

ISR(PCINT0_vect)

{

_delay_ms(30);

while(!(PINB&(1<<3))); //wait

_delay_ms(30);

MCUCR = 0x00; //sleep disable

GIMSK &= ~(1<<PCIE);

//Pin change interrupt disable

TIMSK0 = 1<<TOIE0;

//Overflow Interrupt Enabled

}

This is the interrupt service routine for the pin
change on PB3. The source code has been written
in such a way that this interrupt is active only
when the device is in power-down mode. This
subroutine disables the sleep mode along with the
pin-change interrupt. It also enables the timer
again so that the generation of colors starts. This
method of sending the controller into power-down
mode is also common to both versions.

In the main infinite loop, the colors are selected
by the switch in version 1 and by the ADC reading
in version 2. Refer to the full source code for
further details.

Conclusion

In this chapter, we have learned about various
types of LEDs and their series and parallel control.
We have also discussed in detail the intensity
control of LEDs using PWM. These concepts have
been augmented by four different projects. Apart
from this, the LEDs can be arranged in multiple
configurations in such a way that the ratio of the
number of I/O pins required to the number of the
LEDs controlled is less than unity, i.e., a given
number of I/O pins can control a larger (than the
number of I/O pins) number of LEDs. The PWM
for all the projects, when required, was generated
through software. tinyAVRs also have hardware
PWM channels associated with timers. We discuss
all this in the next chapter.

54 tinyAVR Microcontroller Projects for the Evil Genius

Advanced LED Projects

C H A P T E R 3

IN THE LAST CHAPTER we had a glimpse of LEDs
and how to use them in simple projects. The
number of LEDs was small, and we showed a few
projects using eight-pin tinyAVR microcontrollers.
However, if we want to make projects with a large
number of LEDs, then we need microcontrollers
with more pins. Even with a large number of
pins, many times LEDs outnumber them and
conventional ways of connecting one LED to one
microcontroller pin would not suffice. In this
chapter we cover more LED-based projects
demonstrating the advanced techniques of LED
control. Some of the projects use single-color
LEDs, while the rest use RGB LEDs in interesting
applications. We use two schemes to control large
number of LEDs with limited microcontroller pins:
multiplexing and Charlieplexing. Charlieplexing is
an extreme case of multiplexing and has become
quite popular recently.

It is not necessary to connect the required
number of LEDs on your own. A number of LEDs
already connected in different colors, packages,
shapes, and configurations are commercially
available, as shown in Figure 3-1. The figure
shows an 8 � 8 dual-color, dot matrix display
(top-right corner), a 16 � 16 display (bottom-right
corner), a seven-segment display (bottom-left
corner), and two 5 � 7 dot matrix displays. The
size of the display has an impact on the current
rating of the LEDs; a larger display would also
have LEDs that can handle larger current so that
they are relatively brighter.

Multiplexing LEDs

Controlling multiple LEDs to create different
patterns or display text is a common requirement.
In the last chapter we showed how LEDs are
controlled using microcontroller pins. With those
techniques, we connected one LED to one pin of a
microcontroller. Depending upon the way the LED
was connected to the pin, the LED could be turned
on or off by setting the logic on the pin to •1Ž or
•0Ž. The intensity of the light from the LED could
also be controlled by generating a PWM signal on
the microcontroller pin. However, using one
microcontroller pin for each LED is wasteful.
Instead, a technique called multiplexing is used.
Multiplexing uses microcontroller pins on a time-
sharing basis with multiple sets of LEDs. The

55

LED display packagesFigure 3-1

following illustration shows the basic multiplexing
scheme. In this figure, three rows and three
columns are used to control nine LEDs. Each
of the row and column pins is connected to
one microcontroller pin. Thus, using six
microcontroller pins, we are able to control nine
LEDs. This scheme can be further scaled to a
certain extent by increasing the rows and columns
suitably. However, to maximize the utilization of
the pins, it is advisable to keep the number of rows
and columns equal as much as possible. To what
extent can this scheme be scaled? Is it possible to
control, say, 225 LEDs using a matrix of 15 rows
and 15 columns? The answer lies in the peak
current rating of the LEDs that are used for
the display.

Let us first explain the operation of the
multiplexed display as shown in the illustration.
The LEDs are connected between rows and
columns of wires. Each row and column, in turn,
is connected to a pin of the microcontroller.

To turn a particular LED on, its column must be
connected to Vcc and its row connected to ground.
Suitable current-limiting resistors are assumed in
the path of the current from Vcc to ground via the
LED. Once a particular column is connected to
Vcc (through the microcontroller pin), several
LEDs on that column can be turned on by
connecting the corresponding rows to ground
(again, through the microcontroller). For example,

if Column1 is set to Vcc and Row1 and Row3 are
set to ground, LED1 and LED7 would be turned
on. Suppose LED1, LED2, and LED5 are to be
turned on. Then Column1 (for LED1) and
Column2 (for LED2 and LED5) would need to be
connected to Vcc and Row1 (for LED1 and LED2)
and Row2 (for LED5) would need to be connected
to ground. However, if these rows and columns are
set to the designated voltages, then LED4 would
also turn on, since Column1 is at Vcc and Row2 is
at ground! Thus, to avoid unintended LEDs from
getting turned on, the voltages on rows and
columns are activated in the following fashion.

For a time T, Column1 is set to Vcc and
Column2 and Column3 to ground. In this time
interval, Row1 is set to ground if LED1 needs to
be turned on; otherwise, it is set to Vcc. Row2 is
set to ground if LED4 needs to be turned on;
otherwise, Row2 is set to Vcc; finally, Row3 is
set to ground if LED7 needs to be turned on;
otherwise, Row3 is set to Vcc. After the time
interval T is over, another time interval T is started,
and in this interval, Column1 is set to ground,
Column2 is set to Vcc, and Column3 is set to
ground, and Row1, Row2, and Row3 are set to Vcc
or ground depending upon whether LED2, LED5,
and LED8 need to be turned off or on. After this
time interval, a third time interval starts, also for
time period T, and in this period, Column1 and
Column2 are set to ground and Column3 is set to
Vcc. Row1, Row2, and Row3 are set to ground or
Vcc depending upon whether LED3, LED6, and
LED9 need to be turned on or off, respectively.
After the end of the time period T, the cycle is
repeated again.

What is the duration for the period T? This
depends upon the number of columns. Each
column must be turned on every 100 Hz or more.
Thus, for a case with three columns, 3T � 10 ms
(10 ms is the period of a 100-Hz waveform).
Therefore, T � 3.3 ms.

56 tinyAVR Microcontroller Projects for the Evil Genius

Row1

Row2

Row3

Column1 Column2 Column3

LED1 LED2 LED3

LED4 LED5 LED6

LED7 LED8 LED9

The current-limiting resistor to be put in series
can either be connected to the cathode, as shown in
the bottom illustration, or to the anode, as shown
in the subsequent illustration. However, the
placement of the resistor decides the rating of the
switches on the high (S1, S2, and S3) and low (S4,
S5, and S6) sides. Switching the Vcc (high-side
switching) requires a PNP transistor or a P-channel
MOSFET. Switching ground (low-side switching)
requires an NPN transistor or an N-channel
MOSFET.

Let us consider the ratings of the high-side and
low-side switches when the current-limiting
resistors are placed in series with the LED cathode
as shown in the illustration here.

In this scheme, S1 is turned on for a period T
during which S2 and S3 are turned off. The current
through the LED is determined by the Vcc supply
voltage, the forward voltage drop across the LED
and the series resistor, assuming negligible voltage
drop across the low-side and high-side switches.

I(LED) � (Vcc … V(LED))/R

R is the series resistance. However, this current
is the peak current. The average current through
the LED is further reduced by a factor N, where
N is the number of columns (in our case here,
N � 3). To restore the current, the resistor value
must be reduced by this factor N, thus increasing
the peak current. However, the peak current cannot
be arbitrarily scaled, since at some point, it would
exceed the peak current rating of the LED.
Typically, the peak current can be five to ten times
more than the maximum average current.
Therefore, the number of columns can be, at most,
ten. If one is willing to reduce the required average
current in the implementation to less than the
maximum average current rating of the LED, then
N can be increased further. Let us take an example
to illustrate the issue. Table 2-1 in the previous
chapter shows the electrical and optical data of
LEDs. Red LEDs have a maximum average current
of 30mA and a peak forward current of 120mA.

Chapter 3 ■ Advanced LED Projects 57

Vcc

S3S2S1

S6

S4

S5

Thus, the value of R should be chosen such that
peak current through the LED never exceeds
120mA. Now, if the number of columns is ten, the
average current, due to multiplexing, will be
12mA, which is well within the maximum average
current rating. We can increase the number of
columns to 20 at the cost of reduced average
current (and, therefore, the intensity of the LED
light). The impact of putting the current-limiting
resistor in series with the cathode, as shown in the
previous illustration, is that the switches S4, S5,
and S6 will have to handle a maximum current
equal to the peak LED current, which for the
present case is 120mA. However, S1, S2, and S3
would have to be rated to handle 360mA each.
Typically, a NPN transistor or N-channel MOSFET
can handle larger current than a corresponding
PNP transistor or P-channel MOSFET. Instead of

the current-limiting resistor being put in series
with the cathode, we can choose to put the resistor
in series with the anode, as shown in the next
illustration. However, this will require a
corresponding change in the multiplexing scheme.
Instead of connecting a column to Vcc, we need to
connect a row to ground for time period T and,
depending upon which LED we need to light up,
switch the corresponding column to Vcc. In the
next time period T, the next row is connected to
ground and so on. The column switches (S1, S2,
and S3) will now need to handle maximum current
of 120mA, while the row switches will need to
handle a maximum of 360mA. But low-side
switches will be implemented using NPN
transistors (or N-channel MOSFETs), and these are
more easily available than their PNP or PMOS
counterparts.

58 tinyAVR Microcontroller Projects for the Evil Genius

Vcc

S3S2S1

S6

S4

S5

What if the number of LEDs is much larger than
can be arranged in a single matrix of a number of
rows and columns? The scalability of a matrix of
LEDs is an issue, as discussed earlier, and the peak
forward current of the LED doesn•t allow one to
scale the size of the display beyond a certain point.
In such a situation, multiple matrices of LEDs
controlled with independent rows and columns can
be implemented as shown here:

In such a situation, the availability of a
sufficient number of microcontroller pins could be
an issue. Rather than using a microcontroller with
more pins, one could use external shift registers to
increase the pins. The next illustration shows a
scheme to increase the number of pins using a
serial-in-parallel-out shift register such as the
74HC164 or the 74HC595.

These two are eight-bit shift registers, that is,
they provide eight bits of output data. Further,
these shift registers could also be cascaded to
provide 16 or 24 bits of data, as shown in the
upcoming illustration. The shift registers provide

only the pins required to connect a large number
of LEDs (either directly to each pin or in a
multiplexed fashion), but do not have current
drive capabilities. Additional current boost
transistors or MOSFETs are required.

The following illustration shows a scheme that
uses 3 output pins from the microcontroller to get
16 output pins. However, it would take a program
to shift the 16 bits of data onto the 16 output pins.
The program would start by clearing the two shift
registers (by generating a pulse on the PB0 pin),
and then the required data is put on the input of
the upper shift register. The lower shift register
gets its data from the Qh signal of the upper shift
register. After setting the required logic on the
microcontroller pin connected to input of the
shift register, the data is shifted in the shift register
by generating a clock pulse on the clock input
pin of the shift registers (PB1 pin from the
microcontroller). Each clock pulse shifts the data
from the input to Qa, from Qa to Qb, etc. After 16
clock pulses, the first data bit appears on the Qh
pin of the lower shift register. Thus, to output any
data, you need 16 clock pulses.

Chapter 3 ■ Advanced LED Projects 59

LED
Matrix
1

LED
Matrix
2

LED
Matrix
3

m
m

m

n
n

n

Rows

Columns
Microcontroller

Qa

Qh

Qb
Qc
Qd
Qe
Qf
Qg

A

B

CLR

CLK

74164AVR Micro

PB1

PB2

PB0

Qa

Qh

Qb
Qc
Qd
Qe
Qf
Qg

A
B

CLR

CLK

74164

Qa

Qh

Qb
Qc
Qd
Qe
Qf
Qg

A
B

CLR

CLK

74164

AVR Micro

PB1

PB2

PB0

By changing the configuration of the connection
between the two shift registers and the
microcontroller, the number of clock signals can
be reduced from 16 to 8, but at the cost of an extra
microcontroller pin, as shown next. The data input
to each of the shift registers is independently set
by the microcontroller. The clock is generated
commonly for the two shift registers by the
microcontroller. This requires only eight clock
pulses to output 16 bits of data on the two shift
registers.

Compared to the configuration shown in the
previous illustration, the scheme shown here
requires eight clock signals, since the data input to
the two shift registers is independently set by the
microcontroller.

Let us apply the knowledge gained so far to
implementing real circuits. One of the most
common LED configurations is the 5 � 7 dot
matrix display. The internal configuration of such a
display is shown in the illustration at the top of the
next column.

The LEDs• anodes are connected to the columns
and the cathodes to the rows. However, 5 � 7
displays with anodes to rows and cathodes to
columns are also available. One needs to be careful
about the configuration when designing 5 � 7
LED matrices.

The next illustration shows the way the display
matrix could be connected to an AVR
microcontroller. The display has the anode
connected to the columns and the cathode
connected to the rows. In this design, a feature of

60 tinyAVR Microcontroller Projects for the Evil Genius

Qa

Qh

Qb
Qc
Qd
Qe
Qf
Qg

A
B

CLR

CLK

74164

Qa

Qh

Qb
Qc
Qd
Qe
Qf
Qg

A
B

CLR

CLK

74164

AVR Micro

PB1

PB2

PB0

PB3

R3

R4

R0

R1

R2

R5

R6

C
0

C
1

C
2

C
3

C
4

Vcc

5 � 7 Dot Matrix Display

tinyAVR
Microcontroller

R

R1
BD140

the AVR microcontroller, that every pin is capable
of sourcing or sinking up to 40mA, is used. The
anodes are connected to the Vcc, one at a time,
through PNP transistors.

Depending upon which LEDs in a given column
need to be turned on, the corresponding rows are
connected to ground through the AVR
microcontroller pins. Resistor •RŽ is set to limit
the current through the LED to 40mA, since that is
what each AVR microcontroller pin can tolerate.
To turn a column on, the corresponding port pin
connected to the base of the transistor is set to
logic •0.Ž This turns the PNP transistor on and
allows the current to flow through the enabled
LEDs. Since there are five columns, the duty cycle
for the current through the LED in a given column
is 20%. Thus, the average current through the LED
is 20% of 40mA, that is, 8mA. Such a scheme is,
therefore, suitable only for small displays. For

larger displays, which have higher average and
peak current ratings, a different circuit would have
to be used to facilitate the larger current.

The bottom image shows a scheme to increase
the peak current through the LEDs by using NPN
transistor switches. ULN 2003 is an IC with seven
NPN drivers with logic input capability, and each
output of the IC can handle up to 500mA of current.
Now with the ULN driver in place, the value of
current-limiting resistor R can be much smaller to
allow larger peak current though each LED.

The next illustration shows a scheme similar to
the one shown earlier (without ULN 2003), except
this uses NPN transistors. In this scheme, each row
is enabled (with a logic •1Ž at the input of the
NPN transistor base) and, depending upon which
LEDs in that row need to be turned on, the anodes
are set to logic •1.Ž The value of the current-

Chapter 3 ■ Advanced LED Projects 61

Vcc

5 � 7 Dot Matrix Display
R

R1

BD140

ULN2003

tinyAVR
Microcontroller

limiting resistor is still set to restrict the current to
less than 40mA since the current is directly
sourced by the microcontroller pins. However, in
this scheme, the duty cycle is 1/7, since there are
seven rows, and the average current through the
LED is about 6mA„much lower than the average
current through the LEDs in the scheme shown
earlier with PNP transistors; however, this scheme
uses NPN transistors and may be suitable for
smaller size displays.

The image on the top of the next page shows a
scheme using shift registers and a decoder to
connect a 16 � 16 dot matrix LED display to an
AVR microcontroller. The block diagram does not
show the current boost transistors, which would be
required on the high side as well as the low side of
the display matrix.

The unique feature of this scheme is the use of a
4-to-16 decoder, 74154. The 74154 decoder IC has
16 active low outputs, which would be useful to
enable PNP (or PMOS) transistors. An additional
signal from the AVR microcontroller is used to
disable the decoder using the G1/G2 enable
signals. A pair of cascaded shift registers are used
to provide 16 output signals to drive the 16 rows of
the display. Enabling a particular column of the
display is easily achieved by setting the inputs of
the decoder to the required value; if the leftmost
column (column number 0) needs to be enabled,
then the decoder inputs ABCD = •0000•. For
enabling column number 1, the ABCD input is set
to •0001Ž and so on. To enable the decoder, G1/G2
input is set to logic •0.Ž If all the columns need to
be disabled, then G1/G2 input is set to logic •1.Ž
While changing the columns, the decoder is first

62 tinyAVR Microcontroller Projects for the Evil Genius

R

5 � 7 Dot Matrix Display

tinyAVR
Microcontroller

R1

BD139

disabled by setting the G1/G2 input to logic •1Ž
and then the new values for the 16 rows are shifted
into the shift registers (remember that it will
require 16 clock signals to output the 16 row
values), and then the new column is enabled by
appropriately setting the decoder inputs ABCD,
and then the decoder is enabled by setting G1/G2
signal to logic •0.Ž The block diagram shown in
this illustration will also require 16 PNP transistors
(or P-channel MOSFETs) at the output of the
decoder and 16 NPN transistors (or N-channel
MOSFETs) at the output of the shift registers.

Also, although the three illustrations prior to the
one above show methods to control a 5 � 7 dot
matrix display using an AVR microcontroller, these
methods can just as well be applied to seven-

segment and alphanumeric displays, which are also
common. The next illustration shows the seven-
segment display (left) and two types of
alphanumeric displays (center and right). Each
segment of the display is labeled with a letter. For
a seven-segment display, the segments are labeled
A through G and the decimal point is labeled dp.
Actually, for a seven-segment display, there are
eight segments, including the decimal point, but
these displays are commonly referred as seven-
segment displays in popular literature and
datasheets. The alphanumeric displays are of
two types with 14 segments and 16 segments,
excluding the decimal point, as seen on the top
of the next page.

Chapter 3 ■ Advanced LED Projects 63

Qa

Qh

Qb
Qc
Qd
Qe
Qf
Qg

A

B

CLR

CLK

74164

12459 67

13 11121415 8

10 03

ABCD G
1

G
2

PB7

Qa

Qh

Qb
Qc
Qd
Qe
Qf
Qg

A

B

CLR

CLK

74164

PB6

PB5

PB4

PB3

PB2

PB1

PB0

AVR Micro
74154

16 � 16 Dot Matrix Display

The next image shows the arrangement of the
LEDs in a seven-segment display. Each display has
a common signal, either the anode or the cathode.
Thus, the seven-segment displays are available
either in a common-anode or a common-cathode
configuration. Similarly, the alphanumeric displays

are also arranged in a common-anode or common-
cathode configuration.

Each 5 � 7 dot matrix display can be replaced
with five seven-segment displays. The following
illustration shows the technique to control up to
eight seven-segment displays. The scheme shown

64 tinyAVR Microcontroller Projects for the Evil Genius

A
B

CE

F
G

dpD

A

C

D

G2

L

M K

I
H J

E

F B

A1 A2

C

D1 D2

E

F B

G1 G1 G2

H
I
J

M K

L

dpdp

Common Anode

Common Cathode

A B C D E F G dp

A B C D E F G dp

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

here uses a 74164 shift register to drive the
segments of the seven-segment display and a 3-to-
8 decoder 74138 to drive the common anodes of
the seven-segment displays. Again, the current
driver transistors have been excluded from the
figure and, for a real-world example, would require
appropriate PNP and NPN transistor drivers.

Charlieplexing

Using Charlieplexing as a method to multiplex
LED displays has attracted a lot of attention
recently, due to the fact that it allows one to

control N*(N … 1) LEDs using N I/O lines.
Compared to Charlieplexing, the standard
multiplexing technique described in the previous
sections controls a much smaller number of LEDs.
Table 3-1 lists the number of LEDs that can be
controlled by both the Charlieplexing method and
the standard multiplexing method by splitting the
available number of N I/O lines in suitable
numbers of rows and columns. Table 3-1 also
shows the duty cycle of the current that flows
through the LEDs when it is turned on.

Clearly, Charlieplexing allows many more LEDs
to be controlled with a given number of I/O lines.

Chapter 3 ■ Advanced LED Projects 65

124567 03

G
1

G
2

ABC

Qa

Qh

Qb
Qc
Qd
Qe
Qf
Qg

A
B

CLR

CLK

74164

74164

74138

PB6
PB5
PB4
PB3
PB2
PB1
PB0

AVR Micro

8 Seven−Segment Displays

Maximum number
N (Number of LEDs controlled Duty cycle LEDs controlled Duty cycle with
of I/O lines) with multiplexing with multiplexing with Charlieplexing Charlieplexing

2 2 100% 2 50%

3 3 100% 6 16.67%

4 4 50% 12 8.33%

5 6 50% 20 5%

6 9 33% 30 3.33%

7 12 33% 42 2.4%

8 16 25% 56 1.78%

9 20 25% 72 1.38%

10 25 20% 90 1.11%

TABLE 3-1 Comparison Between Charlieplexing and Multiplexing

However, the downside to this technique is the
reduced duty cycle of the current that flows
through the LEDs; thus, to maintain a given
brightness, the peak current through the LEDs
must be increased proportionately, which can
quickly reach the maximum peak current limit of
the LED. Nonetheless, Charlieplexing is a feasible
technique for up to ten I/O lines, allowing up to 90
LEDs to be controlled. Controlling an equivalent
number of LEDs using the standard multiplexing
technique would require 19 I/O lines.

Charlieplexing exploits a feature of
programmable digital I/O lines available on
modern microcontrollers, that is, the ability to hold
an I/O line in high impedance state, commonly
referred to as the •ZŽ state. To understand the
operation of a Charlieplexed display, let us refer to
the image here, which shows a microcontroller
with just three I/O pins and six LEDs connected as
shown.

To turn LED D1 on, Pin1 is set to •1Ž and Pin2
is set to •0Ž while Pin3 is set to •Z,Ž the tri-state of
a logic output pin. Most modern microcontrollers
such as the AVR allow each and every output pin
of its ports to be operated in three states: logic •1,Ž
logic •0,Ž and •Z.Ž Similarly, to turn LED D2 on,
Pin2 is set to logic •1,Ž Pin3 is set to •0,Ž and
Pin1 is set to •Z.Ž Table 3-2 shows the state of
the pins to enable each of the LEDs. The way a
Charlieplexed display is controlled is similar to
the multiplexed display.

However, unlike in the multiplexed display,
where an entire row (or column) of LEDs is
enabled, in Charlieplexed display, one LED at a
time is enabled. Thus, the average current through
the LEDs � I(peak)/X, where X is the total
number of LEDs and X � N*(N … 1), where N is
the number of pins. Also, it is difficult to include
additional current-boosting switches in a
Charlieplexed display, and the raw capabilities of
the microcontroller determine the peak current.
For AVR microcontrollers, the maximum current
that a pin can source or sink is 40mA. In the
illustration, two resistors of value R come in the
path of the LED current. Assume a supply voltage
Vcc and LED turn-on voltage V(led). Thus

I(max) � (Vcc … V(led))/2R

Since I(max) is 40mA, then R � (Vcc …
V(led))/2*I(max). For Vcc � 5V and red LED
(V(led) � 2V), the value of R � 37.5 Ohms, so a
39-Ohm standard resistance can be used for R.

Using Charlieplexing to control multiple LEDs
is useful with small microcontrollers with a limited
number of pins. However, since microcontrollers
are not designed to supply large source/sink
currents, it is not recommended to use this
technique with more than six pins, that is, to
control no more than 30 LEDs. With 30 LEDs, the
average current would be limited to just over 1mA,
which may be only suitable for small low-range

66 tinyAVR Microcontroller Projects for the Evil Genius

D1

D2

D3

D4

D5

D6

Pin1

Pin2

Pin3

Microcontroller

R

R

R

LED
Number Pin1 Pin2 Pin3

D1 “1” “0” “Z”

D2 “Z” “1” “0”

D3 “1” “Z” “0”

D4 “Z” “0” “1”

D5 “0” “1” “Z”

D6 “0” “Z” “1”

TABLE 3-2 Scheme of Charlieplexing

applications. We use this technique in some of the
projects in this chapter.

Project 6
Mood Lamp

The mood lamp is a project similar to the RGB
LED color mixer project in the previous chapter
(Project 3), in that the mood lamp also uses RGB
LEDs. However, the purpose of the mood lamp is
to create ambient light of any required color to
help you meditate or relax, or simply to set the
ambient light depending upon your mood. In the
color mixer project, a single RGB LED was used,
and the intensity of the individual red, green, and
blue LEDs• intensity was set by corresponding
potentiometers to create a custom color. Each
potentiometer set the intensity to a value between
0% and 100% in 256 individual levels, so a total of
16 million colors could be generated. The mood
lamp also uses RGB LEDs. However, instead of a
single RGB LED, the mood lamp is capable of
controlling a large number of RGB LEDs, since
the objective is to provide ambient lighting. Also,

the mood lamp does not provide individual
intensity control over the LEDs; instead, it allows
you to select a particular color from a table of
colors preset in the internal nonvolatile memory of
the system. Each color entry in the nonvolatile
memory, in turn, consists of three intensity values
for the red, green, and blue LEDs. The intensity
of the LED is controlled through PWM with a
five-bit resolution; thus, for each color, the
intensity from minimum to maximum has 32
levels. The bottom illustration shows the block
diagram of the mood lamp.

The raw DC voltage should be 12V since this
voltage is used to drive the LEDs, as explained
later. This project uses commonly available RGB
LED strings. A photograph of such an LED string
is shown later in Figure 3-5. The spool consists of
cascaded building blocks. There are about ten
blocks in about three feet of LED string. Each
building block consists of a set of red, green, and
blue LEDs. Furthermore, each set consists of three
LEDs in series and each series combination of
LEDs has a current-limiting resistor, as shown on
the next page.

Chapter 3 ■ Advanced LED Projects 67

Voltage
Regulator

+

Raw DC Voltage

Vdc Vcc

Mode

Select

tinyAVR
Microcontroller

Green BlueRed

M
od

e

S
el

ec
t

C
ol

or

The system operates in two modes: continuous
color change mode and fixed color mode, selected
using the •modeŽ switch. In the fixed color mode,
the actual color can be selected using the •select
colorŽ switch. The microcontroller is powered with
a 5V regulator, which derives its voltage input
from the raw DC voltage. Although the project
uses commonly available LED strings, if required,
individual high-power, high-brightness LEDs could
also be used. A convenient configuration would be
similar to the arrangement shown in the
illustration, and would consist of three red, three
green, and three blue LEDs, each of 1W power
rating. For such a configuration, a series current-
limiting resistor for red, green, and blue LEDs
should be appropriately chosen to restrict the
current to 300mA each.

Design Specifications

The aim of this project is to develop a user-
selectable ambient colored lighting system using
RGB LEDs. The controller should be capable of
handling about 10W of power for each of the three
colors. Also, the system should offer a mode to
change the color gradually and to cycle through all
the available colors. An external DC power supply

of 12V is assumed to be available. The system
should be able to handle commonly available LED
strings or to use individual 1W high-brightness
LEDs.

Design Description

Figure 3-2 shows the schematic diagram of the
project. The voltage regulator used is again
LM2940 with 5V output. So, input voltage can
vary from around 6V to 20V. Diode D1 is a
Schottky diode (IN5819) used as a protection
diode, as explained earlier. Capacitors C5 and C7
are used to filter the spikes and unwanted noise in
the power supply. C4 and C6 are used to stabilize
the output of LM2940. C1 and C3 are soldered
near the supply pins of the microcontroller to
further decouple the noise arising in the circuit.
LED1 is a 3-mm power on/off indicator red LED.
The microcontroller used is the ATtiny861
microcontroller. It has three hardware PWM
channels on Timer1 required for driving the three
transistors T1, T2 and T3. The transistors
(2SD789) used are NPN transistors with current
sinking capability of 2 Amperes. They are
connected in open-collector configuration. Toggle
switch SW3 is used to select either of the two
modes„continuous or discrete„and push button
switch S1 is used to change the color in discrete
mode. The 3-mm LED (2) is used to indicate the
present selected mode. SL2 is the connector for
mood-generating LEDs (either an RGB spool or
high power LEDs). It is a four pin connector. The
first pin is used to power the anodes of the LEDs
and the other three pins are used to drive the
cathodes of the Red, Blue, and Green LEDs. The
current-limiting resistors should be externally
connected. The voltage going to the LEDs is the
unregulated VRAW so that large amount of current
can be drawn from it. Otherwise, the driving
capability would have been limited at the
maximum output current capacity of the voltage
regulator.

68 tinyAVR Microcontroller Projects for the Evil Genius

Vcc=12V

R
ed

G
re

en

B
lu

e

Mood lamp: Schematic diagramFigure 3-2

6
9

The source code of the project reads the values
of the switches, and if the mode is continuous, it
continuously changes the duty cycle on three
hardware PWM channels. In discrete mode, it waits
for the press and release of S1 for each update of
the PWM duty cycle values. The resolution of each
PWM channel is set to be five bits.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with a
few jumpers in the component layer. The
component and solder sides of the soldered board
are shown in Figure 3-3 and Figure 3-4,

respectively. We have used a 16-foot RGB spool
wrapped around a glass tube as a mood generator
lamp. It is shown in Figure 3-5. Figure 3-6 shows
the RGB spool connected to the main board and
displaying one of the combinations of colors.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. The important sections
of the code are shown on the opposite page.

70 tinyAVR Microcontroller Projects for the Evil Genius

Mood lamp: Component layoutFigure 3-3 Mood lamp: Solder sideFigure 3-4

Mood lamp: RGB spoolFigure 3-5

Chapter 3 ■ Advanced LED Projects 71

while(1)

{

for(i=0;i<32;i++)

{

OCR1A = i;

for(j=0;j<32;j++)

{

OCR1B = j;

for(k=0;k<32;k++)

{

OCR1D = k;

if(mode==CONTINUOUS)

_delay_ms(500);

else if(mode==DISCRETE)

{

while((PINA&(1<<5))&&(mode==

DISCRETE));

//wait till switch is pressed

_delay_ms(30);

while((!(PINA&(1<<5)))&&(mode==

DISCRETE));

//wait till switch is released

_delay_ms(30);

}

}

}

}

}

This is the main infinite loop of the program. It
has three cascaded for loops inside it that change
the intensity level on each hardware PWM channel
through OCR1A, OCR1B, and OCR1D registers.
The modecan either be DISCRETE or
CONTINUOUS, and is changed by using the pin
change interrupt on the pin connected to the toggle
switch. If the mode is continuous, the loops run
continuously, with a delay of 500 ms between
successive iterations. In discrete mode, the code
waits for the press and release of the switch on the
fifth pin of PORTA through two while loops. As
soon as the mode is changed from discrete to
continuous, the code exits the while loops.

ISR(PCINT_vect)

{

_delay_ms(30);//debounce

GIFR = 1<<PCIF;

//Clear flag set due to switch

//bounce

mode =

mode==CONTINUOUS?DISCRETE:CONTINUOUS;

if(mode==CONTINUOUS)

PORTA&=~(1<<7);//LED off

else

PORTA|=(1<<7);//LED on

}

This part of the program is the interrupt service
routine for the pin change interrupt, which is called

Working mood lamp with RGB

spool

Figure 3-6

each time the state of the toggle switch is changed.
It changes the value of the mode, and the infinite
loop discussed earlier changes its execution
accordingly. CONTINUOUS and DISCRETE are
macros declared at the start of the program.
Depending on the mode, the state of the LED
changes, as discussed earlier.

Apart from this, the rest of the code includes the
initialization of Timer1 and its hardware PWM
channels.

Working

By default the mode of the mood lamp is continuous.
So it gradually changes the colors on the
connected LEDs. If the intensity of the LEDs is
large enough, you can feel the ambient
environment around you changing. In discrete
mode, you can use push button to set the color of
your choice.

Project 7
VU Meter with 20 LEDs

A VU meter is often seen on audio equipment to
indicate the •Volume Unit.Ž Older audio equipment
had analog-type indicators, while the modern ones

often have LED-based indicators. The purpose of
the VU meter is to get a sense of the perceived
loudness of the signal. Apart from audio
equipment, a VU meter can be used in any
application to measure intensity levels. LED-based
VU meters are so common and popular that
semiconductor manufacturers offer dedicated
integrated circuits to measure external signals and
display the output on external LEDs. The common
arrangement of an LED-based VU meter is to
arrange all the LEDs in a single column or row.
One such popular IC is the LM3914 from National
Semiconductors. The LM3914 is an interesting and
popular dot/bar display driver used for sensing
analog voltage levels and displaying them on ten
LEDs, providing a linear analog display. The
LM3914 has been around for more than 20 years.
We wanted an output display solution with more
than ten levels. It is possible to cascade multiple
LM3914s for more than ten levels, but even so, the
basic character of the device is only a linear
display of the input voltage. Given this restriction,
we had to find an alternate solution.

This illustration shows the operation of a VU
meter in bar mode and dot mode. In the bar mode,
with increasing signal level at the input, more and
more LEDs light up from bottom to top. In the dot

72 tinyAVR Microcontroller Projects for the Evil Genius

Vin Vin

0

1

3

2

4

19

0

1

3

4

2

19

Bar Mode Dot Mode

mode, as the input signal increases, a single LED
representing the higher signal lights up. The LEDs
are arranged from bottom to top. The LED at the
bottom indicates a lower signal level as compared
to an LED at the top.

Design Specifications

The aim of this project was to create a versatile,
20-level VU meter using as small a microcontroller
as possible. Interfacing 20 LEDs to a
microcontroller is possible with just five I/O pins.
Thus, an eight-pin microcontroller that offers up to
six I/O pins would be a perfect component to
implement this project. Also, given the flexibility
offered by a program, the relationship between the
input signal and output LEDs could be tailored
to meet any specific requirement. For example,
the illustration shown next shows a logarithmic
scale. A linear scale could also be used by
reprogramming the microcontroller with suitable
code. To display the input voltage in a linear
fashion, the input signal would be divided with
a constant number. For the logarithmic scale,
a lookup table could be easily employed.

Design Description

Figures 3-7 and 3-8 show the schematic diagrams
of the project. Diode D1, a Schottky diode
(IN5819), is again used as a protection diode.
Capacitor C1 is used to filter the spikes and
unwanted noise in the power supply. C2 is a
decoupling capacitor, explained earlier. The
microcontroller used is the ATtiny45
microcontroller. There is no voltage regulator on
this circuit, so input voltage can only vary from
4.5 to 5.5V. LEDs 1 through 20 are the 20 LEDs
arranged in the form of a bar. Since 20 LEDs
arranged in a bar at a suitable distance increase the
size of the board beyond the limits permitted by
the free version of EAGLE, the circuit has been
split into two parts. The first part is shown in
Figure 3-7. It has all the control circuitry and ten
LEDs. The remaining ten LEDs are arranged
separately, as shown in Figure 3-8. The PCBs of
the two circuits have been designed separately,
with a provision to connect the two such that they
give the appearance of one bar of 20 LEDs.

Twenty LEDs have been Charlieplexed using
five I/O pins of the microcontroller. SL2 is a three-
pin connector for providing the input to the ADC
channel of the controller. The input can be variable
DC voltage provided by a potentiometer with its
three terminals connected to VCC, GND, and PB5.
It can also be an input waveform connected
between PB5 and GND. If the input is a waveform,
its minimum and maximum amplitude levels must
be limited to 0(GND) and VCC, respectively.

The source code of the project takes a moving
average of ten consecutive values of ADC
readings, divides it into 21 levels (0…20), and
switches on the equivalent number of LEDs.

Chapter 3 ■ Advanced LED Projects 73

1000

800

600

400

200

0

A
D

C
 V

a
lu

e

LED Number
0 2 4 6 8 10 12 14 16 18 20 22

Fabrication

The board layouts in EAGLE, along with the
schematics, can be downloaded from
www.avrgenius.com/tinyavr1.

Both the boards are routed in the solder layer
with a few jumpers in the component layer.
The two boards are joined by connecting the
corresponding extended tracks on both the PCBs.
A complete assembly of the board is shown in
Figure 3-9.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The reset pin (PB5) of the microcontroller is used

74 tinyAVR Microcontroller Projects for the Evil Genius

VU meter: Schematic diagram 2Figure 3-8

VU meter: Soldered boardFigure 3-9

VU meter: Schematic diagram 1Figure 3-7

as an ADC input pin. So the reset function on that
pin needs to be disabled by programming the
RSTDISBL fuse. Once that fuse is programmed,
the controller can•t be programmed using the ISP
interface. Hence, high voltage serial programming
(HVSP) mode has been used to program the
controller using STK500. The important sections
of the code are explained here:

while(1)

{

//shift the values

for(i=0;i<9;i++)

{

adcreading[i]=adcreading[i+1];

}

//take new reading

adcreading[9] = read_adc();

//Find the sum and perform

//quantization

adcsum = 0;

for(i=0;i<10;i++)

{

adcsum = adcsum + adcreading[i];

}

//Divide sum of 10 ADC reading from 0

//to 2550 into 21 levels(0 to 20)

adcsum = adcsum/122;

if(level>adcsum)

{

for(i=adcsum;i<level;i++)

{

statusonoff[i]=0;

}

}

else if(level<adcsum)

{

for(i=level;i<adcsum;i++)

{

statusonoff[i]=1;

}

}

level=adcsum;

}

This is the main infinite loop of the program. It
deletes the earliest ADC reading from the buffer
adcreading, shifts the remaining values, and takes

a new ADC reading. The ADC of the ATtiny45 has
been used in eight-bit resolution. Then it indirectly
calculates the average by summing all the readings
in the buffer and dividing the sum into 21 levels
(equivalent to first dividing the sum by 10 and then
dividing the resultant average into 21 levels). Then,
the required numbers of LEDs are either switched
on or off, depending upon the previous level (or
previously on LEDs). Finally, level is updated with
the present reading. The Charlieplexing code, as
explained in the next section, has been written in
such a way that if at any instant of the program
statusonoff[p] is set to 1, the pth position LED
starts to glow, and vice versa. The mapping of
level to the number of LEDs glowing has been
done in a manner that no LED is switched on for
0 level and all 20 LEDs are switched on for the
highest (20) level.

//Overflow routine for timer0

ISR(TIM0_OVF_vect)

{

DDRB=0;

PORTB=statusonoff[count])

<<pgm_read_byte(&anode[count])

|0<<pgm_read_byte(&cathode[count]);

DDRB = 1<<pgm_read_byte(&anode[count])

|1<<pgm_read_byte(&cathode[count]);

count++;

if(count==20)

count=0;

}

This part of the program is the interrupt
service routine for Timer0 overflow. Thus, it is
routinely called at a specific rate. It handles the
Charlieplexing of 20 LEDs. Count is used to keep
track of the LED that is operated upon in the
present slot. The corresponding value stored in
statusonoff [count] is given to its anode, and 0 is
given to the cathode. Further, the anode and
cathode pins are declared as outputs by updating
the DDRB register. Thus, the LED is switched on
if statusonoff [count] is 1, and vice versa. This
cycle is repeated for every LED.

Chapter 3 ■ Advanced LED Projects 75

The rest of the code consists of initializations
for ADC and Timer0.

Working

We tested the device by soldering a 10K
potentiometer to SL2. The DC average value was
varied and its effect was noted on the LED bar.

Project 8
Voltmeter

This project and the next two projects are built
around a common hardware circuit consisting of a
two-and-a-half digit, seven-segment display using
a mere eight-pin microcontroller. Instruments often
use LED (or LCD) based seven-segment displays.
A common display configuration is three and a
half digit, which consists of three complete digits
and a leading digit that can display •1Ž if required.
Thus, a three-and-a-half-digit display can show a
value from 0 to 1999. If the three-and-a-half-digit
display has a negative sign, it can show values
from …1999 to 1999. Higher resolution displays
would have four-and-a-half-digit resolution, which
would have a range of 0 to 19,999 or …19,999 to
19,999, which is a ten-fold increase in range over
the three-and-a-half-digit display. For many
applications, a smaller two-and-a-half-digit display
may also be suitable. Instead of ready-built seven-
segment displays, one can also build a seven-
segment display using individual LEDs. The
advantage of making such a display is that one can
choose any color for the LEDs and any size of the
display. The following illustration shows how a
seven-segment display can be made using
individual LEDs. Each segment of the display,
except the decimal point, is made with at least
three LEDs in parallel. Recall from the previous
chapter that driving LEDs in parallel without
current-sharing resistors is not a good idea.
However, we are going to work against that

suggestion and go ahead and put three LEDs in
parallel for each of the seven segments. It•s a good
idea to sort the LEDs based on intensity, although
that is a manual process and can be time
consuming.

Each seven-segment display has eight segments.
Now, an eight-pin microcontroller has two power
supply pins and six I/O pins. With five I/O pins,
using Charlieplexing, one can control 20 LEDs.
Thus, one can easily connect a custom-built
two-and-a-half-digit display to an eight-pin
microcontroller using just five I/O pins. The sixth
pin can be used for other applications, for
example, to read external analog voltage or digital
input. The 20 LEDs that can be controlled using
Charlieplexing are used to connect two seven-
segment displays, which take up 16 LEDs. The
remaining four LEDs are used to display the
leading digit with a decimal point and the negative
sign, as shown next.

76 tinyAVR Microcontroller Projects for the Evil Genius

Chapter 3 ■ Advanced LED Projects 77

Design Specifications

The aim of the project is to design a single-range
voltmeter using just an eight-pin microcontroller.
The two-and-a-half-digit display is implemented
using Charlieplexing, as explained in the previous
section. The Tiny series of AVR microcontrollers
has multiple channels on ADCs with ten-bit
resolution. A ten-bit resolution means the ability to
resolve 1 part in 1,024 parts. A two-and-a-half-
digit display has a resolution of 1 part in 200 parts.
So, the ten-bit ADC resolution is not a limitation
for the voltmeter. For a single range, we chose 0 to
12V, which gives us a resolution of 0.1V on this
display. The internal reference voltage of the
microcontroller is 2.56V, so an external potential
divider of 1:4.9 was chosen to give the range of
approximately 12V. This can be suitably changed
for any other range you desire.

Design Description

Figures 3-10 and 3-11 show the schematic
diagrams of the project. Projects 8, 9, and 10 use
the same circuit. C1 is a decoupling capacitor to
remove the noise arising in the circuit, and is
soldered near the supply pins of the controller. The
microcontroller used is again the ATtiny45
microcontroller. There is no voltage regulator on
this circuit, so the input voltage can only vary from
4.5 to 5.5V. Also, there is no capacitor to filter the
spikes in the power supply. Hence, use of batteries
due to their stable output is recommended. Twenty
LEDs have been arranged in the form of two full

seven-segment displays (each requiring seven
LEDs for digits and one for the decimal point), one
half-digit display (which uses two LEDs to show
either 0 or 1 and one for the decimal point), and
one horizontal bar requiring one LED, which can
be used to denote a minus sign or some other
indicator. Since the digit segments of a seven-
segment display are longer than the diameter of
each 3-mm LED, three LEDs have been used in
parallel to denote a single segment. This may lead
to unequal current flowing in the segment bars and
pointer LED. An additional resistor has been used
in series with the decimal-point LEDs to mitigate
the effect to some extent.

Twenty LEDs have been Charlieplexed using
five I/O pins of the microcontroller. SL1 is a three-
pin connector used for providing the input to the
ADC channel of the controller. This input is
different for Projects 8, 9, and 10. The second part
of the circuit shown in Figure 3-10 is used for
providing different inputs to the controller by
connecting the input connector SL1 with any one
of VOLT, LM35, and SIGNAL connectors. For this
project, input comes by providing a voltage to be
measured on SL2. This is then stepped down in the
ratio of 4.9:1 and given to the ADC input channel
of the microcontroller through the VOLT
connector.

The source code of the project notes the ADC
reading from the input channel, converts it into
actual voltage, performs the rounding, and displays
the result on seven-segment displays.

PB4

PB3

PB2

PB1

PB0

PB5

AVR Micro

Signal
Input

Fabrication

The board layouts in EAGLE, along with the
schematics, can be downloaded from
www.avrgenius.com/tinyavr1.

Both of the boards are routed primarily in the
solder layer. The jumpers in the main board are not
straight, so it is better to fabricate it on a double-
sided board. There is no jumper in the second
board, which is used to provide the inputs. Figures
3-12 and 3-13 show the top and bottom sides of
main board. Figure 3-14 shows the assembled
board for providing inputs.

78 tinyAVR Microcontroller Projects for the Evil Genius

Autoranging voltmeter, Celsius and
Fahrenheit thermometer,
autoranging frequency counter:
Schematic diagram 2

Figure 3-11

Autoranging voltmeter, Celsius and
Fahrenheit thermometer,
autoranging frequency counter:
Schematic diagram 1

Figure 3-10

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
In this case, the reset pin (PB5) of the
microcontroller is used as an ADC input pin. So,
the reset function on that pin needs to be disabled
by programming the RSTDISBL fuse. Hence,
HVSP mode has been used to program the
controller using STK500. The important sections
of the code are explained here:

while(1)

voltage = read_adc();

//Here the voltage is 100 times the

//actual voltage

//Perform the Autoranging and scale

//the result

if(voltage<=199)

{

point = 1;

}

else if(voltage<1995)

{

if(voltage%10>=5)

{

voltage = voltage +10;

}

voltage = voltage/10;

point = 2;

}

else

{

if(voltage%100>=50)

{

voltage = voltage+100;

}

voltage = voltage/100;

point = 3;

}

c=voltage/100;

voltage = voltage%100;

d= voltage/10;

voltage = voltage%10;

e = voltage;

display(c,d,e,point,0);

_delay_ms(100);

}

Chapter 3 ■ Advanced LED Projects 79

Main board: Component sideFigure 3-12

Main board: Solder sideFigure 3-13

Assembled board for providing
inputs

Figure 3-14

This is the main infinite loop of the program. It
first reads the ADC reading using the read_adc
function, which provides a value that is 100 times
the input voltage. The ADC has been used in ten-
bit resolution and the reference voltage used is the
internal 2.56V bandgap reference to improve
accuracy. Since there is a potential divider of 4.9:1
before the input is applied to the controller, the
input voltage to be measured can vary from 0 to
2.56*4.9 equal to 12.544(~12)V.

Once the ADC reading has been taken, rounding
is performed by first selecting the suitable location
for the decimal point and then rounding off the
result to three digits. Then, the digits are extracted
and passed to the display function, which maps it
to the statusonoff array. The role of this array is
same as that in Project 7.

Working

Input voltage is provided to the VOLT connector,
and its value can be seen on the seven-segment
displays.

Project 9
Celsius and Fahrenheit
Thermometer

This project uses the same hardware as in the
previous voltmeter project, that is, the two-and-a-
half-digit seven-segment display. Instead of the
external potential divider circuit, this circuit uses a
temperature sensor to convert temperature into
voltage that is measured by the built-in ADC of the
microcontroller and converted into the Celsius or
Fahrenheit scale temperature reading, which is
then displayed on the two-and-a-half-digit display.
There are many types of temperature sensors.
Common ones are the thermistor, thermocouple,
and the silicon bandgap temperature sensor. A
thermistor, which is a temperature-dependent
resistor, is easy to use and is cheap. A simple

circuit, as shown next, can be used to convert the
temperature value into voltage.

However, the variation in the resistance of the
thermistor as a function of temperature is not
linear. For accurate temperature measurement, a
complex mathematical equation called the
Steinhart-Hart equation needs to be applied. A
thermocouple, on the other hand, is a useful
temperature sensor quite suitable for large
temperature measurements (such as those falling in
the range of hundreds of degrees Celsius). A
thermocouple, like the thermistor, is a nonlinear
temperature sensor. It provides voltage output as a
function of the temperature. A thermocouple also
requires a polynomial approximation to convert the
voltage output into the corresponding temperature
reading. A silicon bandgap temperature sensor is
the simplest to use. It provides direct and
proportional output voltage (or current)
corresponding to the temperature. In this project,
we use such a bandgap sensor, the LM35 from
National Semiconductors, which is also compatible
with the TMP36 sensor from Analog Devices. The
LM35 sensor provides 10mV per degree Celsius.
Since the microcontroller has a ten-bit ADC with a
range of 2.56V, it offers good resolution to

80 tinyAVR Microcontroller Projects for the Evil Genius

Vcc

Thermistor

R

V(output)

measure the temperature with an accuracy of a
fraction of a Celsius.

Design Specifications

The aim of this project is to measure voltage from
a bandgap temperature sensor and to display
temperature in Celsius and Fahrenheit,
alternatively, on the two-and-a-half-digit seven-
segment display. The power supply for the project
is not included in the schematic diagram, and you
can choose any suitable regulated power supply
using a linear voltage regulator or even a DC-DC
converter. The recommended voltage output of the
regulator is 5V. Alternatively, four alkaline cells of
1.5V or even 4 NiMH cells of 1.2V, arranged in
series, could be used.

Design Description

This project uses the same circuitry as in Project 8,
but input is provided from the LM35 temperature
sensor. It gives 10mV as output for one degree
Celsius. This is provided to the ADC input channel
and then displayed on the seven segments after
autoranging.

The source, apart from displaying the
temperature, also performs the conversion from
Celsius to Fahrenheit. The mode for displaying the
temperature in Celsius or Fahrenheit is toggled
every 5 seconds. The horizontal bar is switched on
for Fahrenheit mode and switched off for Celsius
mode.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
Again, the reset function on PB5 needs to be
disabled by programming the RSTDISBL fuse.

The important sections of the code are
explained here:

While(1)

{

temperature = read_adc();

//Here the temperature is 100 times

//the actual temperature

if(temperature<=199)

{

point = 1;

}

else if(temperature<1995)

{

if(temperature%10>=5)

{

temperature = temperature +10;

}

temperature = temperature/10;

point = 2;

}

else

{

if(temperature%100>=50)

{

temperature = temperature+100;

}

temperature = temperature/100;

point = 3;

}

c=temperature/100;

temperature = temperature%100;

d= temperature/10;

temperature = temperature%10;

e = temperature;

display(c,d,e,point,mode==FAH);

_delay_ms(100);

}

This is the main infinite loop of the program. It
first reads the ADC reading using the read_adc
function, which provides a value that is 100 times
the actual temperature. The temperature is either in
Celsius or Fahrenheit, depending upon the mode.
ADC has been used in ten-bit resolution, and the
reference voltage used is the internal 1.1V bandgap
reference to improve the resolution.

Chapter 3 ■ Advanced LED Projects 81

Once the ADC reading has been taken,
calculation is performed by first selecting the
suitable location for the decimal point and then
rounding off the result to three digits. Then, the
digits are extracted and passed to the display
function, which maps it to the statusonoff array.
The role of this array is the same as that in
Projects 7 and 8. Timer0, apart from handling the
Charlieplexing, also counts five seconds before
toggling the mode between Celsius and Fahrenheit.

Working

The project continuously displays the temperature
with the mode toggled every five seconds. A
horizontal bar is used to denote the mode, as
explained earlier.

Project 10
Autoranging Frequency
Counter

A frequency counter is an instrument that
measures the frequency of an external signal. The
external signal could be analog or digital in nature.
The bottom illustration shows the block diagram of
a frequency counter.

The input signal is shown as an analog signal.
The input amplifier and wave shaper amplify the
signal and threshold it to convert it into a
corresponding digital signal. The system has an
accurate internal time base generator that enables a
gate to pass the input signals to a counter chain.
The duration of the time for which the gate is
enabled depends upon the required resolution of
the measurement. For example, to resolve the input
signal to 1 Hz, the gate signal must be one second
in duration. To resolve the signal frequency to
0.1 Hz, the gate signal must be ten seconds in
duration. The output of the counter is then suitably
displayed on an LED or LCD display.

If the frequency of the incoming signal is rather
low, then one requires a gate signal of inordinately
long duration to measure the frequency. One way
to alleviate this problem is to use the period of the
input signal itself as a gate signal and instead
measure a high frequency generated by the internal
time base generator, as shown in the illustration on
the top of the next page. However, this method
measures the period of the input signal, and thus
the system shown in that illustration is a period
counter. To convert the period into frequency, the
system must perform a simple mathematical
calculation.

82 tinyAVR Microcontroller Projects for the Evil Genius

T seconds

Reset Counters

Controlled
Gate

Input
Amplifier
and
Wave
Shaper

Time Base Generator
and Control Circuit

Gate Control

LED
or
LCD
Display

Counter
Chain

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The bottom illustration shows the timing
diagram of signals in a frequency counter. A period
counter would have similar signals.

Design Specifications

In this project, the frequency of the input signal
has to be measured and displayed on the two-and-
a-half-digit seven-segment display. All the blocks
shown in the first image for Project 10 are
internally available in a microcontroller, and it can

also perform a mathematical calculation to convert
from period to frequency as required. An
autoranging frequency counter is an instrument
that can automatically sense the frequency of the
input signal and choose the optimum range. Our
frequency counter has a display that has a range
from 0 to 199. Thus, it can be used to display
frequencies in the ranges shown in Table 3-3.

The decimal point is used to indicate which
measurement range is being used. For the first
range, the rightmost decimal point is switched on;

Chapter 3 ■ Advanced LED Projects 83

Input
Amplifier
and
Wave
Shaper

Gate
Control

Controlled
Gate

F Hz

Time Base Generator
and Control Circuit

Reset Counters

Counter
Chain

Display
LCD
or
LED

Time Base
Output Signal

1 Hz

1 Second
Gate Control Signal

Wave-shaped
Input Signal

Controlled Gate
Output

for the second, the middle one; and for the third,
the leftmost decimal point is switched on.

Design Description

This project uses the same circuit as that of
Projects 8 and 9, but the input is provided from the
SL1 connector of the circuit shown in Figure 3-10.
D1 is a 5V Zener diode to limit the amplitude of
the signal, and R3 is a current-limiting resistor.
The input wave must be DC clamped. Its minimum
amplitude should not be below ground level.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The important sections of the code are explained
here:

ISR(PCINT0_vect)

{

edgecounter++;

}

This code excerpt is the interrupt routine for the
pin change interrupt on PB5. So, edgecounter
denotes double the frequency at the end of the
gating period. The gating period has been kept to
be one second throughout the code. At the end of
each gating period, pulses per second are counted
by dividing edgecounterby 2. The value of pulses
per second is then rounded as in the previous two
projects for display on the LED digits.

Working

The frequency is measured by applying a
waveform on the SL1 connector. It may be noted
that the frequency updating takes place after one
second only.

Project 11
Geek Clock

Clocks of various shapes and sizes are commonly
available. Our clock is based on LEDs and uses
different types of LEDs to indicate time. The
illustration on the following page indicates the
block diagram of the clock.

This clock can indicate time to a resolution of
one second. Three blocks of LEDs indicating
hours, minutes, and seconds are used. Each block
has a different number of LEDs based on the
requirement. The LEDs representing the hours has
two columns: higher-digit hours and lower-digit
hours. Our geek clock displays time in a 24-hour
format, so the hours will range from 00 to 23.
Thus, the higher-digit hours will have no, one, or
two LEDs lit. The lower-digit hours will have zero
to nine LEDs lit at any given time. Similarly, the
minutes are displayed in two blocks: higher-digit
minutes and lower-digit minutes. The minutes
range is 00 to 59. Six LEDs represent the seconds
in a binary fashion. The reason why we call this a
geek clock is that the LEDs representing the hours
and minutes change randomly every five seconds.
For example, if the time is 15 hours and 35
minutes, then any one LED in the higher-digit
hours section will be lit. Any five LEDs out of nine
in the lower-digit hours section will be lit. After
five seconds, some other five out of the same nine
LEDs would be lit. Thus, one would observe a
changing LED lighting pattern. However, anyone
trained to read the time in this fashion will be able
to tell the time correctly.

84 tinyAVR Microcontroller Projects for the Evil Genius

S. No. Range Gate signal period

1 0 to 199 Hz 1 second

2 0 to 1.99 KHz 0.1 second

3 0 to 19.9 KHz 0.01 second

TABLE 3-3 Different Ranges of the
Frequency Counter

The illustration on the following page shows the
time 15:35 displayed by the geek clock in two
different ways.

Design Specifications

The aim of this project was to design a crazy
geeky clock that should require special training to
be able to tell the time. The time is displayed using
different colored LEDs to indicate the hours,
minutes, and seconds. To keep the time accurately,
it was decided to use an external quartz crystal to
provide the clock signal for the microcontroller.

Also, to interface so many LEDs, it was decided to
Charlieplex the LEDs. However, rather than
Charlieplex all the LEDs, the available I/O pins
were isolated into three blocks: three pins to
control the 6 LEDs for the seconds, four pins to
control the 11 LEDs for the hours, and five pins to
Charlieplex the 14 LEDs for the minutes. Also,
two switches are provided to set the time. The
power supply for the circuit is an on-board
LM2940 linear low-drop-out voltage regulator.
External batteries are used to power the circuit.

Chapter 3 ■ Advanced LED Projects 85

Hours Minutes

Seconds

Select

Set Time

tinyAVR Micro

C
ry

st
a

l

Design Description

Figure 3-15 shows the schematic diagram of the
project. The voltage regulator used is again an
LM2940 with 5V output, and so, input voltage can
vary from around 6V to 20V. Diode D1 is a
Schottky diode (IN5819) used as a protection
diode, as explained earlier. C4 is used to filter the
spikes and unwanted noise in the power supply,
and C3 is used to stabilize the output of the
LM2940. C1 and C2 are soldered near the supply
pins of the microcontroller to further decouple the
noise arising in the circuit. The microcontroller
used is the ATtiny261 microcontroller. The LEDs
have been Charlieplexed in three different groups:
HOURS, MINUTES, and SECONDS. The
SECONDS group has six LEDs and displays the
seconds in binary format. LED6 is treated as the
least significant bit and LED1 as the most
significant bit. The MINUTES group has 14 LEDs.
LED7 to LED11 represent the tens digit of minutes
(0…5) when represented in decimal. LED12 to
LED20 represent the ones digit of minutes.

Similarly, the HOURS group has 11 LEDs. LED21
and LED22 represent the tens digit, and LED23 to
LED31 represent the tens digit of hours. It is
recommended to solder different color LEDs for
representing the seconds, minutes• tens digit,
minutes• ones digit, hours• tens digit, and hours•
ones digit.

R1 to R12 are the current-limiting resistors for
the Charlieplexed LEDs and are of 50 Ohms each.
R13 is used as a pull-up resistor to keep the
RESET pin of the microcontroller pulled to Vcc.
Q1 is a 1.8432-MHz crystal used to clock the
microcontroller. In this project, the microcontroller
is meant to keep time, which calls for a highly
accurate oscillator. The default RC oscillator inside
this microcontroller is not accurate enough to
measure time. Therefore, a crystal is required.

Two switches to update the time have been
connected in different configuration as compared to
previous projects. This is due to the fact that the
ATtiny261 has 15 I/O pins, excluding the reset pin.
Out of these, 12 I/O pins are used for the LEDs and

86 tinyAVR Microcontroller Projects for the Evil Genius

Hours Minutes Hours Minutes

Geek clock: Schematic diagramFigure 3-15

8
7

88 tinyAVR Microcontroller Projects for the Evil Genius

two for the crystal. This leaves us with one I/O pin
and two switches. However, we know that I/O pins
controlling the seconds LEDs have a fixed periodic
pattern, that is, they would be either 0 or 1 after a
fixed amount of time. Moreover, in Charlieplexing,
only one LED is switched on at any instant, as
explained before. We want one of the switches
to be read by an I/O (COM0) pin of the
microcontroller and the other to the ground. So, we
have connected the other ends of the switches to
the I/O pins controlling the seconds LEDs. When
SW1 has logic 0, a change in logic level of COM0
is considered as a press of switch S1, and when
SW2 has logic 0, a change in logic level of COM0
is considered as a press of switch S2.

The source code keeps accurate time by using
timers. Also, switches S1 and S2 are used to
update the time.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with a
few jumpers in the component layer. A complete
assembly of the board is shown in Figure 3-16.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 1.8432
MHz, which is obtained from an external crystal,
so fuse bits have to be configured. The important
sections of the code are explained here:

if((PORTA&0x80)==0)&&((DDRA&0x80)==0x80))

//If PA7 declared as output and

//equal to zero

{

if(!(PINB&0x40))

{

switch_1_pressed = 1;

}

if(((PINB&0x40)==0x40)&&(switch_1_

pressed==1))

{

switch_1_released = 1;

}

}

if(!(PORTA&0x20)&&(DDRA&0x20)==0x20)

//If PA5 declared as output and

//equal to zero

{

if(!(PINB&0x40))

{

switch_2_pressed = 1;

}

if(((PINB&0x40)==0x40)&&(switch_2_

pressed==1))

{

switch_2_released = 1;

}

}

This section of the code is one part of the interrupt
overflow routine for Timer0 and is used to read the
switches. For switch 1, it first checks whether PA7
has been pulled to 0 or not. If yes, then PB6 is
read to detect the switch press or release. If PB6 is
found to be 0, switch_1_pressedis given the value
1 to indicate the status of switch press. If PB6 is

Geek clock: Soldered boardFigure 3-16

found to be 1 and switch_1_pressedis also 1, it
means that the press and release of switch 1 has
taken place and switch_1_releasedis updated to 1.
The main code reads these and executes the
corresponding function. A similar process happens
for switch 2 when PA5 is pulled to 0.

void display(void)

{

display_on = 0;

u08 hour_ten,hour_one,min_ten,min_one;

hour_one = hour%10;

hour_ten = hour/10;

min_one = min%10;

min_ten = min/10;

//display seconds

for(u08 h = 0;h<=5;h++)

{

secondled[5-h] = ((sec&(1<<h)) ==

(1<<h));

}

if(display_on1==1)

//time to change random pattern

{

display_on1=0;

//All hour and min leds off

for(u08 o = 0;o<9;o++)

{

minuteled[o+5]=0;

//clear minutes tens digit

hourled[o+2] = 0;

//clear hour tens digit

if(o<5)

minuteled[o] = 0;

//clear minutes ones digit

if(o<2)

hourled[o] = 0;

//clear hour ones digit

}

//display hour tens digit

for(u08 o = 0;o<hour_ten;o++)

{

//generate random number from 0 to 1

random = TCNT0;

random = random%2;

while(hourled[random] == 1)

{

random++;

if(random==2)

random = 0;

}

hourled[random] = 1;

}

//display hour ones digit

for (u08 o = 0;o<hour_one;o++)

{

//generate random number from 2 to 10

random = TCNT0;

random = random%9+2;

while(hourled[random] == 1)

{

random++;

if(random == 11)

random = 2;

}

hourled[random] = 1;

}

//display min tens digit

for(u08 o = 0;o<min_ten;o++)

{

//generate random number from 0 to 4

random = TCNT0;

random = random%5;

while(minuteled[random] == 1)

{

random++;

if(random == 5)

random = 0;

}

minuteled[random] = 1;

}

//display min ones digit

for(u08 o = 0;o<min_one;o++)

{

//generate random numbers from 5 to 13

random = TCNT0;

random = random%9+5;

while(minuteled[random] == 1)

{

random++;

if(random == 14)

random = 5;

}

minuteled[random] = 1;

}

}

}

Chapter 3 ■ Advanced LED Projects 89

The display function is the most critical
component of the whole source code. It is called
every second to update the seconds LEDs.
However, if display_on1is equal to 1, it means
that the present value of seconds is a multiple of
five and that a new random pattern has to be
generated on the minutes and hours LEDs. It uses
timer0•s value to calculate as many random
numbers for the different group of LEDs as
required. The code has been written in such a way
that there cannot be any repetition of a random
number generated within any group.

The rest of the code maintains the time and
responds to user input through switches.

Working

There is no provision for keeping backup time in
this project, so each time you power it on, it starts
from 00:00 hours. You can increase minutes and
hours by pressing and releasing S1 and S2,
respectively. Please note that the switches don•t
respond until the I/O pins connected to these have
logic 1. Time is displayed in 24-hour format.

Project 12
RGB Dice

If you play board games, you have to use dice. This
project shows how to build an electronic die that not
only produces a random number every time you
press a switch, but also produces that number in a
randomly chosen color. This is achieved by using
integrated RGB LEDs to produce different color
combinations. However, unlike the RGB color mixer
or the mood lamp project, where PWM is used to
modulate the intensity of individual red, green, and
blue LEDs to generate a large number of color
combinations, in this project, only three primary
colors (red, green, and blue) and three secondary
colors (yellow, orange, and purple) are used. The
block diagram of the project is shown below.

The LEDs are arranged in the traditional dot
pattern on a die. A switch is pressed and released
to generate a random number by lighting up the
LED pattern. Together with the lighting pattern to
indicate the number, the color of the lights is
randomly chosen from the six available colors,

90 tinyAVR Microcontroller Projects for the Evil Genius

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

CBA

ABC

DPlay

Charlieplexed
Connections

AVR Micro

making it a unique and pleasing die to use in all
your board games.

Design Specifications

The aim of the project was to design an electronic
LED die. The LEDs were used to replace the
traditional dots on a die. Each time a switch is
pressed, the LEDs would light up to indicate the
number. In addition, the color of the LED itself
would be random, adding to the aura of the die.
The die is powered by an external regulated power
supply, although four alkaline cells of 1.5V in
series or four NiMH cells of 1.2V in series could
also be used.

Design Description

Figure 3-17 shows the schematic diagram of the
project. The voltage regulator used is an LM3840
with 5V output, so the input voltage can vary from
around 6V to 20V. Diode D1 is a Schottky diode
(IN5819) used as a protection diode, as explained
earlier. Capacitor C1 is used to filter the spikes
and unwanted noise in the power supply. C2 is
used to stabilize the output of LM3840. The
microcontroller used is the ATtiny13
microcontroller. There are four groups of RGB
LEDs arranged in a Charlieplexed fashion. There
are 12 LEDs in all, controlled by four I/O pins.
Each group contains two LEDs connected in
parallel that are switched on simultaneously for all
the patterns that may appear on a die, as explained
before. However, a die is represented by seven
dots. This requires three groups and one single
LED, but in order to keep the current in all the
LEDs constant, a dummy LED has been connected
in parallel with the center dot. It is placed away
from the display area and covered to hide its light.
Switch S1 is used to change the number and colors
of the LEDs. Pressing switch S1 changes the
number, and releasing of the switch changes the
color. R1 to R4 are current-limiting resistors.

The source code keeps running a counter, and
whenever the switch is pressed, it captures the
count value to generate a new number, and
whenever it is released, it again captures the count
value to generate a new color. There are six colors
in total. Three are generated by switching on the
red, green, or blue component of the required
number of LEDs. The other three are generated by
switching on any two components of the required
LEDs. There is no PWM used in this code.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with a
few jumpers in the component layer. The
component and solder sides of the soldered board
are shown in Figure 3-18 and Figure 3-19,
respectively.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 9.6 MHz.
The controller is programmed using STK500 in
ISP programming mode. The important sections of
the code are explained here:

//subroutine for switch pressed

void switchpressed(void)

{

unsigned char b = 1;

while((PINB&(1<<0)))

//wait for switch to get pressed

{

if(b==6)

b = 1;

else

b = b+1;

}

_delay_ms(20); //to prevent bounce

Chapter 3 ■ Advanced LED Projects 91

RGB die: Schematic diagramFigure 3-17

9
2

statusonoff[1]=

(b==4)||(b==5)||(b==6);

statusonoff[2]=

(b==4)||(b==5)||(b==6)||(b==3);

statusonoff[3]= (b==2)||(b==6);

statusonoff[4]=

(b==1)||(b==3)||(b==5);

}

//subroutine for switch released

void switchreleased(void)

{

unsigned char b = 1;

while(!(PINB&(1<<0)))

//wait for switch to get released

{

if(b==6)

b = 1;

else

b = b+1;

}

_delay_ms(20); //to prevent bounce

coloronoff[0]=(b==2)||(b==4)||(b==6);

coloronoff[1]=(b==3)||(b==4)||(b==5);

coloronoff[2]=(b==1)||(b==6)||(b==5);

}

The switchpressedfunction waits for the switch
to be pressed, and switchreleasedfunction waits
for the already-pressed switch to be released. Both
functions maintain an internal counter from 1 to 6.
As the switch is pressed or released, the value of
the counter is picked up. Based on these counter
values, LEDs are lit up, depending on number
and color.

Project 13
RGB Tic-Tac-Toe

This is a modern version of the classic tic-tac-toe
game, also known in some parts of the world as
the naughts and crosses game, except this is not
played on paper. The naughts and crosses are
represented by user-selectable colors. The system
offers several colors, and a user can select a color
to represent the naught (or cross). Similarly, the
other user can select any other available color.
Once the colors are chosen, the switches on the
board allow the user to position his/her naught (or
cross) on any unoccupied position on the 3 � 3
board. The system uses nine integrated RGB LEDs

Chapter 3 ■ Advanced LED Projects 93

RGB die: Component layoutFigure 3-18 RGB die: Solder sideFigure 3-19

in a 3 � 3 configuration. In this project, instead of
Charlieplexing, traditional multiplexing is used to
control the RGB LEDs. The bottom illustration
shows the block diagram of the system. The
system also has a buzzer to indicate when a player
wins the game. The microcontroller recognizes
when three LEDs in a row, column, or diagonal
have the same color and thus terminates the game.
A new game can be played after a previous game
is concluded (won or lost) or if it ends in a tie.

Design Specifications

The aim of this project is to provide the classic tic-
tac-toe game in a modern electronic version using
RGB LEDs. A total of ten RGB LEDs are used in
the system. One of the RGB LED is used to
indicate the turn of the naught or the cross to play.
The rest of the nine LEDs are arranged in a 3 � 3
physical configuration for the game. The system
has several switches to navigate the naughts and
crosses, and to position them at the selected spot.

It also has a buzzer to indicate the winner. The
system has an on-board linear regulator and
requires external batteries for operation.

Design Description

Until now, all the projects in this chapter used
Charlieplexing to control a large number of LEDs
with fewer I/O pins. This project demonstrates the
concept of multiplexing and implements a
traditional two-player game of tic-tac-toe. Figure
3-20 shows the schematic diagram of the project.
The voltage regulator used is again LM2940 with
5V output, so input voltage can vary from around
6V to 20V. Diode D1 is a Schottky diode (IN5819)
used as a protection diode, as explained earlier.
Capacitor C3 is used to filter the spikes and
unwanted noise in the power supply. C2 is used
to stabilize the output of LM2940. C1 and C4
are soldered near the supply pins of the
microcontroller to further decouple the noise
arising in the circuit. The microcontroller used is

94 tinyAVR Microcontroller Projects for the Evil Genius

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

G
re

en

R
ed

B
lu

e

AVR Micro

Set

RGB tic-tac-toe: Schematic diagramFigure 3-20

9
5

the ATtiny861 microcontroller. LEDs have been
multiplexed and divided into four columns. COL0
is the first column of the 3 � 3 matrix, COL1 is
the second, and COL3 is the third. Each of the
three columns has three RGB LEDs. COL4 only
has one RGB LED, and it is used to denote the
turn during the game. T1, T2, T3, and T4 are
N-MOSFETs (NDS355) and act as current-
sourcing drivers for the four columns. Three
switches have again been connected in a similar
way as in the geek clock. They have been
multiplexed with the column lines. SG1 is a buzzer
used for denoting some status of the game.

The source code for this project is the most
advanced of the ones used thus far. It uses software
PWM on all the LEDs. Nine levels of intensity are
available on each color component, so 9 � 9 � 9
colors can be generated. Out of these, 16
contrasting ones are stored in the program. As the
circuit is switched on, two players select the colors
they want to play with. After that, both players
play the game placing their respective color dots
on their position of choice through switches. The
program checks for all the win conditions after
every placement by either of the two players. If a
player wins, the three LEDs that have formed the
winning pattern start blinking and a buzzer is
played for half a second. After the user presses the
restart switch, the game continues with the same
selection of colors but with the second player
getting the first move this time, and so on.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with a
few jumpers in the component layer. The
component and solder sides of the soldered board
are shown in Figure 3-21 and Figure 3-22,
respectively.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. The important sections of
the code are shown next.

96 tinyAVR Microcontroller Projects for the Evil Genius

Tic-tac-toe: Component layoutFigure 3-21

Tic-tac-toe: Solder sideFigure 3-22

while(1)

{

playerturn(b1,r1,g1,1);

checkwin();

playerturn(b2,r2,g2,2);

checkwin();

}

This is the main infinite loop of the program.
The first three arguments of the playerturn
function denote the intensity levels of the blue, red,
and green components, respectively. The fourth
argument denotes the player number. The
playerturn function is responsible for getting a
player•s color fixed on the LED of his choice but
not on the ones that have previously been occupied
by the same or another player. Checkwin checks
all the winning conditions for both the players by
using the magic square concept. A magic square is
a square where the sum of each row, column, and
diagonal is the same. In the source code, a
particular number is assigned to each position of
the LED, which is the same as what would appear
on the magic square at that particular position. As
the players fix their colors on the LEDs, the
numbers corresponding to those positions get filled
in their respective buffers. If any player has
occupied the LEDs, the sum of any three of which
is equal to the corresponding sum associated magic
square, it means that player has won. Prior to this
loop, the start function allows both players to pick
a color of their choice for playing.

Conclusion

In this chapter, we have learned about newer types
of LED configurations and how to control them
using multiplexing and Charlieplexing techniques.
We have also discussed in detail the intensity
control of LEDs using hardware PWM features of
the tinyAVR microcontrollers. Another important
set of projects involved using the eight-pin
microcontrollers to control a two-and-a-half-digit
seven-segment display using the Charlieplexed
techniques. This configuration allowed us to design
several projects, which can be further modified for
newer applications. In the next chapter, we take a
detour to another fascinating and commonly used
output device: graphics liquid crystal display
(GLCD). Several projects will be illustrated
using GLCD.

Chapter 3 ■ Advanced LED Projects 97

This page intentionally left blank

Graphics LCD Projects

C H A P T E R 4

IN THE LAST CHAPTER , we looked at ways of
interfacing LED displays in various applications.
In this chapter, we look at an alternative, but
equally (if not more) popular, display technology,
the liquid crystal display (LCD). There are several
differences between LED- and LCD-based
displays. The first difference is that, unlike LEDs,
which are available as a single element that can be
used for displaying binary information, a single
LCD element is not available. More importantly,
an LED generates light whereas LCD manipulates
ambient light. Due to this, an LED display is
suitable for use in low light conditions (such as at
night), whereas an LCD is perfect for use during
the day where there is ample ambient light
available. However, the designer of a gadget must
make a choice between an LED and an LCD. If an
LCD display is to be used and it is likely to be
used in low ambient lighting conditions, then some
sort of backlight must be provided. Interestingly,
the backlight is sourced by LEDs. Shown in the
photo are a few popular LCDs.

LCDs are of a few types: reflective,
transmissive, and transreflective. In the next
section we look at the working of these devices
and subsequently use them in several projects.

Principle of Operation

As mentioned, there are three types of LCDs:
reflective, transmissive, and transreflective. The

various layers of a reflective LCD are shown in
Figure 4-1. At the bottom it contains a mirror that
reflects the incoming light from the top. It has
polarizing film layers (B and F). Between these
films is a layer of liquid crystal (D) sandwiched
between two layers of electrodes (C and E). In the
unpowered state, the liquid crystal allows light
coming from the top to pass through, bounce back
from the mirror, and go back through the top.
However, on application of an electric signal
between the electrodes, the liquid crystals, as
shown in Figure 4-2, are so oriented that they
block the passage of light, and to an observer, a
black rectangle marked on the upper electrode is
visible. A reflective LCD would need ambient light
to display anything. If display readability at all
times is required, then some sort of backlight is
required. White LEDs are quite popular for

99

providing backlight for reflective LCDs. These are
put above and/or beside the LCD to provide
uniform illumination.

In the transmissive LCD, the bottom polarizer is
transparent and does not have any mirror. They
necessarily require backlight for operation.
Transmissive LCDs work very well under low
ambient lighting conditions with their backlight
continuously on. The transreflective LCD uses a
partially reflective rear polarizer. It has a source of
backlight, too, and can be turned on when the
ambient light is insufficient.

The next illustration shows the block diagram of
a typical LCD controller. Apart from the matrix of
liquid crystal elements, the controller has memory
to store the information that needs to be displayed
on the LCD. The number of memory bits is equal
to the number of liquid crystal elements. These bits
may be arranged in bytes for ease of access. Also,
to polarize the liquid crystal, the controller needs
high voltage bias in the range of 5V to 10V.
Usually, the bias voltage (V(LCD)) generator is
built into the controller. To communicate with the
external world, the controller would have some
sort of communication bus. It could be a byte-wide
parallel bus or a more frugal SPI or I2C (inter-IC
communication) interface. An external
microcontroller would communicate with the LCD

controller through the communication bus to send
display data, etc. The LCD controller would
receive the data, store it in its internal memory, and
use it to display the information appropriately.

The Nokia 3310 is a popular mobile phone, and
due to its popularity, many of its components are
available for replacement and repair. The graphics
LCD on the Nokia 3310 phone is easily
available„probably not the original displays, but
compatible and inexpensive •Made in ChinaŽ
displays are easily available. In the next section,
we describe this immensely popular display that
can be easily integrated in small embedded
projects.

100 tinyAVR Microcontroller Projects for the Evil Genius

Mirror (A)

Polarizer glass (B)

Electrode (C)

Liquid crystal (D)

Polarizer film (F)

Glass with electrode (E)

Layers of a reflective LCD in the
normal state of the crystal

Figure 4-1

Mirror (A)

Polarizer glass (B)

Electrode (C)

Liquid crystal (D)

Polarizer film (F)

Glass with electrode (E)

Layers of a reflective LCD in the
polarized state of the crystal

Figure 4-2

Rows

Columns

Vcc V(LCD)

Control
Bus

Data Bus

Controller
LCD LCD

Panel

Nokia 3310 GLCD

The Nokia 3310 LCD is a small graphical LCD
(GLCD), suitable for various projects related to
embedded systems. It is widely used because
it can be interfaced easily with most of the
microcontroller families and is easily available.
The display is 38 � 35 mm, with an active display
surface of 30 � 22 mm and an 84 � 48 pixel
resolution. The display comes with an LCD
controller/driver, the PCD8544, designed to drive a
graphic display of 48 rows and 84 columns. The
display is easy to interface using standard SPI
communication. Some of its other important
features include the following:

■ Only one external component is needed, a
capacitor of 1…10µF value between VOUT
and GND

■ Logic supply voltage range: 2.7 to 3.3V

■ Low power consumption, suitable for battery-
operated systems

■ Temperature range: …25 to +70°C

The datasheet of the LCD can be downloaded
from www.avrgenius.com/tinyavr1.

Interfacing the Nokia 3310

The Nokia 3310 works with the SPI interface,
which exists in many tinyAVR microcontrollers but
is absent in many other Tiny controllers. Also, the
SPI is often busy interacting with other devices.
But this does not mean that this LCD cannot be
used with these devices. We can interface this LCD
by implementing the software SPI interface, also
called •bit banging,Ž that can be used on any I/O
pin of the microcontroller. For this purpose, we
require a minimum of four I/O pins of the
controller. The following illustration shows the
pin-out details of the LCD display. A detailed
description of this pin-out is discussed next.

The LCD pin-out consists of eight pins as
follows:

■ VCC Input voltage connected to regulated
voltage supply (2.7 to 3.3V).

■ SCK Input for serial clock signal (0.0 to 4.0
MB/sec). Connected to I/O pin.

■ SDI Serial data input. Connected to I/O pin.

■ D/C Data/Command mode select input.
Connected to I/O pin.

■ SCE Chip select. This pin can be connected
to an I/O pin of a microcontroller or can be
grounded (to always select LCD). This
depends upon the requirement of the project.

■ GND Ground.

■ VOUT VLCD. This pin is connected to GND
via a 10µF capacitor.

■ RST Reset pin of the PCD8455 controller.
Connected to I/O pin.

Functional Description
of the PCD8455

The PCD8455 is a low-power CMOS LCD
controller/driver, designed to drive a graphic
display of 48 rows and 84 columns. All necessary
functions for the display are provided in a single

Chapter 4 ■ Graphics LCD Projects 101

Vcc

D/C

SCK

SDI

SCE

GND

Vout

RST

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

chip, including on-chip generation of LCD supply
and bias voltages, resulting in a minimum number
of external components and low power
consumption. Figure 4-3 shows the block diagram
of the PCD8455 controller.

Some important features of this controller are:

■ Address counter The address counter
contains the addresses of the display data
RAM for addressing a single column of 8
pixels. The X-addresses, 0 to 83, and the
Y-addresses, 0 to 5, are set separately.

102 tinyAVR Microcontroller Projects for the Evil Genius

Data
Latches

Reset

Oscillator

Bias Voltage
Generator

Columns
Drivers

Row
Drivers

Shift
Register

Timing
Generator

Display
Address
Counter

Address
Counter

Display Data
RAM
(DDRAM)
48 � 84

VLCD
Generator

Data
Register

I/O Buffer

SDIN SCLK D/C* SCE*

RES

OSC

C0 to C83 R0 to R47

VLCD2

VLCD1

Block diagram of the PCD8455Figure 4-3

■ Display data RAM The DDRAM is a 48 �
84…bit static RAM that stores the display data.
The RAM is divided into six pages of 84 bytes
(6 � 8 � 84 bits). Each page is addressed by a
single Y address, and the individual columns of
each page are addressed by a single X address.

■ Instructions The instruction format is divided
into two modes. If D/C (mode select input) is
set LOW, the current byte is interpreted as a
command byte; otherwise, if the pin is HIGH,
the current byte is stored as a data byte in the
display data RAM. After every data byte, the
address counter is incremented automatically.
D/C signal is read after the last bit of the byte
has been transmitted, that is, at the eight SCLK
pulse. When SCE is kept high, the SLCK signal
is ignored and the serial interface is initialized.
Data (SDIN) is sampled at the positive edge of
the clock pulse. If the SCE signal stays low
even after transmission of the last bit of the
command/data byte, the controller is set to
accept the next byte, assuming the incoming bit
to be the seventh bit of the next byte. An active
low RESET pulse resets the controller by
interrupting the transmission and clearing all
the registers. If SCE is LOW after the positive
edge of the RESET pulse, the controller is
ready to accept the next byte.

Design Code

The required C library to interface the LCD can be
downloaded from www.avrgenius.com/tinyavr1.

These functions are integrated with the source
codes of all the projects that have been used in this
chapter.

void clockdata(char bits_in)

{

int bitcnt;

for (bitcnt=8; bitcnt>0; bitcnt--)

{

LCD_PORT = LCD_PORT&(~(1<<SCK));

// Set Clock Idle level LOW.

if ((bits_in&0x80)==0x80)

{LCD_PORT |=1<<SDIN;}

else {LCD_PORT &= ~(1<<SDIN);}

LCD_PORT |=1<<SCK;

// Data is clocked on the rising

// edge of SCK.

bits_in=bits_in<<1;

// Logical shift data by 1 bit

// left.

}

}

This is the routine used to transmit a byte of
data from the microcontroller to the LCD driver.
A loop is used to clock data, bit by bit, to the LCD
controller. To transmit a bit, first SCK is held
LOW and then the bit to be transmitted is brought
on the SDIN pin connected to the LCD. After
setting the bit, SCK is held HIGH as data is
transmitted on the rising edge of the clock pulse.
This process is repeated eight times by the loop to
transmit the required byte. Note that we have
grounded the SCE pin of the LCD.

void writecom(char command_in)

{

LCD_PORT = LCD_PORT&(~(1<<D_C));

// Select Command register.

clockdata(command_in);

// Clock in command bits.

}

void writedata(char data_in)

{

LCD_PORT = LCD_PORT|(1<<D_C);

//Select data register.

clockdata(data_in);

// Clock in data bits.

}

These routines use the clockdata function to
transmit either a command byte (by holding D/C
mode to select pin low), as in writecom function,
or a data byte, as shown in writedata function.
Now we know how to transfer a data byte to an
LCD, but in order to use an LCD, we need to

Chapter 4 ■ Graphics LCD Projects 103

initialize it according to the described procedure in
its datasheet. This is shown here:

void initlcd(void)

{

LCD_DDR |=

1<<SCK|1<<SDIN|1<<D_C|1<<RESET;

LCD_PORT = LCD_PORT|1<<RESET;

LCD_PORT =

LCD_PORT&(~(1<<RESET));

_delay_ms(200);

LCD_PORT = LCD_PORT|1<<RESET;

writecom(0x21);

// Activate Chip and H=1.

writecom(0xD3);

// Set LCD Voltage to about

// 9V.

writecom(0x13);

// Adjust voltage bias.

writecom(0x20);

// Horizontal addressing

// and H=0.

writecom(0x09);

// Activate all segments.

clearram();

// Erase all pixel on the

DDRAM.

writecom(0x08);

// Blank the Display.

writecom(0x0C);

// Display Normal.

}

In this routine, first we declare all four I/O pins
as outputs using the corresponding DDR register.
Then we initialize the LCD by sending a RESET
pulse of 200 ms. This clears any previous setting in
the LCD. Then the LCD is initialized according to
our requirements by sending a series of command
words. First, the LCD is activated with an
extended instruction set (H � 1). The next
command byte is used to set the operating LCD
voltage by software. Using this feature, one can set
the contrast of the LCD in use. This is done by
calculating the eight-bit value to be transmitted
using the relation described in the datasheet of the
Nokia 3310 LCD. Then the voltage bias is adjusted

by selecting a multiplexing rate of 1:48. The next
command byte is used to select horizontal
addressing and to make H � 0 so as to use
commands like •set X addressŽ and •set Y
address.Ž To activate the display, first a command
byte is sent to activate all segments in the display,
the next byte is used to blank the display, and the
last byte is sent to use the display in normal mode.
This routine should be called whenever one wants
to use the display in normal mode.

Glitches Observed in Certain Displays

In certain displays, sometimes we have to
confront a problem of a broken first page in the
48 � 84…pixel screen. A usual Nokia 3310
contains six (zero to five) pages, but in some cases,
the topmost page with Yaddress of 0 is broken.
Only five pixels of each column of this page are
visible. On the lower side, we get a new page with
three pixels in each column. This new page is
addressed by Yaddress equal to 6. If we want to do
away with this arrangement, we can change the
initializing source code of the LCD. In the initlcd
function, writing the command writecom(0x45)
after the bias voltage adjustment would cause the
pages to readjust and shift vertically upwards by
five pixels. This completely hides the broken top
page and makes the lower page completely visible.
In this case, Yaddresses vary from 1 to 6.

The following illustrations show the Nokia
display and keypad, the mounting PCB, and the
final form of the display soldered onto a custom
PCB.

104 tinyAVR Microcontroller Projects for the Evil Genius

Project 14
Temperature Plotter

This project uses a temperature sensor and displays
the ambient temperature in degrees Celsius and
Fahrenheit on the display. It also displays the
minimum and maximum temperatures recorded by

the sensor. The illustration below shows the block
diagram of the project. The Nokia 3310 display is
used to display the readings. A switch on the
circuit board is used to toggle between two
screens. One screen shows the numerical value of
the temperature alternately in degrees Celsius and

Chapter 4 ■ Graphics LCD Projects 105

T
em

p
er

a
tu

re

Time

tinyAVR

Bus

SPI

21.5°C

Min:

Max:

19.5°C

27.5°C

Sensor
Temperature

Power

Supply

Mode

Readout Mode

Plot Mode

106 tinyAVR Microcontroller Projects for the Evil Genius

Fahrenheit. On the other screen, the system plots
the variation of the temperature as a function of
time. The system is battery powered.

Design Specifications

The objective of the project is to design a
temperature display system to show the ambient
temperature value in degrees Celsius and
Fahrenheit, together with minimum and maximum
values. The system should also be capable of
recording temperature variation as a function of
time. The system should be battery driven so that it
is portable and can be installed anywhere.

Design Description

Figure 4-4 shows the schematic diagram of the
project. Since the project uses the Nokia display, it
requires a supply voltage between 2.7V and 3.3V.
The power supply is based on the TPS61070 step-
up DC-DC converter to provide 3.3V and,
therefore, can be powered with a single 1.5V
battery. The battery is connected to the SL3
connector. Since there is no polarity protection,
utmost care should be taken to ensure that the
battery is connected properly. The Nokia display is
connected using the SPI bus through SL1.

The most important component of the system is
the temperature sensor. There are several options
for this component: a thermistor, a thermocouple,
or a bandgap semiconductor sensor. A
semiconductor sensor is the easiest to use.

There are also various semiconductor
temperature sensors. Some provide direct analog
voltage output proportional to the temperature,
while others provide a digital value in degrees
Celsius or Fahrenheit directly. We used the
DS1820 one-wire temperature sensor, which
converts the temperature to a nine-bit digital
number representing the temperature in degrees
Celsius or Fahrenheit. The temperature reading has
a resolution of 0.5 degrees Celsius or 0.9 degrees

Fahrenheit in the range of …55°C to +125°C or
…67°F to +257°F. The sensor takes 200 ms for
conversion. For more details, please refer to the
DS1820 datasheet on our website at
www.avrgenius.com/tinyavr1.

The converted data can be read out of a single-
wire interface. In the schematic diagram, SL2
represents the DS1820 sensor. The circuit also has
four switches„S1 through S4„but for this
project, only one switch is used. The rest of the
switches are used in other projects in this chapter.
The circuit uses the Tiny44 microcontroller in 14-
pin SMD version with 4KB of program memory.
Upon power or reset, the microcontroller initializes
the display and queries the DS1820 sensor and
displays the temperature in Celsius and Fahrenheit
on the display. It also maintains the observed
minimum and maximum temperature values. The
user can press the switch at any time, and the
system will switch to a different display screen and
mode where the time versus temperature readings
are plotted. The system takes temperature readings
continuously but only stores one temperature
reading every ten minutes and plots the graph on
the display. The system can store a maximum of
40 readings and, hence, can show the variation in
temperature for the last 400 minutes. The buffer
for storing the reading is continuously shifted to
accommodate new values, thereby flushing out the
earlier ones.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the component (top)
layer, with few jumpers in the solder (bottom)
layer. The component side and solder side of the
board are shown in Figures 4-5 and 4-6,
respectively. Soldering the TPS61070 IC is critical
and should be done carefully. Start by soldering
the regulator and other associated components. The

10
7

Temperature plotter: Schematic diagramFigure 4-4

output of the TPS61070 should be tested before
soldering the rest of the components. The plotter
displays in different modes are shown in Figures
4-7 and 4-8.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 1 MHz.
The controller is programmed using STK500 in
ISP programming mode. The temperature sensor
DS18S20 performs read and write functions
through a Dallas one-wire interface. This interface
has been implemented in the software. You can
refer to the datasheet of the temperature sensor to

get the gist of the various commands. The
important sections of the code are explained here:

int ds1820_read(void)

{

char busy=0;

unsigned char temp1,temp2;

int result;

onewire_reset();

onewire_write(0xCC);//Skip Rom Command

108 tinyAVR Microcontroller Projects for the Evil Genius

Temperature plotter: Component
side

Figure 4-5

Temperature plotter display in
graph mode

Figure 4-8

Temperature plotter display in
readout mode

Figure 4-7

Temperature plotter: Solder sideFigure 4-6

onewire_write(0x44);

//Temperature Conversion command

while (busy == 0)

busy = onewire_read();

onewire_reset();

onewire_write(0xCC);//Skip Rom command

onewire_write(0xBE);

//Read ScratchPad Command

temp1 = onewire_read();

temp2 = onewire_read();

onewire_reset();

result = temp1*5;

// 0.5 deg C resolution

//result is ten times actual

//temperature

return result;

}

The ds1820_readfunction reads the DS1820
and returns a value that is ten times the actual
temperature in degrees Celsius, after performing
the necessary scaling. The main infinite loop of the
program operates in two modes. In the first mode,
it displays the present temperature, along with the
maximum and minimum values, in both degrees
Celsius and Fahrenheit. In the other mode, it
displays the variation of temperature in the form
of a graph. The graph is drawn using the graph1
function, which extracts the values of array data to
plot the pixels. The function setlcd is used to draw
the axis on the LCD screen. Switch S4 (PA1) is
used to toggle the mode in this project. Shifting
from plot mode to temperature mode and vice

versa doesn•t delete the status of the graph. Other
sections of the code handle the LCD initialization
and graphics.

Working

The temperature plotter is designed to operate
from either one or two AA/AAA batteries.
Alkaline or rechargeable batteries such as NiMH
or NiCd batteries can be used. Just apply power,
and the display starts showing the temperature
value. Use the switch to switch between the
readout and plotter modes.

Project 15
Tengu on Graphics Display

Tengu refers to certain supernatural creatures in
Japanese folklore. However, Tengu is also a
famous toy that interacts with the user through
ambient music, sounds, or noise. This project is
the audio-based toy and has nothing to do with
supernatural creatures. Tengu shows a face with
eyes, nose, and mouth. Depending upon the
ambient noise, the Tengu eyes and facial
expressions change. The illustration below shows
the block diagram of the Tengu project. It uses an
audio amplifier with a microphone input to sense
the ambient sounds. It uses the Nokia graphics
LCD to display the face. The tinyAVR

Chapter 4 ■ Graphics LCD Projects 109

tinyAVR

Bus
SPI

Power

Supply

Amplifier
Audio

Counter

110 tinyAVR Microcontroller Projects for the Evil Genius

microcontroller samples the sound input and
changes the facial expressions appropriately. The
circuit is battery powered and can be carried
around.

Design Specifications

The objective of the project was to design a
battery-powered Tengu clone that would respond

to the ambient sounds, music, and noise by
changing its facial expressions.

Design Description

Figure 4-9 shows the circuit schematic of Tengu.
The circuit is operated with a 9V battery (even
four 1.5V alkaline batteries would work fine). The
DC input voltage is connected to the circuit
through the SL2 connector. The series diode D2

Tengu: Schematic diagramFigure 4-9

Chapter 4 ■ Graphics LCD Projects 111

provides reverse polarity protection in case the
battery is connected incorrectly. The DC voltage
provides the supply voltage to the dual op-amp
LM358. It is also connected to the input of an
LDO LP2950-3.3V that provides a supply voltage
Vcc of 3.3V for the microcontroller and the Nokia
display. The display is connected to the circuit
through the LCD1 connector. The microphone is
connected to the circuit through the SL4 connector.
A condenser microphone is connected to the SL4
connector (polarity of the microphone is important
when connecting the mic to the connector).
Resistor R7 biases the condenser mic, and the
analog signal produced by the mic (in response to
the audio sound) is capacitively coupled to the op-
amp circuit through a 10uF capacitor (C5). The
amplifier is set up as a noninverting, high-gain AC
amplifier. The junction of resistances R10 and R11
provides a DC bias equal to half the DC input
voltage. Since the resistor R10 is shunted with a
capacitor C6, the junction of R10 and R11 acts like
AC ground. The AC signal rides the DC bias and is
connected to the amplifier input on pin 3.

The output of the first stage of the amplifier is
further enhanced using the second stage which
uses the other half of the dual op-amp, which is
configured as a noninverting amplifier. The output
at pin 7 is passed through a resistor R15 and a
Zener diode D1 (2.7V) so that the output at the
Zener diode cathode is clipped to 2.7V. This output
is connected to the input pin PA4 of the Tiny44
microcontroller. The gain of the amplifier is so
large (25,000) that the microphone output is
actually converted into a square wave. The
frequency of the square wave is the same as
that of the audio signal. Thus, the task of the
microcontroller is to measure the frequency of this
signal and to then change the facial expressions on
the graphics display appropriately. The
microcontroller continuously measures the
frequency of the audio signal every second.

The op-amp is directly powered by the battery
voltage. LM358 requires a supply voltage of at

least 5V; hence, the circuit must be powered with
either four 1.5V batteries or a 9V battery. The
microcontroller and the display are powered by the
output of the LP2950-3.3 regulator. This regulator
provides 3.3V output voltage and is necessitated
by the requirements of the Nokia 3310 display.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the component (top)
layer with a few jumpers in the solder (bottom)
layer. The component side and solder side of the
board are shown in Figures 4-10 and 4-11,
respectively. A working demonstration is shown
in Figure 4-12.

Tengu: Component sideFigure 4-10

Tengu: Solder sideFigure 4-11

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. The important sections of
the code are explained here:

void check(void)

{

TIFR0 = 1<<TOV0;

TCNT0 = 255-125;

TCCR0B = 1<<CS00|1<<CS01;

count = 0;

freq = 0;

stop_check=0;

while(count<200)

{

while((PINA&(1<<4))&&(stop_check==0)

);

while((!(PINA&(1<<4)))&&(stop_check

==0));

if(PINA&(1<<4))

{

freq++;

}

}

freq = freq*5;

if(freq>=1900)

face = 9;

else if(freq>=1700)

face = 7;

else if(freq>=1500)

face = 6;

else if(freq>=1200)

face = 1;

else if(freq>=900)

face = 0;

else if(freq>=650)

face = 5;

else if(freq>=350)

face = 2;

else if(freq>=200)

face = 4;

else if(freq<200)

face = 3;

TCCR0B = 0x00; //stop timer

}

This is the function that measures the frequency
of the input signal on the PA4 pin of the
microcontroller. It initializes Timer0 in such a way
that its overflow interrupt occurs every 1 ms. ISR
for Timer0 increments a variable count till 200,
that is, interval of 200 ms. During this interval,
each logic change on the PA4 pin is recorded in
the variable freq. This is then multiplied by 5 to
get the number of logical changes in 1 second and,
hence, gives the frequency of the input signal.
Using this frequency, a particular face number is
assigned to the facevariable. This assignment has
been done using a trial-and-error process. The
function putface uses this variable to display the
desired face on the LCD by extracting the display
bytes from the program memory of the

112 tinyAVR Microcontroller Projects for the Evil Genius

Tengu: Working demonstrationFigure 4-12

microcontroller. It also displays blinking eyes by
calling the puteye function.

The main function of the code first initializes
the LCD and then calls checkand putface
functions alternately in an infinite loop.

Working

To use Tengu, you need to power the circuit board
and then place it so that the microphone is not
hindered in any way. You would see the face on the
display and when there is some sound, the eyes
would blink and the mouth patterns would change.
If you play loud music, the mouth patterns would
change as if Tengu is singing.

Project 16
Game of Life

Game of Life is a mathematical simulation devised
by John Conway. It is an attempt to model real-life
processes using simple rules. It•s a zero player
game, that is, once the initial state is set, it does
not require any intervention to proceed. Details of
the game are available on the Internet, and you are
strongly advised to read them. This project allows
a user to simulate the Game of Life on a Nokia
display using a tinyAVR microcontroller. The
original game developed by John Conway uses a

two-dimensional grid of infinite dimensions, but
this project limits the size to 16 � 16 elements.
The user can set up the initial state with the help of
switches, as seen in the illustration below. Once
the initial state is fixed, the game can run to show
the evolution.

Design Specifications

The objective of the project is to create the Game
of Life simulation on a small microcontroller with
graphics display and allow the user to create any
initial state to run the simulation. The system has
four switches to •turn onŽ any required element in
the 16 � 16 grid and then to run the simulation.
The system is battery powered for portability.

Design Description

The circuit for this project is the same as for the
temperature plotter project. In the temperature
plotter project, only one of four available switches
was used, but in this project, all the four
switches are used. The purpose of two of the
four switches is for left/right and up/down
movement of the cursor; these are called the arrow
keys. The third switch is for toggling the state of
the element, and the fourth switch is for running
the simulation. A demonstration of the output
display on the LCD is shown in Figure 4-13.

Chapter 4 ■ Graphics LCD Projects 113

tinyAVR

Bus
SPI

Power

Supply

Up/Down

Left/Right

Enter

Run

114 tinyAVR Microcontroller Projects for the Evil Genius

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. The important sections of
the code are explained here:

void place(void)

{

row=0;

column=0;

while(1)

{

if(!(PINA&0b00000001))

{

_delay_ms(30);

while(!(PINA&0b00000001));

_delay_ms(30)

TIMSK1 = 0x00;

if(led[0][row]&(1<<column))

{

pix_light(row,column,1);

}

else if(!(led[0][row]&(1<<column)))

{

pix_light(row,column,0);

}

row++;

if(row==(ROWMAX+1))

row = 0;

TIMSK1 = 0x01;

}

if(!(PINA&0b00000010))

{

_delay_ms(30);

while(!(PINA&0b00000010));

_delay_ms(30);

TIMSK1 = 0x00;

if(led[0][row]&(1<<column))

{

pix_light(row,column,1);

}

else if(!(led[0][row]&(1<<column)))

{

pix_light(row,column,0);

}

column++;

if(column==(COLMAX+1))

column = 0;

TIMSK1 = 0x01;

}

if(!(PINA&0b00100000))

{

_delay_ms(50);

while(!(PINA&0b00100000));

_delay_ms(50);

TIMSK1 = 0x00;

if(led[0][row]&(1<<column))

led[0][row]&=~(1<<column);

else led[0][row]|=1<<column;

if(led[0][row]&(1<<column))

{

pix_light(row,column,1);

}

else if(!(led[0][row]&(1<<column)))

{

pix_light(row,column,0);

Output display for the Game of LifeFigure 4-13

}

row++;

if(row==(ROWMAX+1))

row = 0;

TIMSK1 = 0x01;

}

if(!(PINA&0b00001000))

{

_delay_ms(30);

while(!(PINA&0b00001000));

_delay_ms(30);

TIMSK1 = 0x00;

if(led[0][row]&(1<<column)

{

pix_light(row,column,1);

}

else if(!(led[0][row]&(1<<column)))

{

pix_light(row,column,0);

}

TIMSK1 = 0x01;

break;

}

}

}

This function is used to place the initial
population of alive cells. Each cell on the LCD is
composed of nine pixels. The top left 2 � 2 pixels
light up for active cells, whereas the remaining five
pixels are always off. This prevents the merging of
adjacent pixels. The total grid is a 16 � 16 matrix
of such cells. To optimize the RAM usage, we
have used different int arrays of length 16 to
denote the entire grid. Each variable of the array
denotes one row, whereas its 16 bits denote 16
columns. The function uses four switches to set the
initial population. Two switches are used to move
the cursor row-wise or column-wise, the third is
used to toggle the state of the cell at the present
cursor location, and the last is used to start the
game.

while(1)

{

clearram();

stage=0;

for(unsigned char j=0;j<=5;j++)

{

cursorxy(48,j);

writedata(0xFF);

writedata(0xFF);

writedata(0xFF);

}

TIMSK1 = 0x01;

//Overflow Interrupt Vector

place();

TIMSK1 = 0x00;

//Overflow interrupt Disabled

cursorxy(52,0);

putcharacter('S');

cursorxy(52,1);

putcharacter('T');

cursorxy(52,2);

putcharacter('A');

cursorxy(52,3);

putcharacter('G');

cursorxy(52,4);

putcharacter('E');

generation=0;

generation1=1;

while(1)

{

for(int row=0;row<=ROWMAX;row++)

{

for(int col=0;col<=COLMAX;col++)

{

if(led[generation][row]&(1<<col))

led[generation1][row] |=1<<col;

else led[generation1][row]

&=~(1<<col);

if(led[generation][row]&(1<<col))

//on

{

check_neighbors(generation,row,

col);

if(alive>3||alive<2)

{

led[generation1][row] &= ~(1<<col);

pix_light(row,col,0);

}

}

else

if(!(led[generation][row]&(1<<col)))

{

check_neighbors(generation,row,

Chapter 4 ■ Graphics LCD Projects 115

(continued on next page)

col);

if(alive == 3)

{

led[generation1][row] |= 1<<col;

pix_light(row,col,1);

}

}

}

}

generation = (generation==0)?1:0;

generation1 = (generation==0)?1:0;

//rules of game of life

stage++;

stage1=stage;

cursorxy(60,2);putcharacter (stage1/

100+48);

stage1 = stage1%100;

putcharacter(stage1/10+48);

stage1 = stage1%10;

putcharacter(stage1+48);

_delay_ms(500);

flag=0;

for(unsigned char i=0;i<=15;i++)

{

if(!(actual[i]==0))

{

flag=1;

break;

}

}

if((flag==0)||(stage==255))

{

clearram();

for(unsigned char i=0;i<=15;i++)

{

led[0][i]=0;

led[1][i]=0;

actual[i]=0;

flag=0;

}

cursorxy(12,2);

putstr("GAME OVER");

while(PINA&0x01);

_delay_ms(30);

while(!(PINA&0x01));

_delay_ms(30);

break;

}

}

}

This is the main infinite loop of the program. It
works on two alternating generations of
populations. While checking a particular
generation, it checks the next state of each cell
according to the rules of the game and updates the
display. Simultaneously, it fills the next state of
each cell in the appropriate location of the array
led. It checks to see if a cell has more than three or
fewer than two live neighbors (a cell in the grid
can have a maximum of eight neighbors). If either
of these two conditions is true, that cell is turned
off (becomes dead). In case a cell has exactly three
neighbors, it is kept on if already alive, or switched
on if dead. After each cell has been checked, the
next state becomes the present state and so on.
Only two variables, generationand generation1,
are required to iterate between present and next
generations. The game terminates if all the cells
die (are turned off) or when the value of stage
reaches 255, whichever happens first. Variable
stage represents the number of generations gone.

The other parts of the code are the initializations
for various variables, the functions for interacting
with the LCD, and an Interrupt Service Routine
(ISR) for the overflow of TIMER1. The ISR comes
into play only during the setting of the initial
population to blink the cell presently pointed to by
the cursor.

Working

To use the project, just apply power to the circuit
board. A blinking cursor at the top left of the
screen appears. Use the arrow keys to reach any
required element and the toggle key to toggle the
state of the element. Once the initial state of the
simulation is fixed, the run switch is pressed to
start the simulation. The display shows the
iterations on the right side of the screen.

116 tinyAVR Microcontroller Projects for the Evil Genius

Project 17
Tic-Tac-Toe

As the name suggests, this project allows two
people to play the popular game of tic-tac-toe (also
known as naughts and crosses). The illustration
below shows the block diagram of the project.

Design Specifications

The objective of the project is to provide a user
interface to play the tic-tac-toe game on the Nokia
graphics display. The user places the naught (or
cross) using switches. The game ends either in a
draw or when one of the players wins. The project
keeps track of the number of games played and the
individual winning score. The system is battery
powered so that it is portable.

Design Description

The project uses the same circuit as in the
temperature plotter project. Out of the four
switches on the circuit board, this project uses
three switches, labeled Up/down, Left/right, and
Enter. Two output displays are shown in Figures
4-14 and 4-15.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

Chapter 4 ■ Graphics LCD Projects 117

tinyAVR

Bus
SPI

Power

Supply

Up/Down

Left/Right

Enter

User1:

User2:

Score

Tic-tac-toe output displayFigure 4-14

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. The logic behind the
implementation of the game in this code is the
same as that used in the RGB tic-tac-toe discussed
in Project 13. The only difference is that there is
no selection of color initially. One user is assigned
to crosses (or X•s) and the other is assigned to
zeroes (O•s). The bit patterns for •crossŽ and
•zeroŽ are stored in the program memory. Unlike
the previous version, this version stores the number
of wins and losses of each user until one of them
wins ten times. At the end of every game, the
result and total score of each user is displayed on
the LCD. The important sections of the code are
explained here:

while(1)

{

cli();

cursorxy(6,2);

putstr(DISPLAY);

while(PINA&0x01);

_delay_ms(30);

while(!(PINA&0x01));

_delay_ms(30);

sei();

TIMSK1 = 0x01;

//Overflow interrupt enabled

reset();

while(1)

{

playerturn(1);

checkwin();

if(dis1==10)

{

dis1=0;

dis2=0;

break;

}

playerturn(2);

checkwin();

if(dis2==10)

{

dis1=0;

dis2=0;

break;

}

}

}

This is the main infinite loop of the program. It
puts •TIC TAC TOEŽ on the screen and waits for
the user to press a switch on PA0 before starting
the game. As the game starts, it calls playerturn
with the player number as the argument. The
playerturn function allows the specified player to
place his or her symbol at the desired location. It
then calls checkwin to see if the player who last
placed his or her symbol won or not. Variables
dis1 and dis2 keep track of the number of wins of
each player.

118 tinyAVR Microcontroller Projects for the Evil Genius

Tic-tac-toe result displayFigure 4-15

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working

To use the project, apply power to the circuit. The
first player gets the chance to place his or her
symbol and then the other player and so on.

Project 18
Zany Clock

A microcontroller-based clock is passé. But this
project is different. Instead of the usual display
showing the digits on an LCD or LED display, this
project shows the seconds, minutes, and hours
scrolling past a marker, which is why it is titled
Zany Clock! Its block diagram is shown below.

Design Specifications

The objective of this project is to design a
microcontroller-based clock with an unusual
display that shows the time scrolling past a marker.
The project is battery operated so that it can be
portable and can work even in the absence of
mains power.

Design Description

Figure 4-16 shows the schematic diagram of the
project. It uses a Tiny861 microcontroller and a

Nokia display to show the time. The
microcontroller uses an external crystal of 7.3728
MHz to generate the system clock frequency. The
same system clock frequency is used to maintain
and manage real time. The project is battery
powered with a 9V battery (four 1.5V batteries
could also be used). The battery voltage is
regulated with a LP2950-3.3V regulator to power
the microcontroller as well as the Nokia display.
The circuit shows additional components such as
an op-amp and a connector for a condenser mic,
but these components are not associated with the
clock project. These components are for a different
project. The system has two switches, S1 and S2,
which are used to set the time and to scroll the
display. The clock maintains seconds, minutes,
hours, and days of the week. However, only three
items can be seen at any given point, due to the
limited size of the display. Switch S2 is used to
scroll through all these components.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the component (top)
layer with a few jumpers in the solder (bottom)
layer. The component side and solder side of the

Chapter 4 ■ Graphics LCD Projects 119

tinyAVR

Bus
SPI

Power

Supply

Day

Hours

Minutes

Seconds

Select

Enter

board are shown in Figures 4-17 and 4-18,
respectively. Two working demonstrations are
shown in Figures 4-19 and 4-20.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

120 tinyAVR Microcontroller Projects for the Evil Genius

Zany clock: Schematic diagramFigure 4-16

The code runs at a clock frequency of 7.3728
MHz. The controller is programmed using STK500
in ISP programming mode. To run the device on an
external clock, CKSEL fuses must be programmed
to •1101Ž before programming the controller.
Certain parts of the code are common to previous

projects involving the use of the NOKIA 3310;
thus, we have included the LCD library in our
project, thereby eliminating the need to write the
LCD interfacing code all over again. The functions
related to interfacing the LCD and displaying data
on the LCD are taken directly from this library.

Chapter 4 ■ Graphics LCD Projects 121

Clock PCB: Component sideFigure 4-17 Clock PCB: Solder sideFigure 4-18

Project with display showing three
parameters

Figure 4-19 Project with display with scrolled
values

Figure 4-20

Now to generate the display pattern as a
timeline, we have created two functions: boxesand
centerline. The former draws the outer boundary
of time quantities on the zero, second, and fourth
page, whereas the latter draws a centerline used to
view the elapsing time. The centerline has X
coordinates of 41 and 42, and is present on every
page. Data related to seconds, minutes, and hours
is stored in a constant array table in program
memory. A particular character or digit requires
12 columns for display, and the table consists of
60 such characters, thus requiring a total of
720 columns. Similarly, table2 contains data
related to days. The display block of each day
requires 18 columns; thus, the total size of the
array is 18 � 7 � 126.

TIMER0 is initialized with a frequency of 7200
Hz, obtained by prescaling the system frequency
by 1,024, and the overflow interrupt is enabled by
setting TOIE0 bit in TIMSK register. Further
prescaling is achieved with the software as shown
in the code segment of the ISR:

ISR(TIMER0_OVF_vect)

//timer interrupt service routine

{

TCNT0L=(255-225);

count++;

if(count==8)

//software prescaling by 8

{

count=0;

if(s.c==0)//sec count

s.c=1;

if(m.c<20)//min count

m.c++;

if(h.c<1200)//hour count

h.c++;

if(d.c<19200)//day count

d.c++;

}

}

In this routine, the timer register is initialized
such that the timer counts 225 and not 255 when it
overflows. The timer runs at a frequency of 7,200

Hz; thus, an overflow interrupt occurs at 225/7,200
sec. Now the main content of the ISR is executed
when count reaches a value of 8. This means that
the content is executed every 225 � 8/7,200 of a
second, which is nothing but one-quarter of a
second.

A particular second elapses when its 12 columns
surpass the timeline or centerline. Thus, on every
eighth timer interrupt, that is, on one-quarter of a
second, three columns should surpass the timeline.
This is done in the main loop of the program. An
infinite while loop keeps the track of seconds to be
displayed on the LCD. In this infinite loop there are
four functions from the rtc library . These are
seconds(), minutes(), hours(), and days(). Out of
these, seconds() is explained next:

if(s.end!=723)

//if end is not equal to the end

//limit of table1

{

cursorxy(0,s.row);

//put cursor on the seconds page

for(i=s.start;i<s.end;i++)

//write contents from start to end

{

column=pgm_read_byte((table1+i));

writedata(column);

}

centerline(); //display centerline

if(s.c==1) //check count

{

s.start+=3;

s.end+=3;

s.c=0;

}

}

else if(s.end==723)

//if end reaches the limit of table1

{

centerline();

cursorxy(0,s.row);

for(i=s.start;i<(s.end-3);i++)

//display contents from start

{

column=pgm_read_byte((table1+i));

writedata(column);

122 tinyAVR Microcontroller Projects for the Evil Genius

}

for(i=0;i<s.x;i++)

//display from the first element

//of table 1

{

column=pgm_read_byte((table1+i));

writedata(column);

}

centerline(); //timeline

if(s.c==1) //check count

{

s.start+=3;

s.x+=3;

s.c=0;

}

if(s.x==84)

//check if start has reached end

//or not

{

s.end=84;

s.start=0;

s.x=3;

}

}

Every display quantity, be it seconds, minutes,
hours, or days, has its set of variables defined in
rtcpara structure. These variables are defined as:

■ start Starting X-coordinate of the data to be
displayed.

■ end End value of the X-coordinate of the
data to be displayed.

■ x X offset used to display data from the
beginning of the PROGMEM table when end
reaches its limiting value.

■ c Count of the corresponding quantity. This
count is incremented in the ISR noted earlier.

■ row Represents the page or the bank of the
corresponding quantity.

In the previous routine, the first part is executed
when s.endis not equal to the limiting value, that
is, 723. Then data is printed on s.row page from
s.start to s.end, which is 84 columns apart; hence,
data is printed on the full page. Then centerline or

timeline is flashed to view the elapsing time, and
the s.cis checked. If s.cis found equal to 1, s.start
and s.endare incremented by 3 and s.cis made 0
again. The second part is executed when s.end
reaches its limiting value. At first, data is printed
from s.start to s.end – 3(because s.endwas
incremented by 3 in the first part) on the s.row
page. Then data is printed from the start of the
PROGMEM table to s.x. This continues until s.x
reaches a value of 84. At this point, s.start is made
equal to 0 and s.endis made equal to 84. Similar
checking on s.cis performed as in the first part,
and centerline is flashed.

Minutes, hours, and days are manipulated and
displayed using similar routines defined in rtc.c.
Apart from this, the code consists of initial time
setting through hardware switches and using the
pin change interrupt to toggle between displaying
days or seconds.

Working

To use the clock, simply power up and set the
time. Then you see the seconds fly by on the
screen. The minutes scroll slower compared to the
seconds, and the hours are even slower. Press S2 to
see the day of the week. Press S2 again to get back
to the original display.

Project 19
Rise and Shine Bell

This is a project we designed for a residential
school. They wanted a really loud alarm bell to
wake the kids up for morning exercises. We added
more features by providing additional alarm
functions. A separate code programmed in the
same hardware converts the alarm bell into a
school bell. The next illustration shows the block
diagram of the alarm bell. It has a mains power
supply input as well as a battery backup. The audio
amplifier provides a loud output to wake the kids
up from sleep.

Chapter 4 ■ Graphics LCD Projects 123

Design Specifications

The objective of the project was to design a loud
mains-powered alarm bell with battery backup for
the timekeeping functions. The bell offers three
alarm settings.

Design Description

Figure 4-21 shows the main schematic of the
project, and Figure 4-22 shows the schematic
diagram of the add-on switches.

The alarm bell has two power supply inputs: a
source from mains power and another from a
battery. The mains-powered source is used to
power the microcontroller circuit as well as the
audio amplifier, while the battery source only
powers the microcontroller. The microcontroller, a
Tiny861, uses a 32.768-KHz crystal as the system
clock source to execute the program as well as to
maintain time. Providing operating voltage to the
microcontroller is, therefore, extremely important
and critical for the operation of the alarm bell. The
user can set up to three alarms, and when any of
the alarm times matches the current time, the
microcontroller generates a tone on the PB3 pin
that drives a 20W audio amplifier. The
microcontroller power supply is from a
LP2950-3.3 regulator since the system interfaces

to a Nokia display. The display is used to interact
with the user.

On powering up the circuit, the current time set
appears on the top-right corner of the LCD along
with the menu, which has six items„TIME,
MODE, DISP, ALARM1, ALARM2, and
ALARM3.

■ TIME Configures the present time of the
system.

■ MODE Switches individual alarms on and
off.

■ DISP Switches off the display.

■ ALARM x Sets the time of the individual
alarm.

The triangle-shaped pointer shows the current
menu item selected, and it can be moved down by
pressing S2 and up by pressing S3. Pressing S1
displays the submenu of the selected menu item.
At this level, S4 has no function but to
asynchronously stop the running alarm. The
submenus are as follows:

■ TIME S1 updates the current time shown
and exits the menu. S2 changes the pointer of
the digit to be changed. S3 and S4 increment
and decrement, respectively, the digit currently
pointed to.

124 tinyAVR Microcontroller Projects for the Evil Genius

Current Time

Alarm 2

Alarm 1

Alarm 3

Power
Supply

tinyAVR

Up/Down

Left/Right

Enter

Run

SPI
Bus

Audio

Amplifier

Battery
Backup

Mains
Input

Vcc

12
5

Rise and shine bell: Schematic diagramFigure 4-21

■ MODE S1, S2, and S3 toggle the positions
of Alarm1, Alarm2, and Alarm3, respectively,
while S4 exits the menu. The status of the
alarm is shown on the top-left corner of the
main screen.

■ DISP This has no submenu, but simply
clears the display. The display can be switched
on by pressing any switch. After being
switched on, the display returns to the same
state that it was in before being switched off.

■ Alarm x Same as TIME, but the respective
alarm is updated and not the system time.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the component (top)
layer with a few jumpers in the solder (bottom)
layer. The component side and solder side of the
board are shown in Figures 4-23 and 4-24,
respectively. A photograph of the complete system,
along with the switchboard and speaker, is shown
in Figure 4-25.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 32768
Hz, provided using an external crystal. The
controller is programmed using STK500 in ISP

126 tinyAVR Microcontroller Projects for the Evil Genius

Schematic diagram of the switchesFigure 4-22
Rise and shine bell: Component
side

Figure 4-23

Rise and shine bell: Solder sideFigure 4-24

programming mode. Important sections of the code
are explained later. The whole program is menu
driven; therefore, several functions have infinite
while loops that allow the user to change the
settings and then jump out of that loop by selecting
the appropriate menu option. The setmode
function allows the user to switch on or off any of
the three alarms, and setalarm allows the user to
set the time of the individual alarm. The critical
sections of the code are those that display the
present time, continue the previously playing
alarm, and switch on the alarm with the time
setting equal to the present time. Hence, these
three sections have been repeated in all the while
loops inside main or some other function. The
function showTime_ddisplays the current time,
and the function showTimedisplays the time that
is passed to it using the array Time[3]. The code
runs at a low frequency and, hence, refreshing the
LCD takes time, but using a low frequency

decreases the overall power consumption of the
system.

void showTime(unsigned char

Time[3],unsigned char x,unsigned

char y)

{

cursorxy(x%84,y%6);

timetext[0]=(Time[hour]/10+'0');

timetext[1]=(Time[hour]%10+'0');

timetext[2]=(':');

timetext[3]=(Time[min]/10+'0'');

timetext[4]=(Time[min]%10+'0');

timetext[5]= '\0';

putstr(timetext);

}

void showTime_d(unsigned char

x,unsigned char y)

{

cursorxy(x%84,y%6);

putcharacter(Alarm[0][hour]/10+'0');

putcharacter(Alarm[0][hour]%10+'0');

Chapter 4 ■ Graphics LCD Projects 127

Rise and shine bell: System photographFigure 4-25

(continued on next page)

putcharacter(':');

putcharacter(Alarm[0][min]/10+'0');

putcharacter(Alarm[0][min]%10+'0');

if(((Alarm[0][sec])%2))

{

cursorxy((x%84)+2*6,y%6);

putcharacter(' ');

}

if(al_on==0)

{

cursorxy(0,1);

if(alarm1==1)

{

putstr("1 ");

}

else putstr(" ");

if(alarm2==1)

{

putstr("2 ");

}

else putstr(" ");

if(alarm3==1)

{

putstr("3 ");

}

else putstr(" ");

}

}

The time has been maintained using the external
crystal, which is more accurate than the internal
RC oscillator of the microcontroller. The other
important parts of the code start the PLL, initialize
and stop the alarms, and set various other global
parameters in the beginning of the code.

Working

The operation and use of the bell is explained in a
previous section.

Conclusion

This chapter showed several projects based on the
Nokia 3310 GLCD. Most of the projects could be
modified easily to serve alternative purposes. In
the next chapter we focus on several sensors and
discuss projects based on these sensors.

128 tinyAVR Microcontroller Projects for the Evil Genius

Sensor Projects

C H A P T E R 5

IN THIS CHAPTER WE LOOK AT several projects with
a focus on various sensors. The list of sensors is
huge and cannot possibly be covered even in a
dedicated textbook, let alone a chapter. However,
we list some projects based on commonly used
sensors, some of them quite novel in their
application.

LED as a Sensor

LEDs are commonly used for displaying
information. Although not used frequently for

this purpose, modern LEDs can also work as
photovoltaic detectors. Evidence of how the LED
can function as a light sensor can be obtained by
simply connecting an LED to a multimeter and
exposing the LED to a source of bright light; for
example, connect the two terminals for a red LED
to a multimeter and illuminate it with another
similar red LED, as shown in the illustration. The
multimeter should show a reading of more than
1.4V. However, using an LED as a sensor in this
fashion would require an analog-to-digital
converter (ADC), which is a comparatively
expensive peripheral. Later in the chapter, we show

129

Red LED
as sensor

Red LED
as source

Digital Voltmeter

how an LED can be used as a sensor without any
ADC, just by using a timer (either hardware or
software based).

Thermistor

A thermistor is a temperature-dependent resistor. A
thermistor is one of the cheapest temperature
sensors. There are two types: negative temperature
coefficient (NTC) and positive temperature
coefficient (PTC). As the name suggests, for the
PTC thermistors, as the temperature rises, the
resistance of the thermistor increases. For the NTC
thermistors, as the temperature rises, the resistance
of the thermistor decreases. The only drawback of
thermistors is the lack of linearity of the response
of the thermistor, that is, the resistance variation as
a function of temperature is not a straight line, but
is actually a nonlinear curve. It is possible to use
the thermistor with a linear approximation in a
small temperature range; however, for proper use,
the thermistor must be linearized, whether with
external components or a software table -based
approach or by a mathematical model based on the
Steinhart-Hart equation. In spite of these
complications, the thermistor is an excellent
temperature sensor, with fast temperature response
time, and is widely used in thermostat applications.
The next illustration shows the variation of
temperature of the NTC as a function of
temperature, and the photograph shows various
thermistors.

LDR

A light-dependent resistor (LDR) is used to detect
light. The LDR is a semiconductor device whose
resistance decreases with increasing incident light
intensity. LDRs made of cadmium sulfide are
cheap, but have poor response time. The following
illustrations show the variation of LDR resistance
as a function of incident light and some sample
LDR devices.

130 tinyAVR Microcontroller Projects for the Evil Genius

Temperature (C)

0.1

1

10

100

1000

10000

150 250 35050

R
es

is
ta

n
ce

 (
O

h
m

s) 10

1000

100

10

1

R
es

is
ta

n
ce

 (
K

O
h

m
s)

100 10001
Illuminance (Lux)

Inductor as Magnetic
Field Sensor

An inductor is a passive electrical component that
stores energy in a magnetic field when current
passes through the inductor. If an inductor is
placed in a changing magnetic field, it will induce
voltage across the terminals per Faraday•s law. An
inductor is a simple sensor used to detect this
changing magnetic field. We will use this aspect of
an inductor in several of the projects later in this
chapter. Various types of inductors are shown next.

Project 20
LED as a Sensor
and Indicator

LEDs can also be used as sensors, as discussed in
the introduction of this chapter. In fact, LEDs can
act as alternating light emitters and sensors so
rapidly that there is a perception of there being two
devices in one. To use an LED as a sensor without
an ADC, one needs to reverse-bias the LED. To
use the LED as an emitter, that is, in its normal
use, one needs to forward-bias it. In this project we
show how an LED can be used to sense light
without using expensive ADCs. The same LED is
also used as an indicator of the sensed light.

An LED under reverse-bias conditions can be
modeled as a light-dependent current source in
parallel with a capacitor. The more incident light
there is, the larger is the current source value, and
that discharges the equivalent capacitor faster. In
the following illustration, the LED is reverse-
biased, with the anode connected to ground and the
cathode connected to a microcontroller pin (pin 2).
The microcontroller applies Vcc to pin 2, which
charges the equivalent capacitor. Subsequently, the
cathode of the LED is connected to an input pin
(pin 1) of the microcontroller. The capacitor that
was charged to Vcc will now discharge through the
current source, and when the voltage on the

Chapter 5 ■ Sensor Projects 131

capacitor falls below the lower logic threshold,
pin 1 of the microcontroller will sense the logic as
•0.Ž If the incident light intensity is greater, the
capacitor discharges faster; and if the ambient
light is less, it takes longer for the capacitor to
discharge. Thus, by measuring the time it takes
for the voltage on pin 1 to reach logic •0,Ž the
microcontroller can estimate the intensity of the
ambient light incident on the LED.

Design Specifications

The objective of the project is to use an LED as a
sensor and to use the same LED to output the

information about the sensed light. The illustration
below shows the block diagram of the project. A
single LED and a handful of other components are
used. The LED blinks, and the rate of blinking is
proportional to the ambient light falling on the
LED. Thus, if the LED is placed under bright light,
it blinks faster compared to when the ambient light
falling on the LED is less.

Design Description

Figure 5-1 shows the schematic of an AVR
ATTiny15-based circuit that uses a 3-mm, red LED
(LED1) in a clear packaging to sense the ambient
light as well as to indicate the incident light
intensity by flashing the same LED at a
proportional frequency. The circuit is simple and
uses just four components. The power supply to
the circuit can be any voltage between 3 and 5.5V
DC. The LED is connected to port pins PB0 and
PB1 of the AVR microcontroller. Another port pin,
PB3, is used to output a square wave, with a
frequency proportional to the incident light
intensity. The circuit operates by first forward-
biasing the LED for a fixed period. It then applies
reverse-bias to the LED by changing the bit
sequences applied to PB0 and PB1. In the next
step, PB0 is then reconfigured as an input pin. An

132 tinyAVR Microcontroller Projects for the Evil Genius

Vcc

Pin 1

Pin 2

Microcontroller

LED used as a sensor

Ambient light

Input

Ambient light

Microcontroller

LED used as a sensor

Pin 1

Pin 2

Vcc

Gnd

internal timing loop is used to measure the time it
takes for the LED to change the logic voltage
applied to PB0 from logic •1Ž to logic •0.Ž This
time, T, is inversely proportional to the ambient
light incident on the LED. The LED is then flashed
at a frequency inversely proportional to the time T.
Thus, for lower light levels, the LED flashes at a
lower frequency. As the incident light intensity
increases, the LED flashing frequency increases.
This provides a visual indication regarding the
incident light intensity.

Fabrication

The schematic of the project can be downloaded
from www.avrgenius.com/tinyavr1.

The circuit is fabricated on a small general-
purpose circuit board, as seen in Figures 5-2 and
5-3. The circuit has just five components.

Design Code

The design code for this project is written in
assembly language, as shown in Listing 5-1. The
code first initializes PB0 and PB1 as output and
sets PB0 to •1Ž and PB1 to •0Ž to reverse-bias the
LED. It then sets PB0 as an input pin and waits for
the LED cathode (connected to PB0) to discharge
to logic •0.Ž The time is stored in register R19. It
then configures PB0 again as an output pin and the

Chapter 5 ■ Sensor Projects 133

LED as a sensor and indicator: Schematic diagramFigure 5-1

LED as a sensor and indicator:
Solder side

Figure 5-3

LED as a sensor and indicator:
Component side

Figure 5-2

134 tinyAVR Microcontroller Projects for the Evil Genius

.include "tn15def.inc"

.cseg

.org 0

;LED as light sensor...

main:

ldi r16, 255

out DDRB, r16

ldi r16, 0

out PORTB, r16

ldi r19, 1

rcall delay

ldi r19, 1

new_main:

sbi DDRB, 0

nop

nop

sbi PORTB, 1 ; LED forward bias

cbi PORTB, 0

rcall delay

sbi PORTB, 0

cbi PORTB, 1 ; reverse bias

cbi DDRB, 0 ; LED discharge

cbi PORTB, 0

; set registers for minimum delay

ldi r19, 1

wait_here:

sbis PinB, 0

rjmp its_one

rcall min_delay

inc r19

brne dont_inc_r20

rjmp over_flow

dont_inc_r20: rjmp wait_here

over_flow:

its_one:

in r16, PORTB

ldi r17, 0b00001000

eor r16, r17 ; toggle PB3 to generate frequency prop to light

out PORTB, r16

mov r2, r19

rcall delay

mov r19, r2

rjmp new_main

delay:

ldi r20, 0

dec_r20:

dec_r21: dec r20

LISTING 5-1 AVR microcontroller’s assembly-language firmware

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

LED is forward-biased (to light up the LED) for a
time equal to the time stored in register R19. Thus,
if the microcontroller measures T time units as the
time it takes to discharge the LED in the first
measurement cycle, it turns the LED on for T time
units. The frequency at which the LED is pulsed is
proportional to the light incident on the LED.

Working

The circuit was tested by applying light of known
intensity through a test LED. For low values of
LED forward current, the light output intensity is
fairly linear. The light output of the test LED was
coupled to the sensor LED (LED1 in Figure 5-3)
of the circuit. It was ensured that no other external
light was incident on the sensor LED by enclosing
the test LED and the sensor LED in a sealed tube
covered with black tape. The test LED current
varied between 0.33mA and 2.8mA. The
corresponding output of the sensor LED flashing
frequency was recorded and is shown as a plot in
Figure 5-4. As can be seen in this figure, the circuit
provides a fairly linear output.

The ATTiny15 AVR microcontroller is an eight-
pin device. The circuit presented here uses only
three out of the six I/O pins. The rest of the pins
can be used to control external devices or for
communication with other devices. The efficiency
of using an LED as a sensor depends upon current

source and capacitance values of the LED operated
in reverse-bias. We estimated these values to
compare with the figures reported in literature. To
estimate the reverse photocurrent, we connected a
1-meg-ohm resistor in parallel with a sensor LED
and measured the voltage across the resistor. The
sensor LED was subjected to constant illumination
and voltage across the resistor noted. We changed
the resistor value to 500 kilo-ohm and 100 kilo-
ohm and repeated the measurement. The resultant
photocurrent for the constant illumination was
observed to be around 25mA for all the
measurements. For the same illumination on the
sensor LED, the frequency generated by the circuit
in Figure 5-3 was measured, and delay loop times,
current, and voltage were substituted in the

Chapter 5 ■ Sensor Projects 135

brne dec_r20

dec r19

brne dec_r20

ret

min_delay: in r0, SREG

ldi r18, 200

not_over:

dec r18

brne not_over

out SREG, r0

ret

LISTING 5-1 AVR microcontroller’s assembly-language firmware (continued)

1.0 2.0 3.0

40

80

120

Test LED Current (mA)

S
en

so
r

L
E

D
 O

u
tp

u
t

F
re

q
u

en
cy

 (
H

z)

Plot of LED sensor output as a
function of ambient light intensity

Figure 5-4

equation dv/dt � I/C to calculate the reverse
capacitance. The calculated values lie in the range
of 25 to 60pF.

Project 21
Valentine’s Heart LED Display
with Proximity Sensor

The use of the LED as a sensor is further
illustrated in this project with a captivating output
that will mesmerize the viewer. The project
consists of several LEDs arranged in a heart
formation, •throbbingŽ at a normal rate depicting
the throbbing of a human heart. However, if a hand
is brought close to the blinking LEDs, the sensor
LED detects the reduction in the incident light and
the microcontroller increases the throbbing rate. If
the hand is brought closer, almost touching the
LED matrix, the sensor LED detects this and the
microcontroller flashes the LEDs in an unusual
fashion to indicate a •happyŽ mood. Once the hand
is taken away, the •heartŽ resumes normal
•throbbing.Ž The illustration shows the block
diagram of the LED heart display.

Design Specifications

The objective was to create an interactive project
in the form of an LED matrix arranged in a heart
shape. The interactivity is based on sensing the
proximity of a hand or any other object, and is
used to change the blinking rate of the LEDs. The

project is battery operated so as to make it
portable.

Design Description

The schematic diagram of the project is shown in
Figure 5-5. The circuit consists of 27 LEDs
arranged in three concentric layers. The outermost
layer consists of 14 LEDs. The middle layer
consists of ten LEDs, and the innermost layer
consists of three LEDs. At the center of the inner
layer is another LED, marked LED28. This LED
is not being used to emit light but to sense the
ambient light. The circuit is battery powered and
has an on-board 3.3V voltage regulator. Each LED
has a 560-Ohm resistor in series. Thus, the current
through each LED is about 3mA. Three NPN
transistors (BD139) are used to switch each of the
three layers of the LEDs on or off. The BD139
NPN transistor is capable of handling 1A of
collector current. However, in the circuit, the
maximum current flows only in the outer layer of
LEDs and is about 45mA, so any NPN transistor
with 100mA collector current rating would also
work fine.

The ambient light intensity is sensed by LED28,
which is connected between two microcontroller
pins (pin PB3 and PB4). The microcontroller uses
this LED to sense the ambient light by reverse-
biasing the LED and measuring the time it takes
for the logic •1Ž to discharge to logic •0.Ž The
circuit can be powered with an external battery
with voltage between 5 and 10V.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The project has been fabricated using a custom,
single-sided circuit board. The photographs of the
completed project (component side and solder
side) are shown in the next illustrations. During

136 tinyAVR Microcontroller Projects for the Evil Genius

Ambient light

LED used as a sensor

Gnd

Vcc

tinyAVR

Chapter 5 ■ Sensor Projects 137

LED heart display: Schematic diagramFigure 5-5

soldering, all the SMD components (resistors, etc.)
were soldered first, followed by a few jumper
wires. Subsequently, all the LEDs, transistors, a
socket for the microcontroller, and other
components were soldered.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 9.6 MHz.
The controller is programmed using STK500 in
ISP programming mode. The LED heart works in
one of three possible modes: NONE, NORMAL,
and HAPPY. These modes are differentiated by the
blinking patterns of the LEDs. The main infinite
loop of the program is given here. The value of the
variable a is set to 20 globally.

while(1)

{

if(mode==NORMAL)

{

PORTB &=0b11111000;

//off

mydelay(a+a+a+a);

PORTB|=0b00000111;

//on

mydelay(a+a);

PORTB &=0b11111000;

//off

mydelay(a+a);

PORTB |=0b00000111;

//on

mydelay(a+a);

time=0;

}

else if(mode==HAPPY)

{

if(state==1)

PORTB |=1<<2;

else if(state==5)

PORTB &= ~(1<<2);

if(state==5)

PORTB &=~(1<<1);

//Middle off

else if(state==2)

PORTB |=1<<1;

//Middle on

if(state==4)

PORTB &=~(1<<0);

//Outer off

else if(state==3)

PORTB |=1<<0;

//Outer on

mydelay(5*state);

state++;

if(state==6)

state=1;

time++;

if(time==100)

{

mode = NORMAL;

previous_mode

= NONE;

time=0;

a=20;

}

}

check();

}

If the mode is set to NORMAL, the system
starts toggling between the ON and OFF states of
the LEDs, with some delay depending on the value
of a. The other case is when the mode is set to
HAPPY. There are three parts to the LED heart:
outer heart, middle heart, and inner heart. When
the mode is set to HAPPY, depending on the value
of the variable state, the LEDs in one of the three
parts of the heart are either turned on or off.

138 tinyAVR Microcontroller Projects for the Evil Genius

The value of the variable mode is set to NONE
globally. The system calls a function check() for
proximity sensing, which modifies the value of the
mode accordingly. This function is shown next.
The value of the count from TIMER0 is stored in
the variable i until there is a logic level 1 at the
third bit of PINB (which is connected to the
sensing LED), so as to detect the proximity of any
opaque object (like a hand, in this case) that might
be blocking the light falling on the LEDs.
Depending on the distance of the object from the
LEDs (which can be determined from the count
value) and on the previous mode in which the
system was working, the current mode is either set
to NORMAL or HAPPY.

void check(void)

{

TCCR0B = 0;//stop timer

TCNT0 = 0;//clear timer

i=0;

DDRB = 0b00010000;

PORTB &= ~(1<<3);

i=0;

TCCR0B = 1<<CS02|1<<CS00;

//Prescaled by 1024

while((PINB&(1<<3))&&(i<80))

{

i=TCNT0;

}

if(i>50)

{

if((previous_mode==NORMAL))

{

mode = HAPPY;

}

else a=20;

}

else if(i<50)

{

if(i<40)

previous_mode = NORMAL;

}

else previous_mode = NONE;

mode = NORMAL;

a=i/3;

}

PORTB |=1<<3;

DDRB = 0b00011111;

}

The other parts of the code involve, as usual, the
initializations for the various parameters. The
mydelay function is defined here; if the system is
working at a frequency of 9.6 MHz, it provides a
delay of 10 ms for an argument of 1.

void mydelay(int var)

//delay of 10ms for var=1 at

//9.6 MHZ

{

unsigned char il, jl, kl;

for (il=0; il<var; il++)

for (jl=0; jl<251;jl++)

for (kl=0; kl<50; kl++)

asm(“NOP”);

}

Working

To use the touch-sensitive throbbing heart, just
hold the circuit board by your chest (put the
batteries in the adjoining pocket) and turn it on.
The LEDs should start blinking at a normal rate.
Now bring a hand close to the blinking LEDs, and
the throbbing rate should start increasing. Keep
bringing the hand closer to the circuit board and
eventually touch the board and then take your hand
away. Once you take your hand away, the LEDs
should start blinking in the HAPPY mode,
returning to normal throbbing after a few seconds.

Chapter 5 ■ Sensor Projects 139

Project 22
Electronic Fire-free
Matchstick

Imagine a matchstick that you strike across a
matchbox and it starts flickering but without any
fire? Well, what good could be such a matchstick?
How about for use in plays and theaters and for
kids who you don•t want to play with fire? The
electronic fire-free matchstick is such a device, in
that, you have to strike the matchstick across a
matchbox and then the matchstick starts glowing.
The project utilizes an inductor on the matchstick
and a hidden magnet inside a matchbox to achieve
this feat. The following illustration shows the
block diagram of the matchstick.

Design Specifications

The objective was to create a chargeable and
portable •matchstickŽ that one could strike across
a matchbox to light up. Like a normal matchstick,
the electronic matchstick is supposed to light up
only for a short duration, extinguishing after this
time. There are many application areas for such a
seemingly useless project, especially to do with
kids and in theater.

Design Description

Given the requirement that a light is to start
glowing when the matchstick is struck against a
matchbox, two questions arise: how to power the
matchstick and how to generate the trigger that
lights up the matchstick. There are several ways to
power the matchstick. Batteries seem a natural
choice. However, using batteries would entail the
use of an on/off switch, but more importantly,
how would you turn the matchstick off? The
microcontroller program could be designed to turn
off the light after a preset amount of time, but that
would take the randomness out of the matchstick
glow. So, instead of a battery, we decided to use a
supercapacitor. A supercapacitor can store a lot of
energy that can be used to provide suitable voltage
and current with the help of a DC-DC converter.
The advantage of using a supercapacitor is that it
would discharge naturally as its energy is utilized
and drained through the circuit and thus the
matchstick would shut off on its own.

The second aspect is how to trigger the
matchstick to start working. For that, a simple
inductor-based trick is used. As we have seen
earlier, moving an inductor in a magnetic field
produces a voltage across the inductor. If the rate

140 tinyAVR Microcontroller Projects for the Evil Genius

Gnd

Vcc

tinyAVR

Converter

DC−DC

Supercapacitor

Battery Input
for Charging

Magnet

Inductor

White LED

change of the magnetic field is large enough, it
can produce a sufficiently large voltage to
interrupt the microcontroller! Once interrupted,
the microcontroller can be made to do anything
we want.

Figure 5-6 shows the schematic diagram of the
matchstick. A 10F supercapacitor is used to power
the circuit. Its voltage rating is 2.7V, which means
it can be charged to 2.7V, storing a total of 27
coulombs of charge. To charge the supercapacitor,
an external battery is used (2 � 1.5V alkaline or
NiMH batteries in series are most suitable). The
supercapacitor drives a boost-type DC-DC
converter, the MAX756, which is configured to
provide 5V output voltage. The MAX756 can be
set to provide 3.3V output voltage also, but since
we want to drive a white LED, a 3.3V supply
voltage would not be suitable for that. The DC-DC
converter uses an inductor L1 (22µH) and D1
Schottky diode (1N5819) for its operation. Once
the supercapacitor is charged above 1.2V, the
DC-DC converter provides 5V output voltage to

the Tiny13 microcontroller. The microcontroller is
powered and is waiting for an external trigger. The
trigger is received on the second inductor in the
circuit L2, which is an inductor with a large value
(compared to L1) at 150mH. When the matchstick
is struck across the face of a matchbox with a
hidden magnet, it produces a voltage spike across
the inductor. The diode across the inductor ensures
that any negative voltage generated across the
inductor doesn•t harm the microcontroller. Once
the microcontroller is triggered, it executes a code
that lights up the LED in a random fashion (just
like in the LED candle project). Lighting the LED
consumes a much larger amount of energy than
just powering the microcontroller, and this
discharges the supercapacitor rapidly. Once the
supercapacitor voltage drops below 0.7V, the
DC-DC converter is unable to provide +5V supply
voltage, and thus the microcontroller stops
working and the matchstick •extinguishes.Ž
A 10-mm white LED is used in the project,
although a smaller 5-mm LED can also be used.

Chapter 5 ■ Sensor Projects 141

Electronic fire-free matchstick: Schematic diagramFigure 5-6

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The circuit is fabricated using a custom circuit
board, keeping in mind the unique requirement of
the project. The circuit board is designed so that it
is narrow and long so as to appear as a matchstick.
It is conveniently packaged in a transparent
Perspex tube, as seen in the next illustration. The
PCB is soldered with all the SMD components
first, followed by other leaded components. Once
soldered, it is put inside the tube. The tube length

is chosen such that the LED protrudes from the
other end. The LED end of the tube is sealed with
hot glue melt and may be painted red.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 1.6 MHz.
The main infinite loop of the code is shown next.
If the variable mode is set to •ON,Ž the system
generates a pseudo-random variable called lfsr

142 tinyAVR Microcontroller Projects for the Evil Genius

using a linear feedback shift register (LFSR) of 32
bits with taps at the 32nd, 31st, 29th, and 1st bits.
This value is stored in the variable temp (so as to
maintain the last state of the LFSR), and the value
of temp is sent to the output at PORTB. The delay
introduced into the system is also a function of the
variable temp, and hence, is also correspondingly
pseudo-random.

while(1)

{

i=1;//This is made to ensure that

//interrupts before this are

//neglected

if(mode==ON)

{

//Galois

lfsr = (lfsr >> 1) ^

(-(lfsr & 1u) &

0xd0000001u);

/* taps 32 31 29 1 */

temp = (unsigned char)

lfsr;

DDRB= ~temp;

PORTB = temp;

temp = (unsigned char)

(lfsr >> 24);

_delay_loop_2(temp<<7);

}

}

The value of the variable mode is, however,
globally set to •OFF.Ž The main program sets the
variable i to 1. When the matchstick is struck
across the matchbox, it produces a voltage spike
across the inductor, which interrupts the processor
and the PCINT0 ISR is executed. In the ISR code,
the value of mode is set to •ONŽ and the masks
GIMSK and PCMSK set to 0�00, using the
interrupt service routine shown next. Once the
program returns to the main code, the infinite loop
executes the Galois LFSR code, which lights up
the LED in a random fashion.

ISR(PCINT0_vect)

{

if(i==1)

{

mode = ON;

GIMSK = 0x00;

PCMSK = 0x00;

}

}

The other parts of the code are the various
initializations, which provide values for the masks
and variables used in the program.

Working

To use the matchstick, one must have the special
matchbox with the hidden magnet. The polarity of
the magnet is important, that is, which pole of the
magnet faces outwards. The supercapacitor in the
matchstick has to be charged before the matchstick
can be used. For that, we use a battery holder to
connect two AA batteries in series. The battery
voltage is used to charge the supercapacitor. After
the batteries are connected to the supercapacitor, it
may take some time for the supercapacitor to
charge fully. Once the capacitor is charged (you
may confirm that by measuring the voltage across
the supercapacitor, which must be more than 2V
for acceptable operation of the matchstick), you
are ready to strike the matchstick across the
matchbox. You will notice that it is not necessary
for the matchstick to be physically rubbed across
the matchbox. As long as you rapidly strike the
matchstick in the vicinity of the matchbox, it will
produce a voltage spike across the inductor to
trigger the operation. Please see the video at
www.avrgenius.com/tinyavr1 for proper operation
in case you cannot get your matchstick to operate
as expected.

Chapter 5 ■ Sensor Projects 143

Project 23
Spinning LED Top with
Message Display

Several LED spinning tops are available. They
usually have LEDs of different colors on them, and
as you spin them, these colors spread across the
circumference of the spinning top. However, our
top is totally different from these other available
tops. Our top displays a message when you spin it.
Better still, when you spin the top in the opposite
direction, it can display a different message. The
LED lighting pattern is changed rapidly to display
the required message and the persistence of vision
of the human eye is able to record the displayed
message. The original design was published as an
article in Elektormagazine in December 2008
(•LED Top with Special EffectsŽ). We adapted that
circuit and made some improvements such that our
spinning top can display a message when you spin
it one way and a different message when you spin
it the other way. The Elektor top could only

display the same message if you spun the top one
way. The illustration shows the block diagram of
the spinning top. It consists of a row of SMD
(surface mount device) LEDs arranged radially
from the center of the top towards the periphery.
The top is powered with two AAA NiMH or
alkaline batteries providing between 2.4 and 3V.
Since the microcontroller is to be powered with
5V, there is an on-board step-up type DC-DC
converter, which boosts the battery voltage to
+5V. To determine the motion and to determine
the direction of motion of the top, the circuit
employs motion-sensing components using a
couple of inductors.

Design Specifications

The objective of the project is to create a spinning
top with LEDs that will display messages when the
top is spun. The top is to be battery powered and
should display different messages when it is spun
in the two directions. The circuit uses eight LEDs
to display text as well as graphics information.

Design Description

Figure 5-7 shows the schematic diagram of the
direction-aware LED spinning top. It is powered
with two AAA batteries labeled AAA1 and AAA2
in the schematic. An on/off switch, SW2, allows
the power to be switched off when not in use.
Beware that there is no power-on indicator and it is
likely that you will forget to switch the power off
and thus drain the batteries.

The battery voltage is applied to the MAX756
DC-DC converter, which provides +5V supply
voltage to the rest of the components on board
using inductor L1 and Schottky diode D1. The
supply voltage of +5V is used to power the
microcontroller AVR ATTiny44 (IC3) as well as
two dual op-amps LM358 (IC1 and IC2). The
microcontroller drives eight SMD LEDs in current
sink mode. The motion detector circuit consisting

144 tinyAVR Microcontroller Projects for the Evil Genius

Conv.

DC−DC

tinyAVR

Motion
Sensor

14
5

Direction-aware LED spinning top: Schematic diagramFigure 5-7

of the two op-amp ICs indicates whether the top is
spinning or not and, if it is spinning, the direction
of the spin. This information is provided to the
microcontroller on signal pins INT (pin PB2) and
DIR (pin PB1). The motion and direction detector
circuit consists of two identical channels
comprising inductors L2 and L3. When an inductor
moves in a magnetic field, it produces a voltage.
The circuit exploits the magnetic field of the Earth.
The inductors are arranged such that they are
perpendicular to the Earth•s magnetic field. Thus,
the inductors produce a tiny AC voltage when the
top spins. The frequency of this AC voltage is
equal to the rate at which the top spins. The two
inductors are placed 90 degrees apart on the
circumference of the edge of the top. Thus, the
waveform of one inductor is 90 degrees out of
phase compared to the waveform of the other
inductor. If the sinusoidal waveforms produced by
each of the inductors is observed on an
oscilloscope with a common time base and one of
the inductor waveforms is taken as a reference
waveform, then the other waveform will lead the
reference waveform in one direction of motion and
lag the reference waveform in the other direction,
as shown in the next illustration.

The sinusoidal signals from the inductors are
amplified by the op-amps configured as
noninverting amplifiers (IC1A and IC2A,
respectively). These amplified outputs are
converted into a square wave by comparing each
waveform with a delayed version of the same
waveform using RC delay circuits (R14-C9 and
R15-C8 for one channel and R21-C12 and R22-
C11 for the other channel). These delayed
waveforms are passed through comparators (IC1B
and IC2B, respectively) to get square waveforms
of the same frequency as the sinusoidal signals
from each of the inductors. The rectangular signals
from the op-amps (INT and DIR) are connected to
the microcontroller. The INT signal is connected to
the PB2 pin of the Tiny44 microcontroller, which
is an interrupt input. The pin is configured as a

rising-edge input by the microcontroller code. The
other channel DIR is connected to PB1. Each time
the microcontroller is interrupted by the INT
signal, it executes an ISR, and in the ISR it reads
the state of the DIR pin. If DIR pin is •0,Ž then it
assumes one direction of motion and if DIR is •1,Ž
then it assumes the opposite direction. The
microcontroller also measures the frequency of the
interrupting signal INT. It uses this information to
get an idea of the time it takes for the top to
complete one rotation. The LED lighting patterns
for each direction are stored in the program
memory of the microcontroller. The
microcontroller uses the spinning rate information
to decide how long a particular LED pattern should
persist. If the top speed reduces, the LED pattern
time is proportionately increased. If the top speed
is high (as will be the case at the beginning of the
rotation), each LED lighting pattern is set for a
smaller duration. This ensures that the displayed
message remains uniform irrespective of the top
speed of rotation.

146 tinyAVR Microcontroller Projects for the Evil Genius

D
R

I
IN

T

Time

D
IR

IN
T

Time

The six-pin connector is the ISP connector that
is used to program the microcontroller. Jumper JP1
is put aside for future use, and the current version
of the program does not read the state of the PB0
pin connected to the jumper. Inductor L4 is simply
to balance the top. It is electrically disconnected
from the circuit.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The top is built using a custom printed circuit
board. The next illustrations show the top and
bottom sides of the circuit board, respectively.

All the inductors are placed on the bottom side
of the circuit board and are covered with hot glue
melt to prevent damage. Inductors L2 and L3 are
wound with 42 SWG of copper enameled wire.
This is a very thin wire, and extreme care is to be
exercised when winding the coil. The dumbbell-
shaped ferrite former was completely filled with
copper wire, and the resultant inductance was
about 150 mH. Details of the dumbbell (10 mm

height and 3 mm inner diameter) and how to wind
copper wire on it are available on our website. L1
is wound with 28 SWG with 20 turns to get about
22uH of inductance. The number of turns on L4 is
not critical as long as it has the same weight as the
other inductors. All the inductors are placed on the
periphery of the circular PCB, 90 degrees apart. A
working graphic of the spinning top is shown here:

Chapter 5 ■ Sensor Projects 147

All the SMD components are soldered first,
followed by the leaded components. Then the
battery connector pins are soldered, and finally the
inductors are soldered on the bottom side. A solid
plastic rod, machined to fit in the center hole of the
circuit board, forms the axle of the top.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 1 MHz.
The maximum and minimum times one rotation
might take are predefined, as are the strings to be
printed on clockwise spinning as well as
counterclockwise spinning. The main function
initializes the interrupts and enters the infinite loop,
from where it calls the double_string_display
function repeatedly. This function is shown below.

This function uses the set_ledsfunction to
display the required pattern on the LEDs
according to which direction the top is spinning

148 tinyAVR Microcontroller Projects for the Evil Genius

void double_string_display (void)

{

// Initialize display
construct_display_field();

// TOP runs
while (running_condition() == TOP_TURNING)
{

i = current_column/2;
if(current_column%2==1)
{

set_leds(LED_ALL_OFF);
}
else if(current_column%2==0)
{

if(mode==CLOCKWISE)
{

if(i<=(STRING_LENGTH1*6))
set_leds((display_field_clock[i])&0x7F);
else
set_leds(LED_ALL_OFF);

}
else if(mode==ANTICLOCKWISE)
{

if(((STRING_LENGTH2*6)-i)>=0)
set_leds((display_field_clock[(STRING_LENGTH2*6)-i])&0x7F);
else
set_leds(LED_ALL_OFF);

}

}
}

// TOP does not run
while(running_condition() != TOP_TURNING)
{

// Disable all leds
set_leds(LED_ALL_OFF);

}
} /* double_string_display */

in, and which column is to be lit up. The
construct_display_function fills the array
display_field_clockaccording to the text and
direction. The timer and clock values for the
proper display of the strings (so as to be detected
by the persistence of vision), as well as the mode
the top is currently spinning in (clockwise or
counterclockwise), are modified in the INT0,
TIMER0 overflow, and TIMER1 overflow
interrupts. Every alternate column display is left
blank to ensure that the displayed columns do not
merge with each other due to the high speed of
rotation of the top. The ratio of columns left blank
to columns displayed determines the width of the
displayed characters.

Working

Once the top is soldered, the batteries are installed
and the microcontroller is programmed with the
application code available from our website, using
the ISP interface. Once the microcontroller is
programmed, the ISP cable is removed and the
power switch is turned on. Gently hold the axle of
the top between the palms, spin the top, and let it
go on a solid flat surface. You will see messages
appear. It may take a bit of practice to spin the top.
Let the top stop spinning, and now spin it in the
other direction and a different message will appear.
Make sure you turn the power switch off when the
top is not in use.

Project 24
Contactless Tachometer

A tachometer used to measure the rotational speed
of a motor often requires physical contact with the
motor shaft. Sometimes, however, it is desirable to
measure the rotational speed of the motor without
any physical contact with the motor or its shaft. In
some noncontact tachometer schemes, a mirror
attached to the rotating part of the motor is used to

reflect a pulsed beam of laser light, which is then
measured with an optoelectronic circuit. Other
contactless methods of measurement involve
measuring the induced voltage over the sparkplug
wire of the motor or the engine, if available.

We present a contactless tachometer circuit here
that does not use any pulsed laser light or any such
method. Instead, our method involves attaching a
small magnet to the shaft or any other rotating part
of the motor and measuring the period of the
voltage generated across a stationary inductor in
the field of the rotating magnet. With this method,
the measurement circuit is electrically as well as
physically disconnected from the motor or its
shaft, or any other part of the motor. The block
diagram of this project is shown here:

Design Specifications

The objective of the project is to design a
tachometer that could be used to measure the
rotational frequency of fans, motors, etc., without
any mechanical or electrical contact with the
object. The system is to be battery operated with
a graphics display to display the necessary
information about rotational speed, period, etc.

Chapter 5 ■ Sensor Projects 149

Gnd

Vcc

tinyAVR

Graphics
LCD

Inductor

Fan/Motor

Magnet

150 tinyAVR Microcontroller Projects for the Evil Genius

Design Description

The circuit consists of a large inductor (100mH)
followed by a large-gain op-amp configuration,
similar to the circuit in the spinning top project.
The output of the op-amp is passed through two
low-pass filters with different time constants so as
to generate a small phase difference between the
two filtered output signals. These two phase-
differing signals are fed to another op-amp in a
comparator configuration to convert the original
signal to a pulse output signal. Now the signal that
the inductor provides depends on any varying
magnetic field in the vicinity. If the circuit is
placed close to a magnet mounted on a shaft of the
motor, then as the motor moves, the magnetic field
perceived by the inductor would vary and this
would induce a sinusoidal voltage across the
inductor.

Figure 5-8 shows the circuit diagram of the
contactless tachometer. The induced voltage across
the inductor is amplified using one section of op-
amp IC3-A (LM358), and the output is passed
through two RC filters (arranged in parallel) with
different time constants. The output of these filters
is applied to the two inputs of the second section
(IC3-B) of the LM358 op-amp. This converts the
incoming sinusoidal signal from the inductor into a
pulse waveform of the same frequency. The pulse
waveform is applied to the AVR Tiny45
microcontroller, which is set up to measure the
frequency of the signal applied to one of its pins
(pin 3) configured as input. The other pins of the
microcontroller control a dot matrix LCD display
from the hugely popular Nokia 3310 mobile phone
discussed in a previous chapter. The tachometer is
powered with a 9V battery connected to the SL3
connector.

Contactless tachometer: Circuit diagramFigure 5-8

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The output of the display is shown in the
illustration on the next page, which also shows the
completed circuit in a suitable enclosure. The
monochrome display does not have any backlight,
so external white LEDs are arranged on the two
sides of the display to allow visibility in low light
conditions.

The circuit is powered with a 9V battery
connected to the SL3 connector, and this voltage is
also used to power the LM358 op-amp. The Nokia
display requires a DC power supply voltage
between 3 and 3.3V, and so an LDO LM2950-3.3V
is used to derive the supply voltage for the display
as well as the microcontroller. The output of the
op-amp is passed through a resistor and a 3V
Zener diode to limit the signal applied to the
microcontroller.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The component and solder sides of the soldered
board are shown in the next two illustrations,
respectively. The final illustration shows the
completed assembly of the project.

Chapter 5 ■ Sensor Projects 151

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The maximum time one rotation might take is
predefined. The function running_condition
checks the value of the time taken for rotation
(using period_count) against this maximum time.
If the maximum time is greater than the value of
period_count, it concludes that the machine is
running; otherwise, it concludes that the machine
has stopped. The values of period_count and
period_total are updated by the TIMER0 overflow
interrupt.

ISR(TIM0_OVF_vect)

{

//Every 9.984ms

TCNT0 = 255-78;

period_total+=9.984;

if(period_count<5500)

period_count+=9.984;

else

period_count=5500;

}

The PC0 interrupt vector handles the general
working of the tachometer, that is, the actual
collection of the rpm and period data. It checks for
a logic level low on the fourth bit of PINB, and if
this low persists for 20 µs, the system assumes that
one period has elapsed and the global variable no
is incremented by one. Once the value of no
reaches 6, that is, six periods have been completed,
the system does the actual calculation of rpm and
the period of rotation. If the value of the variable
period_total is less than 360 ms, the system does
nothing. Otherwise, it moves into a block where it
uses the value of period_total to calculate the rpm
and period of rotation, and turns the display on.
Once out of this block, the system resets the values
of period_total and no to zero again. See the code
block at the top of the next page.

The tachometer displays the rpm and the period
of rotation, using the function display. When the
function is called with the value of the variable
what being 4, the rpm is displayed, and when it is
called with what being 5, the period of rotation is
displayed. The other parts of the code set the initial
values for the different variables for proper
functioning of the program.

Working

To use the project, simply power it up and bring it
in close proximity to a moving object, such as a
fan or a motor shaft. A small magnet is attached to
the fan or the motor shaft whose rotational speed is
to be measured. The display will show the
frequency and period of rotation.

152 tinyAVR Microcontroller Projects for the Evil Genius

Project 25
Inductive Loop-based
Car Detector and Counter

Ever wondered how your car approaching the
traffic signal triggers a change of the light from red
to green the moment you come close to the traffic
lights? Or how when you enter a drive-through
restaurant, a welcome message automatically
plays? Well, wonder no more, because this project
involves a circuit that will allow you to detect a
vehicle passing through a road or a drive-through
area. There are many ways to detect a car or a
truck or a large vehicle. Usually, a vehicle has a
large metal body, and the electrical characteristics
of an inductor would be influenced and modified
in the presence of such a large piece of metal. By
measuring the change in the characteristics, one

could detect the presence of a vehicle. The block
diagram of such a system is shown here:

An inductor made of several turns of enameled
copper wire is laid on the ground where you
expect the vehicle to cross. The inductor is usually
buried under the surface and covered with asphalt
or concrete. The inductor is used to make a
Colpitts oscillator. When a large metal object such

Chapter 5 ■ Sensor Projects 153

if(!(PINB&(1<<4)))

{

_delay_us(20);//Wait for disturbance to settle

if(!(PINB&(1<<4))) //Check again if low

{

flag=0;//Display mode on in timeout

no++;

period_count=0;

if(no==6) //6 periods are over

{

/*******THIS BLOCK CALCULATES THE SPEED AND RPM BASED ON ACTUAL TESTING************/

if((period_total/(no))<60);//do nothing if twice period less

than 60ms Filtering of 2000rpm

else

{

frequency = (12.0/period_total)*1000;

rpm = frequency*60;//rpm

period_actual = period_total/12;

displayon=1;//display on on running mode

}

period_total=0;no=0;

}

}

}

Gnd

tinyAVR

Graphics
LCD

Oscillator

Crystal
X1

X2

Vcc

Inductor
buried in
ground

as a car or truck passes over the inductive loop,
the inductance of the coil reduces and thus the
frequency of the oscillation increases. A
microcontroller circuit can detect the increase
in the frequency of the oscillator, and when the
increase is more than a set threshold, the
microcontroller can conclude that a vehicle has
passed over the area.

Design Specifications

The objective of the project is to design a circuit to
detect the presence of an automobile and to count
the number of automobiles passing over a
designated area. The system is battery powered
with a graphics display to show the number of
vehicles detected by the circuit.

Design Description

The system consists of two parts: a Colpitts
oscillator, shown in Figure 5-9, and a
microcontroller measurement and display circuit,
shown in Figure 5-10. The Colpitts oscillator uses
two capacitors, C1 and C2, and an inductor
connected across X1-1 and X1-2 pins of the
connector shown in the figure. The frequency of
oscillation is F � 1/(2 (LC)). C is the equivalent
capacitance of C1 and C2, and is equal to: C1 �
C2/(C1 � C2), that is, the series equivalent of the
two capacitors. The inductor consists of several
turns of copper enameled wire encased in a sealed,
protective plastic covering, which is then buried in
the ground. The physical size of the inductor is
important and should be about six feet in length
and four feet in width. Ten turns of copper wire
render about 500 to 1,000µH of inductance. By
choosing C1 � C2 � 1000pF, the resultant
frequency of the oscillator is in the range of 200 to
300 KHz, which an AVR microcontroller can
measure easily.

The output of the oscillator is fed to the
microcontroller circuit shown in Figure 5-10. It

consists of a Tiny861 microcontroller with a 7.37-
MHz crystal for its system clock. There is nothing
magical about this frequency. It was just a handy
crystal with a value less than 8 MHz we had since
the maximum frequency of the Tiny861 is 10 MHz
(for the version we used). The system is powered
with a battery and a 3.3V LDO (LP2950-3.3V)
since the graphics display (Nokia 3310) requires a
3.3V supply voltage. Other than that, the circuit
has just an ISP connector to program the
microcontroller.

Fabrication

The board layouts in EAGLE, along with the
schematics, can be downloaded from
www.avrgenius.com/tinyavr1.

The main microcontroller circuit for this project
has been built using a custom PCB. The oscillator
circuit has been built on a general-purpose circuit
board, and the two circuits are connected together
with a pair of connectors for power supply and for
oscillator output. The oscillator board has another
connector to connect the inductive loop. The
illustrations on pages 156 and 157 show the setup
of the car detector system, the car detector
oscillator and controller circuit boards, and the
component and solder sides of the circuit boards.

154 tinyAVR Microcontroller Projects for the Evil Genius

Oscillator schematic diagramFigure 5-9

15
5

Car detector and counterFigure 5-10

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

Timer 1 has been initialized in the CLEAR
TIMER ON COMPARE MATCH mode. OCR1A
value is set for an interrupt of 1 second in total, of
which 0.1 seconds are allotted to Timer 0 for
counting the external pulses coming in from the
loop and 0.9 seconds system is left in the state
machine.

156 tinyAVR Microcontroller Projects for the Evil Genius

TIMSK |= (1<<OCIE1A); //enable compare interrupt

TCCR1B |= ((1<<WGM12) | (1<<CS12)); //with prescaler of 256, WGM for CTC mode

OCR1A = 31250; //for 1sec interrupt

sei(); //Enable global interrupt

Case s0 sets the base frequency of that surface
without a car when the user presses the switch 1
on the circuit board.

Case s1 keeps a check on the arrival of the car.
If the changing/current frequency crosses the sum
of the base frequency and the upper threshold
frequency (which the user can set according to his

Chapter 5 ■ Sensor Projects 157

Case s0

if(!(SWITCH_PIN&(1<<2))) //When switch Pressed

{

base_freq = changing_freq; //Set the Base frequency

display_base_freq(base_freq); //display it on LCD

select_case = s1; //Case s1 selected

}

Case s1

while(changing_freq > (base_freq+upper_threshold_freq))

//If changing Frequency crosses threshold

{

select_case = s2; //Case s2 selected

LED_PORT &= ~(1<<LED_GREEN); //Green LED on

LED_PORT |= (1<<LED_RED); //Red LED off

break;

}

or her needs in the detector.h file, initially 6 KHz),
the system says that a car has arrived and turns the
green LED on and the red LED off. Now the
control moves to case s2.

Case s2 keeps a check on the departure of the
car. If the changing/current frequency falls below
the sum of the base frequency and the lower
threshold frequency (which the user can again set
according to his or her needs in the detector.h file,
initially 2 KHz), the system says that a car has
gone and turns the green LED off and the red LED
on. The car counter is incremented by 1 and
control goes back to case s1.

In the ISR for Timer 1 compare match, Timer 0
is initialized and set to trigger on external pulses,
which are coming from the T0 pin. Timer 0 counts
up whenever a rising pulse comes in.

We count the number of pulses for 0.1 second
and then calculate the changing/current frequency.
Then it is displayed on the graphics display screen.

ISR(TIMER1_COMPA_vect)

//Setting up interrupt service

//routine for Compare mode

{

//Counts no. of pulses for .1 sec

ovf_counter = 0;

//Setting Timer 0 for external

//pulses

TCCR0 = ((1<<CS02) | (1<<CS01) |

(1<<CS00));

//enable Normal mode, External Clk T0

//rising trigger

//TCNT0 increases for every rising edge

TCNT1=0;

TCNT0=0;

while((3125)>=(uint32_t)TCNT1)

{

if(TCNT0==255)

{

ovf_counter += 1;

TCNT0=0;

}

counts = TCNT0;

}

//Total count after .1 sec

//Calculations for finding

//current frequency

counts = (ovf_counter *

255) + counts;

freq=(float)counts;

freq=freq*10;

counts=(uint32_t)freq;

counts=counts/10;

changing_freq = counts;

LCD_partclear();

display_changing_freq();

}

These macros are present in the detector.h file,
which should be set by the user according to his
or her needs. It has both the upper and lower
threshold frequency variables that are to be used
during the car•s arrival and departure.

158 tinyAVR Microcontroller Projects for the Evil Genius

Case s2

while(changing_freq < (base_freq+lower_threshold_freq))

//If changing Frequency back to normal

{

LED_PORT &= ~(1<<LED_RED); //Red LED on

LED_PORT |= (1<<LED_GREEN); //Green LED off

car_counter = car_counter+1; //Car counter incremented

display_car(car_counter); //Display number of cars

select_case = s1; //Case s1 selected

break;

}

#define upper_threshold_freq 600

//in khz, divide the freq by 10

//i.e It is 6 khz in above case which

//gives 6000/10 = 600

#define lower_threshold_freq 200

//in khz, divide the freq by 10

//i.e It is 2 khz in above case which

//gives 2000/10 = 200

Working

To use the inductive loop-based car detector
requires embedding the inductive loop under the
surface. Once the loop is embedded and connected
to the oscillator, the controller is turned on. The
controller displays the counter value initialized to
0, and when the car approaches the loop, the
display shows the presence of the car. When the
car exits the loop, the counter is incremented by 1.

Project 26
Electronic Birthday
Blowout Candles

We wanted to design LED-based birthday candles,
except we also wanted to be able to blow them out
like we would blow out a normal candle. This
project describes such a candle system that is
suitable for small kids since these candles are fire-
free. To sense the air blow, the system uses a
thermistor, as shown in the following illustration.
The microcontroller controls the LEDs and can
change the intensity randomly to give a perception
of flickering candles. The system can be coupled
with an optional ringtone player (as part of a
project in the next chapter) that would play the
happy birthday ringtone after all the •candlesŽ are
blown out.

Design Specifications

The objective of the project is to design LED-
based birthday candles with the feature to blow out

the •candlesŽ just like normal wax candles. The
purpose of such an electronic, battery-operated
solution is to create a safe fire-free solution
for kids.

Design Description

The circuit diagram of the project is shown in
Figure 5-11. It consists of a Tiny44 microcontroller,
which has 12 I/O pins, but since one of the pins is
for RESET, it actually allows only 11 pins for I/O.
The circuit is powered with an external battery
(four AA NiMH batteries recommended) without
any on-board regulator to keep the system simple.
The system has 20 LEDs in a 4 � 5 matrix. The
LEDs are arranged with common anodes connected
to the power supply through PNP transistors. The
cathodes are connected to the microcontroller pins.
These LEDs are multiplexed at a high frequency.
To achieve a flickering effect, the average current
through the LEDs is modulated using a software
PWM scheme. The system uses a potential divider
of normal resistor (R10, 150 Ohm) and a thermistor
(R9, 150 Ohm nominal value). A small resistance is
placed in close proximity of the thermistor so as to
heat it. The voltage at the R9-R10 junction is

Chapter 5 ■ Sensor Projects 159

Vcc

Gnd

Vcc

tinyAVR

Thermistor

(Blow sensor)Ringtone
player

16
0

Schematic diagram of the birthday blowout candlesFigure 5-11

continuously monitored by the microcontroller
analog input pin (PA7). When a person blows air on
the thermistor, it cools down and this reduces the
voltage at the resistor junction connected to the
PA7 pin. If the voltage drop is more than a certain
preprogrammed threshold, the microcontroller
concludes that air is being blown on the circuit and
so it starts putting off LEDs in a random sequence
and also a random number of LEDs at a time.
When you blow air onto normal candles, multiple
candles blow out and the rest flicker, or you may
fail to blow out even a single candle. We wanted
to provide such a simulation with our LED candles.
So by randomly blowing out a random number
of candles, we can mimic the natural behavior of
the candles.

One of the pins (PA1) of the microcontroller is
not used in the circuit and is available for any use.
This pin can be used to connect to a ringtone
player, for example.

Fabrication

The board layouts in EAGLE, along with the
schematics, can be downloaded from
www.avrgenius.com/tinyavr1.

The board has been routed in two layers and,
therefore, is not suitable for manufacturing by the
Roland Modela MDX 20 machine. The circuit
board has been purposefully cut in a circular shape.
The following illustrations show the component
and solder sides of the birthday candles project,
respectively. Our website at www.avrgenius.com/
tinyavr1 also has a video of the birthday blowout
candles in operation.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The LED birthday candles work like a set of
normal birthday candles, except with LEDs. One

can set the number of candles one wants lit (up to
a maximum of 20), and in order to turn off the
candles, one has to blow on them. Like with a set
of traditional candles, blowing once might result in
extinguishing only a few candles, and more than
one blow might be required to turn off all the
candles. The 20 LEDs are multiplexed using nine
lines, and the multiplexing scheme is shown in the
comments section of the code. The variables e, e1,
e2, e3, and e4control the multiplexing in the

Chapter 5 ■ Sensor Projects 161

software. The setrandom() function sets the values
for the pwm array elements, which are accessed by
the TIMER0 overflow interrupt service routine.
Pwm array is used for giving random duty cycles
to LEDs so that they flicker like real candles.

Multiplexing for LEDs is handled in the
same way as shown in Chapter 3. Inside the
main function, t, 20 LEDs have been divided into
eight bundles. Each bundle is extinguished

simultaneously, but bundles are extinguished in a
random fashion.The array z1 and the variable z are
used to turn off the LEDs in a random fashion,
when the user blows on the candles by generating
a pseudo-random number from 1 to 8, which has
not been generated in previous trials. The ADC
output is used to control two variables: present
and past. Depending on the difference between
presentand past, along with the random number

162 tinyAVR Microcontroller Projects for the Evil Genius

void setrandom(void)

{

if(ab==0)

{

pwm[0]=3;pwm[1]=0;pwm[2]=0;pwm[3]=0;

pwm[4]=0;pwm[5]=0;pwm[6]=2;pwm[7]=3;

pwm[8]=3;pwm[9]=1;pwm[10]=1;pwm[11]=3;

pwm[12]=3;pwm[13]=1;pwm[14]=1;pwm[15]=0;

pwm[16]=3;pwm[17]=2;pwm[18]=4;pwm[19]=0;

}

if(ab==1)

{

pwm[0]=1;pwm[1]=1;pwm[2]=1;pwm[3]=1;

pwm[4]=1;pwm[5]=3;pwm[6]=1;pwm[7]=2;

pwm[8]=2;pwm[9]=3;pwm[10]=0;pwm[11]=2;

pwm[12]=2;pwm[13]=1;pwm[14]=3;pwm[15]=1;

pwm[16]=2;pwm[17]=1;pwm[18]=1;pwm[19]=1;

}

if(ab==2)

{

pwm[0]=2;pwm[1]=2;pwm[2]=2;pwm[3]=3;

pwm[4]=2;pwm[5]=2;pwm[6]=0;pwm[7]=0;

pwm[8]=1;pwm[9]=0;pwm[10]=1;pwm[11]=3;

pwm[12]=3;pwm[13]=1;pwm[14]=0;pwm[15]=3;

pwm[16]=1;pwm[17]=3;pwm[18]=2;pwm[19]=2;

}

if(ab==3)

{

pwm[0]=0;pwm[1]=3;pwm[2]=3;pwm[3]=2;

pwm[4]=3;pwm[5]=1;pwm[6]=3;pwm[7]=1;

pwm[8]=0;pwm[9]=2;pwm[10]=2;pwm[11]=0;

pwm[12]=1;pwm[13]=1;pwm[14]=2;pwm[15]=2;

pwm[16]=0;pwm[17]=0;pwm[18]=3;pwm[19]=3;

}

ab++;

if(ab==4)

ab=0;

}

generated, the appropriate bundle is switched off
by equating its element locations of the
statusonoffarray to 0, which turns off the

corresponding LEDs. The process of turning off
the LEDs by blowing is controlled in the main
function, through the block shown here:

Chapter 5 ■ Sensor Projects 163

if((present-past)>=3)

{

if(z==0)

{

statusonoff[0] = 0;

statusonoff[5] = 0;

statusonoff[9] = 0;

statusonoff[12]=0;

z1[0] = 0;

}

else if(z==1)

{

statusonoff[2] = 0;

statusonoff[6] = 0;

z1[1] = 1;

}

else if(z==2)

{

statusonoff[1] = 0;

statusonoff[7] = 0;

statusonoff[14]=0;

z1[2] = 2;

}

else if(z==3)

{

statusonoff[11] = 0;

z1[3] = 3;

}

else if(z==4)

{

statusonoff[15] = 0;

statusonoff[18] = 0;

z1[4] = 4;

}

else if(z==5)

{

statusonoff[10] = 0;

statusonoff[13] = 0;

z1[5] = 5;

}

else if(z==6)

(continued on next page)

Working

To use the birthday blowout candles, connect the
circuit to a battery voltage (less than 5.5V) and let
the heater resistance heat up the thermistor. It takes
a few minutes for the thermistor to be responsive
to air blow. Blow air gently on the circuit board,
and watch the LEDs go out randomly.

Project 27
Fridge Alarm

This is a simple and useful project that detects and
warns you if you leave your fridge door open for
more than a reasonable amount of time. When you
open a fridge, an internal light is turned on. If you
do not close the fridge door, or if you don•t close
the door properly, a tiny microswitch keeps the
lamp on. This project consists of a small circuit
that is battery powered and has an LDR to detect
light. When installed properly, the circuit inside a
fridge will sound an alarm if you leave the door
open for more than nine seconds. We believe nine
seconds is more than sufficient for you to complete
your business with a fridge! The block diagram of
the project is shown next.

Design Specifications

The objective of the project is to design a simple,
compact circuit to detect light from a fridge lamp
and to measure the time for which the light is on.
If the time exceeds nine seconds, then the circuit is
to sound an alarm to alert the user of the fridge
that perhaps the fridge door has been left open
unintentionally.

164 tinyAVR Microcontroller Projects for the Evil Genius

{

statusonoff[3] = 0;

statusonoff[4] = 0;

statusonoff[8] = 0;

z1[6] = 6;

}

else if(z==7)

{

statusonoff[17] = 0;

statusonoff[16] = 0;

statusonoff[19]=0;

z1[7] = 7;

}

}

Vcc

LDR

Gnd

Vcc

tinyAVR
Alarm

Design Description

Figure 5-12 shows the schematic diagram of the
project. The circuit is devoid of any protection
diode and voltage regulator, so care must be taken
while connecting the batteries. To keep the size of
the project compact, the batteries employed are
small button cell batteries, such as LR44. Four such
batteries of 1.5V are connected in series to run the
microcontroller at a voltage of 6V. Capacitor C1 is
soldered near the supply pins of the microcontroller
to decouple the noise arising in the circuit. LED1
is a 3-mm door open/close indicator green LED.
The microcontroller used is the ATtiny13
microcontroller. It has one hardware PWM channel
on Timer0 required for driving the transistor Q1.
An 8-Ohm speaker is connected to the collector of

this transistor, as in the schematic, and a 22-Ohm
current-limiting resistor is connected in series with
it. The LDR is connected to the microcontroller
PCINT pin with a 47-kilo-ohm resistor in series.
This combination of the resistor with the LDR
provides the required signal swing to interrupt the
microcontroller via a pin change interrupt.
Capacitor C2 is used to filter out noise spikes
during the signal swing.

The source code of the project runs according to
the voltage level at the pin change interrupt pin. In
the presence of light, an LDR has few kilo-ohms
of resistance, causing the voltage drop across it to
be negligible, and this voltage serves as logic level
0. This wakes up the microcontroller from the
power-down mode as the signal swing generates a
pin change interrupt. The microcontroller then

Chapter 5 ■ Sensor Projects 165

Schematic diagram of the fridge alarmFigure 5-12

waits for a specific amount of time and if the logic
level remains the same, then the alarm goes off. If
the door is closed, the logic level goes high, since
in the absence of light the LDR has resistance of
the order of mega-ohms. This voltage across the
LDR is close to logic 1 of the system; thus, this
signal swing interrupts the microcontroller, again
causing it to go into power-down mode.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is mainly routed in the solder layer
with a few jumpers in the component layer. The
component and solder sides of the soldered board
are shown in the following illustrations,
respectively.

The LDR is soldered at some height such that it
can be in direct contact or near the refrigerator•s
internal source of illumination. The illustration
shows the project in an enclosure to increase its
portability.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. When the fridge door is
closed, the controller is in power-down mode.
During this mode, the controller draws only 100nA
of current, thus lowering the power requirements
when the door is closed and enhancing battery life.
The power-down mode can be implemented by
setting the SE and SM1 bits of MCUCR. The
controller wakes up from power-down mode when

166 tinyAVR Microcontroller Projects for the Evil Genius

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

there is an external asynchronous interrupt. This
interrupt is achieved by the LDR connected on the
PCINT pin. The PCINT pin generates an interrupt
whenever the voltage level changes on the
corresponding pin of the interrupt. The other
important sections of the code are explained here:

while(1)

{

if(d==1)//door on after 9 secs

{

d=0;

speaker_init();//speaker initiate

TIMSK0 &=~(1<<TOIE0);

//timer overflow off

}

if(a==1)

{

OCR0B=0x01;//frequency 1

PORTB&=~(1<<PB4);//led on

_delay_ms(200);

OCR0B=0x80;//frequency 2

PORTB|=(1<<PB4);// led off

_delay_ms(200);

}

}

This is the main infinite loop of the program. It
consists of two if statements used to poll the two
cases, which are used to control the alarm once the
door is open for more than nine seconds. The first
case is executed when the interrupt service routine
of the timer overflow makes control variable d
equal to 1. This if block in the main infinite loop
then turns the speaker on and turns off the timer
overflow interrupt. The second case is for sounding
different frequencies through the speaker and
blinking the LED.

ISR(PCINT0_vect)//pc_int routine

{

pcint_init();//enabling interrupt

sei();//setting enable bit as 1

if(!(PINB&(1)))//if PINB is 0, then a=1

{

a=0;//initial condition

TCNT0=0X00;//initialise timer

timer_init();

sei();//set interrupt enable

DDRB|=(1<<PB4);//led on

PORTB&=~(1<<PB4);

}

else if((PINB&(1))==1)

{

a=0;//initial condition

c=0;

d=0;

all_off();//all i/o off

powerdown;//go to power down

sleep_cpu();

}

}

This part is the interrupt service routine of the
pin change interrupt, which is called each time the
door is closed or opened. When the value at the pin
change interrupt pin is 0, it indicates that the door
is open, as the voltage drop across the LDR is
close to logic level 0. This interrupt wakes up the
microcontroller from the power-down mode.
During this case, the timer is initialized and the
alarm LED is switched on. When the door is
closed, the pin logic level is 1, causing the ISR to
be executed again. During this case, the control
variables are reset to their initial conditions, all
I/Os are tri-stated, and microcontroller is made to
enter power-down mode.

Apart from this, the code includes routines that
handle timer initialization, speaker initialization,
and tri-stating the I/O.

Working

The LDR of the hardware is kept close to the
refrigerator•s internal illumination source. When
the door is closed, the microcontroller is in power-
down mode and draws a small amount of current.
When the door is open, the hardware LED turns
on, and if it is kept open for more than a specific
amount of time (nine seconds), the alarm goes off.

Chapter 5 ■ Sensor Projects 167

Conclusion

In this chapter we covered the use of several types
of sensors in different applications. Sensors form
an important and critical component of any
embedded systems project. They act as an interface
between the real world and the digital world of

microcontrollers. Their uses are paramount, but so
are the complexities in using them. One should
adhere to all the specifications and requirements
mentioned in the datasheet of the sensor to be
used. It•s time for some music now as we move to
audio-based projects in the next chapter.

168 tinyAVR Microcontroller Projects for the Evil Genius

Audio Projects

C H A P T E R 6

IN THIS CHAPTER WE LOOK AT a few projects
focusing on generating sound or interacting with
the user using sound. Many projects require an
audio response„for example, a short beep
generated with the help of a buzzer to indicate
some response to the user„but in this chapter, we
look at projects where considerable effort is
invested in generating the audio response.

An audio feedback in many systems is quite
desirable. The feedback may indicate pass/fail or
go/no-go condition. The difference between the
pass and fail condition may be with a short and

long beep, respectively, or with different
frequencies for the two conditions. The following
illustration shows how to integrate an audio
response facility in any system.

The system uses a 555 Timer…based audio
oscillator. The 555 Timer IC has an enable pin,
which, when set to Vcc, turns the 555 on. If the
enable pin is set to ground, then the oscillator is
off. Another scheme that also controls the
frequency of the audio signal is shown on the
next page.

169

Vcc

7

6

2

1 4

5

3

R1

R2

C

0.1uF

Vcc

SoundEnable

Microcontroller

However, using an additional IC (such as a 555
Timer) in a microcontroller application is wasteful
and redundant. A microcontroller is quite capable
of generating audio tones. One just needs a
suitable driver. The following illustration shows
three schemes (a, b, and c) of generating audio
signals in a microcontroller-based application.
There are fixed frequency generating buzzers that
just need to be turned on or off. Other options
shown in the illustration include a small speaker
driven directly from a microcontroller pin (option

b). Such speakers are readily available due to the
boom in mobile phone usage. To drive a speaker,
one needs the microcontroller to generate a square
wave of the desired audio frequency (since it is
easiest to generate a square wave). The square
wave can be generated either using software
or with the help of an internal timer. The
microcontroller offers the flexibility to change
the audio frequency by generating different tones
for different durations.

170 tinyAVR Microcontroller Projects for the Evil Genius

Vcc

7

6

2

1 4

5

3

R1

R2

C

0.1uF

R3

Vcc

Microcontroller

SoundEnable

Freq Control

Vcc

Microcontroller

Output

(c)(a) (b)

Vcc

Microcontroller

Output

B
u

zz
er

S
p

ea
k

er

Microcontroller

Output

Vcc

S
p

ea
k

er

The microcontroller cannot drive too much
current through the speaker, and so a current-
limiting resistor must be added in series with the
speaker. The resistor value should be chosen such
that the total current through the speaker is less
than the maximum current allowable through the
microcontroller pin. On an AVR microcontroller,
each pin can handle a maximum of 35 to 40mA
current. The series resistance would restrict the
current through the speaker, but would also mean
that the sound is not that loud. If you need louder
sound, the third option shown in the illustration
(option c) could be used. Here, an NPN transistor
is used to drive the speaker with no (or much
smaller) series resistance.

The bottom illustration shows a scheme that
uses an audio amplifier circuit for loud output
from the speaker. Two commonly used popular
audio amplifier circuits are shown. The TDA2020
would provide a really loud output suitable for use
in alarm applications. The problem with these
audio amplifiers, however, is the poor efficiency,
since they are class B amplifiers. The illustration

shows an audio amplifier based on the H-bridge
that, in the parlance of audio amplifiers, would be
considered class D, which has more than 90%
efficiency. However, it requires more hardware
features of the microcontroller to make it work.

We have used the scheme shown in the previous
illustration (option c), that is, a speaker driven by
an NPN transistor and the audio signal generated
by the microcontroller, in a project in the previous
chapter (the fridge alarm). In this chapter we look
at various projects that use ready-made audio
amplifier ICs as well as the H-bridge…based
amplifier.

Project 28
Tone Player

This project provides a way to generate an audio
signal of a required frequency. The tones are
generated using the internal timer hardware of the
microcontroller. The duration for which a given
tone is to be played is also specified. When a

Chapter 6 ■ Audio Projects 171

Vcc

Output 1

Output 2

H−Bridge

Microcontroller

Speaker

sequence of such tone-duration pairs is played by
the microcontroller, it produces any required
music.

Design Specifications

The objective of this project was to design a
TinyAVR microcontroller-based circuit that would
play music stored in the program memory of the
microcontroller. The required music is specified
using a sequence of tone-duration pairs. The
microcontroller, when triggered, reads each pair
and produces tone for the duration specified. Due
to the simple nature of the arrangement, the project
will not be able to produce multiple tones at the
same time, as would be expected in a complex
piece of music. The hardware for the project is a
simple Tiny45-based circuit. The project uses a
small speaker. The microcontroller drives the
speaker with the help of an H-bridge circuit and
produces fairly loud sound. The hardware actually
consists of an LDR as well as the H-bridge audio
amplifier. The project hardware is used to

implement two projects using the same common
hardware, that is, the tone player as well as a
modified fridge alarm. The block diagram of the
hardware is shown below.

Design Description

Figure 6-1 shows the circuit diagram of the tone
player and modified fridge alarm project. The four
transistors on the left are the H-bridge circuit in an
IC form. The H-bridge is driven by two outputs of
the Tiny45 microcontroller, PB0 and PB1, which
have complementary PWM outputs. The reason
behind choosing complementary PWM signals to
drive the H-bridge is so that when the circuit does
not need to produce any sound, the two outputs are
disabled (either set to •0Ž or •1Ž) so that no
current is drawn by the H-bridge. The output of the
H-bridge is filtered by two inductors, L1 and L2,
and capacitors, C3 and C4. A small speaker
(8 Ohm) is connected to the output of the filters
using connector SL1.

172 tinyAVR Microcontroller Projects for the Evil Genius

Vcc H−Bridge

Microcontroller

Speaker

PWM

PWM*

LDR

Vcc

Chapter 6 ■ Audio Projects 173

The pins of the microcontroller, PB2 and PB3,
are shared by the two projects using jumper pins
JP1 and JP2. For the tone player project, the JP1
jumper is engaged to connect the switch S1 to PB3
and the DIP switch (S2-1) to PB2. For the
modified fridge alarm project, the jumpers are
engaged so that LDR circuit is connected to PB3
and the LED1 is connected to PB2.

For the tone player project, the microcontroller
waits for switch S1 to be pressed. Once the switch
is pressed, it reads the state of the pins PB2 and
PB4. PB2 and PB4 are connected to two pins of a
DIP switch, which allows the user to specify one
of four different data arrays stored in the program
memory of the microcontroller. Each array consists
of tone-duration data information that makes up a
particular piece of music. The microcontroller
generates the audio tone on the PB0 and PB1 pin
that is connected to the H-bridge circuit, thus
producing the required tone. Once the entire array

is played, it waits for the switch to be pressed
again. The settings of the DIP switch can be
changed to select a different piece of music before
pressing the trigger switch S1.

The circuit is powered with an external DC
power supply source. The voltage of the power
supply should be between 3V and 6V. Using two
or three alkaline batteries is a suitable source of
power. Diode D1 ensures that the circuit is not
damaged if the polarity of the power supply is
reversed.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with
a few jumpers in the component layer. The

Schematic diagram of the tone player and modified fridge alarmFigure 6-1

component and solder sides of the soldered board
are shown in these illustrations.

Design Code

The important sections of the code are explained
here. A tone consists of two parts: notes and their
duration. A note represents a particular frequency,
which has to be generated on the output speaker
pin for a particular duration. Tone in this code has
been saved using a structure with elements
duration and frequency (in that order) of
unsigned integer datatype.

struct _Note

{

unsigned int durationMS;

unsigned int frequency;

};

Songs have been restricted in the Flash memory
of the microcontroller. A macro PROGMEM has
been used to store the song information.

struct _Note song1[] PROGMEM = {

//Birthday

{ 360, 784},{ 120, 784},{ 480, 440},

{ 480, 784},{ 480, 1048},{ 960,

494},

{ 360, 784},{ 120, 784},{ 480, 440},

{ 480, 784},{ 480, 1176},{ 960,

1048},{ 360, 784},

{ 120, 784},{ 480, 1568},{ 480, 1320},

{ 480, 1048},{ 480, 494},{ 480,

440},{ 240,1396},

{ 480, 0},{ 120, 1396},{ 480, 1320},

{ 480, 1048},{ 480, 1176},{ 960,

1048 },{0,0}

};

The function play_tone_P() takes a pointer *p
as its argument, which traverses the _Note type
song array, thereby giving the respective values
of duration and frequency. As PROGEM has
been used, we need to use a special macro
pgm_read_word to read the flash memory. A
word for the AVR is two bytes long„the same
size as an int.

duration = pgm_read_word(p);

p++;

note = pgm_read_word(p);

p++;

top = (int)(31250/note);

After we get the frequency and duration of a
tone, it•s time to create a square wave of that
frequency for the specified duration. This has been
achieved by two timers. Timer0 is used in normal
mode to determine the duration, while Timer1 is
used in PWM mode to produce a square wave of

174 tinyAVR Microcontroller Projects for the Evil Genius

the desired frequency by setting the TOP value of
the OUTPUT COMPARE REGISTER. OCR1C
acts as the top; therefore, the required frequency
value needs to be fed to it. If the value of the note
is zero, it means a pause. The pause is generated

for the amount of time listed in the duration
argument of the variable. OCR1A is the register to
set the duty cycle, which has been permanently set
to 50%.

Chapter 6 ■ Audio Projects 175

DDRB |= ((1<<PB0)|(1<<PB1));
TCCR0B |= ((1<<CS02)|(1<<CS00)); //1024 prescalar
TCCR0B &= ~(1<<WGM02); //Normal Mode
TCCR0A &= ~((1<<WGM00) | (1<<WGM01));

//Playing tone
if(note)
{

TCCR1 |= ((1<<PWM1A) | (1<<COM1A0) | (1<<CS13) | (1<<CS10);
//256 prescalar, pwm mode on

OCR1C = top; //Top value
OCR1A = (OCR1C>>1); //Duty Cycle
TCNT0 = 0;
for(;;)
{

if(!(PINB&(1<<PB4)))
{

flag1 = 1;
return;

}
if(TCNT0 >= 78)
{

duration = duration - 10;
TCNT0 = 0;

}
if(duration <= 0)

break;
}
TCCR0B = 0x00;
}
else
{

TCNT0 = 0;
for(;;)
{

if(!(PINB&(1<<PB4)))
{

flag1 = 1;
return;

}
if(TCNT0 >= 78)

{
duration = duration - 10;
TCNT0 = 0;

}

if(duration <= 0)
break;

}
TCCR0B = 0x00;
}

Working

To use the circuit, you need to apply an external
supply voltage. Ensure that the jumpers on JP1 and
JP2 are engaged correctly. Set the DIP switches to
select the required piece of music, and then press
switch S1. The circuit will start playing the song.
After the song is completed, it will wait for S1 to
be pressed again. This circuit can be used together
with the birthday blowout candles project also by
connecting the pin PA1 of the birthday blowout
candles circuit board to pin1 of JP1 and connecting
the ground pins of the two circuit boards together.
The modified code for the birthday blowout
candles project (refer to our website) will trigger
the tone player circuit board to play the selected
song when all the candles on the candles board are
blown off.

The necessary connections between the two
circuit boards can be seen on www.avrgenius.com/
tinyavr1.

Project 29
Fridge Alarm Redux

This project is a modification of the previous
fridge alarm project. The basic concept of the
project remains the same, but the alarm generation
circuit has been modified. The previous project
used a single transistor to drive the speaker. In the
current project, we have employed an H-bridge to
drive the speaker. This results in better sound
performance with the same voltage requirements,
but the modifications also require a different
microcontroller, which is the ATtiny45.

Design Specifications

The objective remains the same as in the previous
fridge alarm project, except we want to produce a
louder alarm.

Design Description

Figure 6-1 shows the schematic diagram of the
project. The circuit does not have any on-board
voltage regulator, so care must be taken while
connecting the batteries. Four AAA batteries of
1.5V are connected in series to run the
microcontroller at a voltage of 6V or less. Diode
D1 acts as a protection diode and protects the
circuit from accidental reverse polarity. Capacitor
C1 is soldered near the supply pins of the
microcontroller to filter the noise. The circuit, as
previously stated, was made for two projects, so
some jumpers have been employed for dual use.
The jumpers JP1 and JP2 are for connecting the
LDR and indicator LED1 with the microcontroller.
To connect the LDR and LED, pins 2 and 3 are
shorted in JP1 and JP2. LED1 is a 3-mm LED
used to indicate the fridge door open/close status.
The microcontroller used is the ATtiny45
microcontroller. The change of microcontroller
from the previous version of the project is required
because Tiny45 has two complementary PWM
outputs, which are required to drive the H-bridge
audio amplifier. PWM channels with
complementary outputs are absent in ATtiny13.
These two hardware PWM channels are on
Timer1. Across the output terminals of the H-
bridge, a speaker is connected, as shown in the
schematic, and thus current flows in both
directions in the speaker. A low-pass filter
arrangement is employed to filter out the high-
frequency PWM signal, which acts as the carrier.
This low-pass filter arrangement employs two 11-
mH inductors in series and 0.1µF capacitors in
parallel with the speaker. The LDR is connected to
the microcontroller PCINT pin with a 47-kilo-ohm
resistor in series. This combination of resistor with
LDR provides the required signal swing to
interrupt the microcontroller via a pin change
interrupt. Capacitor C2 is used to filter out noise
spikes during the signal swing.

176 tinyAVR Microcontroller Projects for the Evil Genius

The source code of the project runs according to
the voltage level at the pin change interrupt pin. In
the presence of light, the LDR has a few kilo-ohms
of resistance, causing the voltage drop across it to
be negligible, and this voltage serves as logic level
•0.Ž This wakes up the microcontroller from the
power-down mode as the signal swing generates a
pin change interrupt. The microcontroller then
waits for a specific amount of time and if the logic
level remains the same, then the alarm goes off. If
the door is closed, the logic level goes high, since
in the absence of light, the LDR has resistance of
the order of mega-ohms. This voltage across the
LDR is close to logic •1Ž of the system, thus, this
signal swing interrupts the microcontroller again,
causing it to go into power-down mode.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with
a few jumpers in the component layer. The
component and solder sides of the soldered board
are shown in the •FabricationŽ section of the
previous project. The LDR is soldered at some
height such that it can be in direct contact with the
refrigerator•s internal source of illumination.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. The basic operation of
the project and some parts of the code remain the
same, except the TIMER operations. The
microcontroller in use now is the ATtiny45, which
has complementary PWM outputs on TIMER1.
The OC1A pin and its complementary pin is used

to drive the H-bridge. The TIMER1 frequency of
operation is stepped up using the internal PLL
(phase-locked loop), and it works on a frequency
of 64 MHz. The output PWM has a frequency of
64/256 MHz, which is about 250 Khz. Thus, a
high-frequency carrier wave is generated and the
sound wave is encoded using the PWM technique.
The duty cycle of the high-frequency carrier wave
varies according to the samples of the sound wave,
and the duration for a particular sample is set
according to the frequency of the sound wave. This
modification is achieved using a sine wave table,
which contains eight sampled values of a sine
wave, as shown:

const char sin_wav[8] PROGMEM=

{128, 218, 255, 218, 128, 38, 1,

38};

These values are used in the main while loop of
the code to encode the sine wave envelope on a
high-frequency carrier, as shown here:

if(d_alarm) //Loop to play tone

{

_delay_us(time);

//time delay to play a sample

OCR1A = pgm_read_byte(sin_wav+sample);

//Variation of Duty Cycle with

//sinewave samples

sample++;

if(sample >= 7)

sample = 0;

}

The code snippet listed runs when the control
variable d_alarm is equal to 1. This is similar to
the previous version of the fridge alarm. Inside the
if statement, the samplevariable stores the table
offset and the sample value is changed by
changing the compare value of TIMER1. This is
achieved by changing the value stored in the
OCR1A register as shown earlier. The time period
of a particular sample is governed by the frequency
of the wave to be generated. The project plays
seven different frequencies for approximately

Chapter 6 ■ Audio Projects 177

330 ms for each frequency. This is achieved using
a frequency table, shown here:

const int sin_freq[7] PROGMEM=

{200, 300, 400, 500, 600, 700, 800};

Now the change of frequency and calculation of
the sample time delay is calculated in TIMER0
ISR, which is also used to calculate the nine-
second time delay in the previous project. The
code for frequency manipulation is as shown here:

if((d_alarm)&&(count==10))

//Time count for tone play time

{count=0;

if(freq<7)

freq++;

else

freq=0;

freq_run=pgm_read_word((sin_freq+freq));

time= (125000/freq_run);

PORTB^=(1<<LED_PIN);

}

The previous if statement is a part of the
TIMER0 ISR . The count variable is used to count
the tone play time of 330 ms. After 330 ms, a
timer interrupt changes the frequency that is
played by changing the value of the freq_run
variable. This variable is used to change the time
variable, which governs the sample play time
according to the previous formula. The time
duration so developed is in microseconds and is
used in the previously explained main while loop
code snippet.

Working

The LDR of the hardware is kept close to the
refrigerator•s internal illumination source. When
the door is closed, the microcontroller is in power-
down mode and draws a small amount of current.
When the door is open, the hardware LED turns
on, and if the door is kept open for more than nine
seconds, the alarm goes off.

Project 30
RTTTL Player

RTTTL (ringtone tone text transfer language) is a
popular format for specifying ring tones in mobile
phones. It was designed by Nokia for use in their
mobile phones. As the name suggests, a ringtone is
specified as a text file with codes that specify the
notes and duration for each note in the ringtone.
Each RTTTL file contains the name of the
ringtone, the duration (d), octave (o), beats per
minute (b) information, and the actual notes. This
information can be decoded to play the ringtone.
This project implements such a ringtone player on
the Tiny861 microcontroller. The project uses a
high-power audio amplifier, the TDA2020, to drive
the speaker. The block diagram of the ringtone
player is shown on the top of the next page.

Design Specifications

The objective of the project was to design a
tinyAVR microcontroller-based RTTTL decoder
and player. The purpose behind choosing the
RTTTL format was the easy availability of the
large number of ringtones on the Internet that
could be downloaded and stored in the program
memory of the microcontroller and played using
this decoder.

Design Description

The hardware for this project is the same as that
used in the school bell project from the previous
chapter.

The schematic diagram of the project is shown
here again in Figure 6-2 for easy reference. In
addition, the project requires a DIP switch
interface to select the required song from the
microcontroller memory. The schematic diagram
of the DIP switch and the pushbutton circuit is
shown in Figure 6-3. The DIP switches (although
four switches are shown, only three are used) allow
the user to select from among eight ringtones

178 tinyAVR Microcontroller Projects for the Evil Genius

Chapter 6 ■ Audio Projects 179

Vcc

Microcontroller

PWM
Tone
Select

Trigger

High-
Power
Audio
Amplifier

Gnd

Gnd

Low−Pass
Filter

S
p

ea
k

er

Schematic diagram of the RTTTL playerFigure 6-2

stored in the program memory of the
microcontroller. To trigger the microcontroller to
play the selected ringtone, switch S1 is pressed.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with
a few jumpers in the component layer. The
component and solder sides of the soldered board
are shown in the following illustrations.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. The important sections of
the code are explained here. As explained earlier,
RTTTL is a text encoding containing the

information about the characteristics of a song.
Here is a sample tone in RTTTL format. At the
beginning of the code, the name of song is
mentioned, then the default duration (d), octave
(o), and beats per minute (b) information is
specified. After that, information about every note
is mentioned.

Happy Birthday Song:d=4,o=5,b=125:8g.,

16g,a,g,c6,2b,8g.,16g,a,g,d6,2c6,

8g.,16g,g6,e6,c6,b,a,8f6.,16f6,e6,

c6,d6,2c6,8g.,16g,a,g,c6,2b,8g.,16g,

a,g,d6,2c6,8g.,16g,g6,e6,c6,b,a,

8f6.,16f6,e6,c6,d6,2c6

180 tinyAVR Microcontroller Projects for the Evil Genius

Schematic diagram of the DIP
switch interface for the RTTTL
player

Figure 6-3

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Songs have been stored in the Flash memory of
the microcontroller using the macro PROGMEM.

char song1[] PROGMEM = "Happy Birthday

Song:d=4,o=5,b=125:8g.,16g,a,g,c6,

2b,8g.,16g,a,g,d6,2c6,8g.,16g,g6,e6,

c6,b,a,8f6.,16f6,e6,c6,d6,2c6,8g.,

16g,a,g,c6,2b,8g.,16g,a,g,d6,2c6,

8g.,16g,g6,e6,c6,b,a,8f6.,16f6,e6,

c6,d6,2c6";

Our first task is to decode this language and to
get the required information about a particular
note, that is, the duration and the scale for which
the note has to play. We know the frequency of a
particular note, and this is stored in the array top[] .
Here is the code for decoding the format according
to the RTTTL specifications:

Chapter 6 ■ Audio Projects 181

// format: d=N,o=N,b=NNN:

// find the start (skip name, etc)

while(pgm_read_byte(p) != ':')

p++; // skip ':'

p++; // Moving to 'd'

// get default duration

if(pgm_read_byte(p) == 'd')

{

p++; // skip "d"

p++; // skip "="

num = 0;

while(isdigit(pgm_read_byte(p)))

{

num = (num * 10) + (pgm_read_byte(p++) - '0');

}

if(num > 0)

default_dur = num;

p++; // skip comma

}

// get default octave

if(pgm_read_byte(p) == 'o')

{

p++; // skip "o"

p++; // skip "="

num = pgm_read_byte(p++) - '0';

if(num >= 4 && num <=8)

default_oct = num;

p++; // skip comma

}

// get BPM

if(pgm_read_byte(p) == 'b')

{

p++; // skip "b="

p++; // skip "b="

num = 0;

(continued on next page)

182 tinyAVR Microcontroller Projects for the Evil Genius

while(isdigit(pgm_read_byte(p)))

{

num = (num * 10) + (pgm_read_byte(p++) - '0');

}

bpm = num;

p++; // skip colon

}

// BPM usually expresses the number of quarter notes per minute

wholenote = (((60.0 * 1000.0) / (float)bpm) * 4.0);

// this is the time for whole note (in milliseconds)

// now begin note loop

while(pgm_read_byte(p))

{

// first, get note duration, if available

num = 0;

while(isdigit(pgm_read_byte(p)))

{

num = (num * 10) + (pgm_read_byte(p++) - '0');

}

if(num)

duration = wholenote / (float)num; //milliseconds of the time to play the note

else

duration = wholenote / (float)default_dur;

// we will need to check if we are a dotted note after

// now get the note

note = 0;

switch(pgm_read_byte(p))

{

case 'c':

note = 1;

break;

case 'd':

note = 3;

break;

case 'e':

note = 5;

break;

case 'f':

note = 6;

break;

case 'g':

note = 8;

break;

case 'a':

note = 10;

break;

case 'b':

note = 12;

break;

Chapter 6 ■ Audio Projects 183

case 'p':

note = 0;

}

p++;

// now, get optional '#' sharp

if(pgm_read_byte(p) == '#')

{

note++;

p++;

}

octave = top[note];

// now, get optional '.' dotted note

if(pgm_read_byte(p) == '.')

{

duration += duration/2;

p++;

}

// now, get scale

if(isdigit(pgm_read_byte(p)))

{

scale = pgm_read_byte(p) - '0';

p++;

}

else

{

scale = default_oct;

}

/* Process octave */

switch (scale)

{

case 4 : /* Do noting */ // x>>y = x/2*y

break;

case 5 : /* %2 */

octave = octave >> 1;

break;

case 6 : /* %4 */

octave = octave >> 2;

break;

case 7 : /* %8 */

octave = octave >> 4;

break;

case 8 : /* %16 */

octave = octave >> 8;

break;

}

if(pgm_read_byte(p) == ',')

p++; // skip comma for next note (or we may be at the end)

After we get the scale and duration of a note,
we play the note for the specified duration. This is
achieved by two timers, Timer0 for duration (in

overflow mode) and Timer1 in PWM mode, to
produce a square wave of a particular frequency by
setting the TOP value of the OCR1C register.

184 tinyAVR Microcontroller Projects for the Evil Genius

DDRB |= (1<<PB3); //Setting the PWM channel output pin

TCCR0A &= ~(1<<WGM00); //Normal mode

TCCR0B |= ((1<<CS02) | (1<<CS00)); //Prescalar 1024

if(note) //If a note occurs

{

TCCR1A |= ((1<<COM1B1) | (1<<PWM1B)); //Non inverting mode, Fast PWM

TCCR1B |= ((1<<CS13) | (1<<CS10)); //Prescalar 256

TCCR1C |= (1<<COM1B1); //Clear on compare match

TCCR1D &=~((1<<WGM11) | (1<<WGM10));

OCR1C = octave; //setting up Top value

OCR1B = (OCR1C>>1); //50% duty cycle

TCNT0L = 0;

for(;;)

{

if(TCNT0L >= 78) //Duration checking

{

duration = duration - 10.0;

TCNT0L = 0;

}

if(duration <= 0.00)

break;

}

TCCR0B = 0x00;

}

else //If a pause occurs

{

TCNT0L = 0;

for(;;)

{

if(TCNT0L >= 78) //Duration checking

{

duration = duration - 10.0;

TCNT0L = 0;

}

if(duration <= 0.00)

break;

}

TCCR0B = 0x00;

}

Working

The program memory of the microcontroller is
loaded with eight songs in RTTTL format. To
select a particular song, the DIP switch is set
accordingly and switch S1 is pressed. The
microcontroller then starts playing the song. The
system stops at the end of the song. To play
another song (or to repeat the same song), switch
S1 is pressed again.

Project 31
Musical Toy

The musical toy project is a simple musical
memory game. The toy is capable of producing
seven notes. In all, there are eight switches: seven

switches for the notes and an extra switch to
interact with the toy. To begin with, the toy
produces a random note when you press the eighth
switch, and the LED associated with that note also
glows. Then you regenerate that note by pressing
the switch associated with the note. If you guess
right, the game proceeds to the next level and
produces two notes, retaining the first note,
followed by another note selected at random. You
then generate these notes in the correct order and
so on. If you fail, you can start again. If you
succeed, you go to the next level. This musical toy
is a good test for your musical abilities. If you can
remember and regenerate a long sequence of
random, uncorrelated notes, you have a musical
virtuoso inside you. The block diagram of the
musical toy is shown here.

Chapter 6 ■ Audio Projects 185

AVR Micro

Audio
Amplifier

186 tinyAVR Microcontroller Projects for the Evil Genius

Design Specifications

The objective of the project was to design a
musical toy as described earlier, with a user
interface of eight switches and seven LEDs, and a
two-digit, seven-segment interface. The toy is
equipped with an audio amplifier and speaker to
produce the notes. The system is battery operated
for ease of portability.

Design Description

The circuit diagram of the project is shown in
Figure 6-4. It is powered with an external battery
or power supply between 6V and 12V. The circuit
has its own 5V regulator LP2940 (IC2) to provide
the regulated supply voltage. The circuit uses the
Tiny861 microcontroller and has two seven-
segment displays (DIS1 and DIS2) and seven
LEDs (LED2 through LED8) arranged in a
multiplexed fashion. These displays are arranged in
a common anode format using PMOS MOSFETs
T1, T2, and T3. The part number for the MOSFET
is NDS356A. The displays are enabled one after
the other using ROW1, ROW2, and ROW3 signals
from the microcontroller.

The circuit has eight switches, which are
arranged in a 3 � 3 matrix. The microcontroller
enables one of three switch rows using the pins
ROW1, ROW2, or ROW3 (shared with the
displays) and checks if any switch is pressed by
reading the pins COL1, COL2, and COL3.

The circuit produces audio tones using Timer1
PWM output on PB3 pin, which is filtered with a
low-pass RC filter (R9-C5). The output of the filter
is connected to the LM386 audio amplifier (IC3)
through a resistive attenuator (R10-R12). The
LM386 audio amplifier drives a small speaker
through a capacitor (C7).

The circuit also has an ISP connector, JP1, to
program the microcontroller.

Fabrication

The board layout in EAGLE, along with the
schematic, can be downloaded from
www.avrgenius.com/tinyavr1.

The board is routed in the solder layer with a
few jumpers in the component layer. The
component and solder sides of the soldered board
are shown in these illustrations.

18
7 Schematic diagram of the musical toyFigure 6-4

188 tinyAVR Microcontroller Projects for the Evil Genius

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The code runs at a clock frequency of 8 MHz.
The controller is programmed using STK500 in
ISP programming mode. The code is written in C
and compiled using the AVRGCC in AVR Studio
and is divided into the following parts:

■ Initialization of PORT and DDR registers

■ Display initialization

■ Timer overflow interrupt

■ Multiplexing LEDs and seven-segment display

■ Random number generation

■ Tone generation using fast PWM mode

■ Switch scanning

Generating a random number is an important
task of the code. A number between 0 and 6 is
required for which the eight-bit counter (TCNT0L)
is used. The value of the counter, which could be
anything between 0 and 255, is operated with
mod7 to get the result between 0 and 6. A random
number is generated each time when function
randomize() is called and the result is stored in an
array pattern[] . The function is called 50 times
(number of levels in the game).

void randomize()

// random number generation

{

k=k%21;

pattern[0]=random[k];

while(j<NUM)

{ k=TCNT0L%7;

pattern[j]=k; // stores random numbers

//each time the game restarts.

j++;

}

}

Timer1 is employed to generate the required
frequencies as listed in Table 6-1. Fast PWM mode

is used to generate the square waves of the
previously mentioned frequency, which is
dependent on the OCR1C value. The PWM
frequency for the output can be calculated by the
following equation:

F(OCn � PWM) � F(clkT1)/N

where fclk is the prescaled frequency applied to
Timer1 and using the previous formula, N has been
calculated. For example, for the note Sa with a
frequency of 240 Hz and with a prescaling of 256:

OCR1C � (8MHz/256)/240 � 130

The duty cycle is kept fixed at 75%. Each tone
is generated for a finite duration only. The tone is
switched off later by disabling Timer1.

The code for tone generation is as follows:

#ifndef tone

#define tone

#define sa 130 // 240Hz

#define re 116 // 270Hz

#define ga 104 // 300Hz

#define ma 98 // 320Hz

#define pa 87 // 360Hz

#define dha 78 // 400Hz

#define ni 69 // 450Hz

#define dc 0.75 //duty cycle

void timer1init(void)

{

TCCR1A|=(1<<PWM1B)|(1<<COM1B1);

//enables PWM

Note Frequency OCR1C Value

Sa 240 Hz 130

Re 270 Hz 116

Ga 300 Hz 104

Ma 320 Hz 98

Pa 360 Hz 87

Dha 400 Hz 78

Ni 450 Hz 69

TABLE 6-1 Frequency Table

TCCR1B|=(1<<CS13)|(1<<CS10);

//prescaling by 256

}

void toneon(int N)

{ timer1init();

switch(N)

{

case 0: OCR1C=sa;

OCR1B=dc*OCR1C;

break;

case 1: OCR1C=re;

OCR1B=dc*OCR1C;

break;

case 2: OCR1C=ga;

OCR1B=dc*OCR1C;

break;

case 3: OCR1C=ma;

OCR1B=dc*OCR1C;

break;

case 4: OCR1C=pa;

OCR1B=dc*OCR1C;

break;

case 5: OCR1C=dha;

OCR1B=dc*OCR1C;

break;

case 6: OCR1C=ni;

OCR1B=dc*OCR1C;

break;

}

}

void toneoff()

{

TCCR1A=0x00;

}

#endif

Once the game starts, the microcontroller
produces a tone from the table randomly. The user
responds by pressing a key corresponding to the
tone. The microcontroller checks if the user has
pressed the right switch or not corresponding to
the required note. The following code snippet
checks this:

void checktone(int n)

//checks if correct sequence of

//tones is being played

{

toneon(n);

if(n==pattern[count])

// if the correct switch is

// pressed

{ ledinit(n,u,t);

count++;

//counts the no. of current switches

//pressed

}

else

{

ledoff();

led[6]=led[13]=1;

_delay_ms(200);

toneoff();

}

Working

To use the toy, apply a suitable DC power supply
and press switch S8. This will trigger the
microcontroller to generate the first random note.
Try to regenerate the same note by pressing the
appropriate switch (S1 to S7) and so on.

Conclusion

In this chapter, we covered a few projects focusing
on generating sound. Although these projects can
be used in a stand-alone mode, they can also be
used together with other projects to provide audio
feedback, for example, by connecting the birthday
blowout candles project to the tone generator
project. In addition, the tone generator project
could be coupled with the throbbing heart LED
project such that together with the LED blinking
rate, the tone generator could be used to provide an

Chapter 6 ■ Audio Projects 189

audio feedback with frequency variation. The
ideas presented in this chapter can be modified to
create more interesting toys. In the next chapter we

look at a few projects based on alternate energy
sources, projects that will require you to exercise
to have fun!

190 tinyAVR Microcontroller Projects for the Evil Genius

Alternate Energy Projects

C H A P T E R 7

IN CHAPTER 1, WE DISCUSSED some of the
alternative energy sources that could be used for
embedded applications. We mentioned solar,
Faraday-based, and RF scavenging…based energy
sources. In this chapter, we look at a few projects
based on alternative power sources built using
Faraday•s principle. The operating voltage required
for many small embedded portable projects can be
met by an interesting device that converts
mechanical energy into electrical energy using the
famous Faraday•s law. The use of Faraday•s law
for converting mechanical energy into electrical
energy has been known for a long time, and is
used in such converting devices as dynamos.
However, the particular device shown in Figure 7-1
was made popular by the batteryless shake
flashlights that have been available for some time
now. The system uses a hollow Perspex tube of
suitable diameter and length. Inside the tube is
placed a rare earth magnet. The tube is wound with
several hundred turns of copper enameled wire,
and the ends of the tube are sealed. To generate the
voltage, the tube is simply shaken back and forth.
As the magnet traverses the length of the tube, it
produces AC voltage across the copper wire, which
can be rectified and filtered using the circuit to
provide DC voltage. The voltage generated across
the coil is governed by Faraday•s principle:

E � …N� (d�/dt)

where E is the induced voltage, N is the number of
turns in the coil, and d�/dt is the rate change of the

magnetic flux through the coil. The magnetic flux
through the coil is � � B � A. B is the magnetic
field, and A is the area of cross-section of the coil.
Thus, a coil with stronger magnets would produce
a larger magnetic flux. Similarly, a coil with a
larger cross-sectional area would also produce a
larger magnetic flux. To generate the voltage
across the coil, the magnetic field has to be
changed, and this is done by shaking the magnets
through the tube. The mechanical shaking
produces a rate change of the magnetic flux
through the coil, thereby generating a voltage
across the coil. Faster shaking produces a higher
rate change in the magnetic flux and a higher
voltage. As the magnet enters the coil, the polarity
of the voltage generated will be opposite that of
the polarity of the voltage generated when the
magnet leaves the coil. Thus, a bipolar voltage will
be generated across the coil.

Magnet

Perspex
Tube

Enameled
Copper Wire

AC Voltage Output

Elements of a Faraday generatorFigure 7-1

191

192 tinyAVR Microcontroller Projects for the Evil Genius

There are numerous advantages of such a
muscle-powered generator. Freedom from batteries
(even rechargeable ones) would mean fewer
batteries used and would be our contribution
towards a better, cleaner environment. Since there
is no battery, a drained (or uncharged) battery
would never let you down just when you need it
the most.

Choosing the Right
Voltage Regulator

The only issue with this method is you have to
keep shaking the tube for as long as you want to
power the circuit. Once you stop shaking the tube,
it will stop producing the voltage, and only the
residual voltage on the capacitor will be available.
In applications that require only discontinuous
usage, this may be a perfectly suitable source of
power. For other applications, sporadic shaking
could be used to charge a supercapacitor instead of
a normal electrolytic capacitor to continuously
provide power to the application. A supercapacitor,
as the name suggests, is a capacitor with a
substantially large charge storage capacity.
Usually, supercapacitors, as compared to
conventional electrolytic capacitors, have a much
lower maximum voltage of operation. Using a
supercapacitor for storing energy has a downside,
though: It would take a long time and a lot of
effort to charge the supercapacitors to the required
voltage. Typically, a supercapacitor•s maximum
voltage of operation is 2.5V or 2.7V, although
some are available with a 5V maximum rating. A
10F/2.5V supercapacitor would store 25 coulombs
of charge when fully charged to 2.5V. In
comparison, a fully charged 10,000µF/25V
electrolytic capacitor would only store 0.25
coulombs of charge. However, if an operating
voltage of 5V is required for the application using

a supercapacitor, then a step-up type of DC-DC
converter would be required to step up the
supercapacitor voltage to the required operating
voltage.

Figure 7-2 shows the circuit diagram of a power
supply using a supercapacitor and MAX756, a
step-up type of DC-DC converter. The output of
the coil is rectified using four diodes in a bridge
rectifier configuration, and the output of the
rectifier is connected to a supercapacitor. The
MAX756 can provide either 3.3V or 5V output
voltage, depending upon the state of the 3/5* input
pin. If this pin is grounded, then the output is 5V.
On the other hand, if the 3/5* pin is connected to
the input voltage, then the output is set to 3.3V. As
can be seen from the figure, the circuit requires
quite a few extra components apart from the
MAX756.

Instead of a supercapacitor, Figure 7-3 shows a
normal power supply using a regular electrolytic
capacitor of a suitable rating (in this case, 4700
uF/25V) at the output of the bridge rectifier. The
voltage regulator used is a suitable low drop out
(LDO) type voltage regulator. One of our favorite
LDOs is the LP2950, which is available in several
output voltage ratings. The figure shows a 5V
output version LDO being used.

Table 7-1 lists some step up DC-DC converters
for use with the Faraday generator, a bridge
rectifier, and a supercapacitor storage medium.
This list is in no way exhaustive. The choice of the
DC-DC converter is also made on the basis of the
quiescent current consumed by the converter and
minimum input voltage requirement. A converter
with low quiescent current is, of course, preferred.
But often, the choice is dictated by what is easily
available or even which device has an easier to
solder PCB footprint.

Chapter 7 ■ Alternate Energy Projects 193

1N5819

SHDN*

REF

LXLBI

1F
/5

V

3/5*
OUT

1N5819

22uH

10
0u

F
/1

6V

Vout

MAX756

1500−2000 turns
36 SWG copper
enameled wire

Rare earth
magnet

0.1uF

A MAX756 step-up DC-DC converter–based power supply using a Faraday generatorFigure 7-2

1N5819

1500−2000 turns
36 SWG copper
enameled wire

Rare earth
magnet

47
00

u
F

/2
5V

Vout

In Out

Gnd

10
u

F
/1

6V

LP2950−5V

An LDO-based power supply using a Faraday generatorFigure 7-3

Building the Faraday
Generator

Building a Faraday generator is easy and requires
three major components, as shown in the illustration
below: a tube of suitable size, cylindrical magnets
that slide easily inside the tube, and copper
enameled wire to wind outside the tube.

We used a Perspex tube with an inner diameter
of 15 mm and an outer diameter of 20 mm. We
used strong neodymium magnets (rare earth
magnets) with a 12-mm diameter that would slide
inside the Perspex tube easily. The tube with 2.5

mm thickness was machined in the center to make
a 2-inch long, 1.5-mm deep groove, which was
used to wind the enameled wire. To increase the
number of turns, additional shoulders on both sides
of the groove were provided with Perspex rings. In
the available volume, 1,500 to 2,000 turns of
copper wire of 36SWG could fit easily. One could
choose wire with a smaller diameter, which would
lead to a larger number of turns in the available
volume, which would result in larger induced
voltage, but the downside is that the maximum
current that would be available would be reduced.
This is a tradeoff that the user must decide for

194 tinyAVR Microcontroller Projects for the Evil Genius

Minimum Minimum
Serial Converter Voltage for Startup Quiescent
Number Device Manufacturer Topology Operation (V) Voltage (V) Current (uA)

1 MAX756 Maxim Step-up 0.7 1.1 60

2 TPS61070 Texas Instruments Step-up 0.9 1.1 19

3 ZXSC100 Zetex Step-up 0.92 1.01 150

TABLE 7-1 A Few Step-up Type DC-DC Converters

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Chapter 7 ■ Alternate Energy Projects 195

himself or herself. Once the tube is wound with the
copper wire and the magnets are placed inside the
tube, the ends of the tube are sealed with circular
pieces of PCBs, as shown in the next illustration.

Experimental Results
and Discussion

Experimental results match the expected output as
dictated by Faraday•s equation. Several prototype
generators were made and tested. The open circuit
output voltage of a prototype with 1,800 turns of
36SWG copper wire was recorded on an
oscilloscope and is shown in Figure 7-4. The short
circuit current of the same coil is shown in Figure
7-5. The current is measured with a very small

resistance (0.22 Ohm) connected to the output of
the coil and shows a maximum current of 180mA.
This prototype is able to charge a 1F/5V
supercapacitor to 3V in less than 100 shakes.

The same prototype was also used to charge a
0.5F, 5V supercapacitor from Cooper Bussman and
a 1-Kohm resistance as load was connected across
the capacitor. The supercapacitor was charged to
3.75V and allowed to discharge through the load.
Figure 7-6 shows the plot of supercapacitor voltage
discharged through a 1-Kohm load resistance as a
function of time.

The circuit in Figure 7-2 was tested with a
constant load of about 1.6mA, and the output
remained stable for more than six minutes.

Faraday generator output voltage
waveform

Figure 7-4

 4

3.5

3

2.5

2

1.5

1

0.5

0
0 100 200 300 400 500 600 700

Time (Seconds)

Vo
lt

a
ge

 (
Vo

lt
s)

Plot of supercapacitor voltage as a
function of time with a resistive load

Figure 7-6

Faraday generator output current
waveform

Figure 7-5

196 tinyAVR Microcontroller Projects for the Evil Genius

The 1F supercapacitor was charged to 3V. The
MAX756 DC-DC converter output was set to 3.3V.
The supercapacitor voltage was monitored as a
function of time until the DC-DC converter output
voltage was 3.3V. Figure 7-7 shows the results.
Since the supercapacitor has to now provide
constant power, the supercapacitor voltage drops
according to the following equation:

V(cap) � �{V(max)^2 … (2 � p � t)/C}

where V(cap) is instantaneous voltage across the
supercapacitor, V(max) is the initial voltage across
the supercapacitor, p is the power drawn by the
load, and C is the capacitance of the
supercapacitor. In simple terms, it means that if the
square of the supercapacitor voltage is plotted as a
function of time, you will get a straight line, which
is plotted in Figure 7-8. This also shows that the
DC-DC converter offers a constant power load to
the supercapacitor. This equation must be kept in
mind while designing a power supply using a
Faraday generator with a supercapacitor as a
storage medium. The equation specifies how long
the supercapacitor can continue to provide constant
power to the load through a DC-DC converter.

Thus, we now have a Faraday generator…based
power supply that can be used to provide power to

a portable embedded (or even nonembedded)
application by converting mechanical energy into
electrical energy. Let us use this free power-
generating source in some projects.

Project 32
Batteryless Infrared Remote

Infrared (IR) remote control devices have become
an indispensible piece of equipment today. They
are used for remote control of almost all consumer
devices, at home and work, including TV sets,
audio players, air-conditioning equipment, and
other gadgets. Most of these IR remote control
devices operate with one or two 1.5V batteries
(typically AA or AAA). A remote control device
uses an IR LED to transmit a command code
corresponding to any key. Each key has a unique
command code. The IR light, which is invisible to
the human eye (but can be observed with a
camera), is actually modulated with a carrier
frequency between 35 to 40 KHz, and this signal is
used to transmit the command code.

The following illustration shows a SIRCS signal
is transmitted by a TV remote.

3.5

3

2.5

2

1.5

1

0.5

0
0 100 200 300 400 500

Time (Seconds)

V
(C

a
p

a
ci

to
r)

 (
Vo

lt
s)

V(Capacitor) vs Time

Supercapacitor voltage as a
function of time with a constant
power load

Figure 7-7

10

9

8

7

6

5

4

3

2

1

0
0 5 10 15 20 25 30

Time

V
(c

a
p

)2 …

V(cap)2 vs Time

Plot of supercapacitor voltage
squared as a function of time with
a constant power load

Figure 7-8

There is one major issue with IR remote
devices, and that is the lack of any standard
because every equipment manufacturer has their
own command code formats, modulation
frequency, etc. Our survey has revealed nine
remote control formats: Daewoo, Samsung, Japan,
Motorola, SIRCS (Sony), RC5 (Philips), Denon,
NEC, and RECS80 (Thomson). Also, as devices
get more and more complex, so do the remote
controls. It is not uncommon to have 50 or more
keys on a typical remote control. However, of

these keys, only some are used more often than
others. Take a case of a TV remote control. The
most common keys one uses on a regular basis are
power on/off, mute, channel+, channel…, volume+,
and volume…!

The remote control is such a common device
that there are dedicated remote control integrated
circuits. If you open any remote control device,
you will find a single integrated circuit that
interfaces to the keys and has an IR LED.

In this project, we decided to implement a
frugal, scaled-down, batteryless TV remote that
offers just the six keys mentioned earlier. The TV
remote code offers user-selectable formats from
NEC, SIRCS, RC5, or Samsung format for these
six keys.

Design Specifications

The objective of the project was to create a
batteryless TV remote control with only six keys.
Figure 7-9 shows the block diagram of the

Chapter 7 ■ Alternate Energy Projects 197

Rectifier,
Capacitor,
and
Regulator

AVR Micro

S1 S2 S3

S4 S5 S6

Supply
Power

IR LED

Block diagram of the batteryless TV remoteFigure 7-9

batteryless TV remote. It uses an eight-pin
microcontroller. The power for operation is
supplied using the Faraday generator. The six keys
are interfaced using a 3 � 2 matrix with five pins.
In an eight-pin microcontroller in the tinyAVR
family, up to six I/O pins can be used. This project
uses all six pins: five pins for the switches and one
pin for the IR LED.

Design Description

The illustration shows the schematic diagram of
the batteryless TV remote. The power to operate
the circuit is provided by the Faraday generator.
Connector SL1 in the schematic diagram connects
to the Faraday generator. Diodes D1 through D4
rectify the AC voltage, and the DC voltage is
filtered and stored on the capacitors C1 and C3.
The voltage regulator LP2950-3.3V provides
an output voltage of 3.3V to the Tiny45
microcontroller. The TV remote uses a six-

switches interface to the microcontroller on pins
PB0 to PB4. Pin PB5 is used to control the IR
LED in current sink mode.

The microcontroller keeps scanning the keys
and upon detection of a key press, it transmits the
key code corresponding to the key. The required
format for each of the remote controls (REC, NEC,
Samsung, or SIRCS) is programmed in the
microcontroller. Although each format is different
from the others, they do have some commonalities.
The key code transmission begins with a start bit,
followed by few address bits, and then several bits
for the command code, that is, the code of the key
pressed. The address refers to equipment such as a
TV, audio player, DVD player, etc. In some
formats, the start bit may be followed by the
command code followed by the address bits. The
encoding and duration of each bit also vary
between the remote control formats. These details
are mentioned in the code files for this project.

198 tinyAVR Microcontroller Projects for the Evil Genius

Fabrication

The circuit was built on a custom PCB and housed
in a small enclosure. The Faraday generator was
built to match the size of the enclosure. The
following illustrations show the completed TV
remote control and the insides of the enclosure.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The main section of the microcontroller
executes a tight loop waiting for a key to be
pressed. Until a key press occurs, the
microcontroller goes into sleep mode to conserve
power. A key press causes a pin change interrupt,
which wakes up the controller. The microcontroller
executes a key scan subroutine to identify the key.
In the next step, the transmit subroutine is
executed to transmit the key code as per the
selected protocol. Once the key code is
transmitted, the microcontroller goes into sleep
mode until a key is pressed again.

ISR(PCINT0_vect)

//Interrupt handler for pin change

{

MCUCR &= ~((1<<SE) | (1<<SM1));

//Disable sleep (power down) mode

PCMSK &= ~((1<<PCINT4) | (1<<PCINT3) |

(1<<PCINT2));

//Pin change interrupt is disabled on

//all pins

New_Key_Pressed = 1;

}

The key code that is to be transmitted modulates
a carrier frequency. The carrier frequency depends
upon the selected remote protocol. The

Chapter 7 ■ Alternate Energy Projects 199

microcontroller, which is operating at a clock
frequency of 1 MHz, uses the internal eight-bit
timer in clear timer on compare (CTC) mode to
generate the carrier frequency. The required carrier
frequency is generated by toggling the output bit.
So to get 36-KHz carrier frequency, the interrupt
rate has to be set to 72 KHz.

ISR(TIMER0_COMPA_vect)

//Interrupt handler for compare

//match

{

PORTB ^= (1<<IR_LED);

//Toggle the PIN to generate PWM

}

For the RC5 protocol, the timer is initialized as
follows:

{

TCCR0A |= (1<<WGM01);

//Clear timer on compare mode

//enabled

TCCR0B |= (1<<CS00);

//Clock frequency 8 MHz(prescalar =

//1), CTC mode

OCR0A = 14;

//Approx. 72KHz Interrupt rate

TIMSK |= (1<<OCIE0A);

//Enable CTC interrupt

sei();

}

Any key code transmission for a particular
protocol involves turning off and on the IR LED at
the rate of the carrier frequency modulated with
the bits of the code (logic •0Ž or logic •1Ž), as
shown in the illustration below.

The following code listing shows the actual bit
transmission for RC5 protocol:

void transmit_RC5(void)

{

while(Tx == 1)

{

if(Tx_bit_RC5[i] == 0)

{

DDRB |= (1<<IR_LED);

//Enable carrier

_delay_us(RC5_ON_PERIOD_ZERO);

DDRB &= ~(1<<IR_LED);

//Disable carrier

200 tinyAVR Microcontroller Projects for the Evil Genius

889 uS

889 uS

560 uS

2.25 mS

560 uS
1.12 mS

Logic “0”

RC5 Protocol NEC Protocol

Logic “0” Logic “1”

Logic “1”

_delay_us(RC5_OFF_PERIOD_ZERO);

}

if(Tx_bit_RC5[i] == 1)

{

DDRB &= ~(1<<IR_LED);

//Disable carrier

_delay_us(RC5_OFF_PERIOD_ONE);

DDRB |= (1<<IR_LED);

//Enable carrier

_delay_us(RC5_ON_PERIOD_ONE);

}

i++;

if(i == 14)

{

i=0;

Tx = 0;

}

}

PCMSK |= ((1<<PCINT4) | (1<<PCINT3) |

(1<<PCINT2));

}

Working

To use the batteryless TV remote is as simple as
1-2-3. Just shake the remote a few times and press
the desired key!

Project 33
Batteryless Electronic Dice

Instead of traditional dice, it is nice and cool to use
electronic dice. We covered RGB LED dice in a
previous chapter, but let•s discuss this some more.
Usually, an electronic die would consist of an
electronic circuit and an LED display. The LED
display could be a seven-segment display that
displays numbers between 1 and 6, as seen in
Figure 7-10, or perhaps, to mimic the traditional
dice pattern, it could consist of seven LEDs
arranged as shown in Figure 7-11. Both the dice
designs have a switch, which the user has to press
when he or she wants to •roll the dice.Ž The switch
triggers a random number generator programmed

in the microcontroller, and the random number is
then displayed on the seven-segment display or the
LED display. When the user wants a new number,
the switch has to be pressed again.

Both of these designs need a suitable power
supply, which can be derived out of a wall wart, a
suitable rectifier, smoothing capacitor, and an
appropriate +5V regulator. If the user wants the
dice to be portable, then the wall wart transformer
should be replaced with a suitable battery, say a
9V battery. Other options for the battery exist„for
example, to operate the dice from a single AA or
AAA battery, a normal linear regulator will not
work. To derive +5V for the dice operation, a
suitable boost type DC-DC converter must be used.

But instead of using batteries or other sources of
power for operation, it is possible to use a Faraday
generator. Figure 7-12 shows the block diagram of
such an electronic die. To generate power from a
Faraday generator, it has to be shaken by moving
the tube back and forth. The back and forth motion

Chapter 7 ■ Alternate Energy Projects 201

AVR Micro

Switch

A basic electronic die using
seven-segment display

Figure 7-10

AVR Micro

Switch

is LED

A basic electronic die using LEDsFigure 7-11

202 tinyAVR Microcontroller Projects for the Evil Genius

of the tube can be detected using a •shake
detectorŽ circuit, and when one stops shaking the
tube, a random number is displayed on the LED in
a •traditionalŽ dice pattern. Since the power
generated lasts only as long as you shake the tube,
the filter capacitor continues to provide power to
the circuit for some time after the tube has stopped
being shaken, and during this time, the random
number is displayed on the LEDs. As the capacitor
is discharged, the display turns off. To increase the
time during which the LEDs remain lit after the
tube has stopped being shaken, you may use a
larger filter capacitor.

Design Specifications

The objective of the project is to design an
electronic die using LEDs to display a random
number without using any •traditionalŽ source of
power and instead to derive the operating power
from a Faraday generator. Some board games
require two dice. The original design is adapted to
provide two sets of LED displays in the second
version of the circuit.

Design Description

The illustration on the following page shows the
schematic diagram of the batteryless electronic
dice. Connector J1 connects to the terminals of the
Faraday generator. The Faraday generator produces
AC voltage and, therefore, diodes D1 through D4

(connected as a bridge rectifier) convert the AC
voltage into DC voltage. The diodes 1N5819 are
Schottky diodes with lower turn-on voltage
compared to conventional silicon rectifier diodes.
The DC voltage is filtered and stored using
electrolytic capacitor C1 (4700µF/25V) and is
supplied to the input of the LP2950-5V LDO
regulator. The output of the LDO is 5V and is used
to supply operating voltage to the microcontroller
and LEDs in the circuit.

The shake detection functionality is provided by
diode D5, resistor R1, and Zener diode D6. The
AC input is then rectified and only positive pulses
are allowed to pass through diode D5. The signal
at the output of D5 is seen in Figure 7-13. The
Zener diode clips the voltage pulses above 4.7V.
These pulses are applied to a pin of the

Detector
Shake

Microcontroller

VccPower
Supply

From
Faraday
Generator

LEDs

Block diagram of the batteryless electronic diceFigure 7-12

Pulse output of the shake detectorFigure 7-13

microcontroller (PB0). The program inside the
microcontroller keeps monitoring the pulses, and if
one stops shaking, the pulses are not produced any
more. The microcontroller thus concludes that the
user has stopped shaking the tube and produces a
random number and displays it on the LEDs.

The LEDs are arranged in such a fashion that
only four pins are required to control seven LEDs.
Of course, the microcontroller does not have
individual control over all the LEDs. Instead, the
four pins of the microcontroller control one, two,
two, and two LEDs, respectively. The LEDs
labeled LED1 through LED7 are arranged in
current sink mode in the fashion shown in Figure
7-14. As the user starts shaking the tube, voltage
on the capacitor C1 rises, due to which the output
of the voltage regulator also increases. When the
output of the regulator stabilizes, it provides
operating voltage to the microcontroller, which
starts executing the program. The program
initializes the port pins and turns off all the LEDs.

It also starts an internal timer, T0. The timer count
increments on every eight clock cycles of the
microcontroller system clock. The microcontroller
then waits for the user to stop shaking the tube.
Once the user stops shaking the tube, the
microcontroller reads the timer T0 value and
performs modulo 6 operation on the timer value.
This results in a value between zero and five. The
result from this operation (zero to five) is
translated as 1 to 6 on the LED display. Once the
LEDs display a random number, the available
charge on the capacitor is sufficient to light the
LEDs for an average time of about ten seconds.
Once a number has been displayed on the LEDs,
the microcontroller then waits for the user to shake
the tube again. To get a new random number, the
user must shake the tube a few times again.

Since the operation of the timer and the shaking
of the tube are asynchronous, the resultant number
from the timer is fairly random. This is how the
batteryless electronic dice circuit works.

Chapter 7 ■ Alternate Energy Projects 203

Many board games require two dice, so we
modified the original design to provide two sets of
LED displays. The following illustration shows the
schematic diagram of the dual dice. The two sets
of seven LEDs are multiplexed. The program for
the Tiny microcontroller is modified so that the
two sets of LEDs are refreshed alternately at a
high frequency so that both sets of LEDs show the
random numbers. In the dual dice, the two random
numbers are generated using the Timer0, as in the

single die, except the first random number is
generated when the tube starts shaking and the
second one after the tube stops shaking. Other than
that, the dual dice operates in a manner similar to
that of the single die.

For the single die as well as dual dice, the
Tiny13 microcontroller is operated with an internal
RC oscillator programmed to generate a 128-KHz
clock signal. This is the lowest clock signal that
the Tiny13 can generate internally and is chosen
to minimize the current consumed by the
microcontroller.

Fabrication

The first version of the single die was made on a
general-purpose circuit board of about 2 cm wide
and 10 cm long, as seen in the illustration on the
top of the next page.

The soldered circuit is housed in another
Perspex tube. After the assembly, the circuit tube
and the Faraday generator tube are fixed together
for ease of operation, a prototype of which is
shown in the following illustration.

204 tinyAVR Microcontroller Projects for the Evil Genius

LED6

LED4 LED3

LED7

LED5LED2

LED1

Arrangement of LEDsFigure 7-14

After extensive testing of the prototype, we
decided to get some printed circuit boards from a
vendor, and the single die and dual dice systems
were soldered and packaged in the same way as
the prototype, as seen in the following illustrations.

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The important section of the code is the main
infinite loop, where the microcontroller
continuously monitors pulses on the PB0 pin.
Once the pulses stop coming, it generates a
random number using Timer0 and displays it on
the LEDs. Similar code is available for the dual
dice. In this code, we have used the _delay_loop_2
function for delay, as opposed to _delay_msand
_delay_usthat we have used so far.

Chapter 7 ■ Alternate Energy Projects 205

const char ledcode[] PROGMEM= {0xfc,

0xee, 0xf8, 0xf2, 0xf0, 0xe2, 0xfe};

void main(void)

{

unsigned char temp=0;

int count=0;

DDRB=0xfe; /*PB0 is input*/

TCCR0B=2; /*divide by 8*/

TCCR0A=0;

TCNT0= 0;

PORTB=254; /*disable all LEDs*/

while(1)

{

/*wait for pulse to go high*/

while ((PINB & 0x01) == 0);

_delay_loop_2(50);

/*wait for pulse to go low*/

while ((PINB & 0x01) == 0x01);

_delay_loop_2(50);

count=5000;

while ((count > 0) && ((PINB &0x01)

==0))

{

count--;

}

if(count ==0) /* no more pulse so

display a random number*/

{

PORTB=0xfe; /*all LEDs off*/

_delay_loop_2(10000);

temp=TCNT0;

temp= temp%6;

temp =pgm_read_byte(&ledcode[temp]);

PORTB=temp;

}

}

}

The Tiny13 microcontroller is programmed
using the STK500 programmer, and the fuse bits
for the microcontroller are seen in the illustration.

Project 34
Batteryless Persistence-
of-Vision Toy

A persistence-of-vision device uses the effect that
light shown to the human eye is •rememberedŽ
after the light is turned off. The duration of time
for which the eye •remembersŽ the light is about
8 ms. This particular characteristic of the human

206 tinyAVR Microcontroller Projects for the Evil Genius

eye is employed in such toys that use LEDs to
display lighting patterns spatially„that is, LEDs
moving in space with changing lighting patterns.
The eye remembers these patterns and is able to
create a meaningful image from them. This
principle was also used in the spinning LED top
project in a previous chapter.

In this project, we use the persistence of vision
(POV) characteristic of the eye to create a
batteryless toy that displays messages in the air
using a single column of LEDs. The user simply
moves the toy back and forth in the air. The back-
and-forth motion of the toy is used to generate the
required operating voltage for the toy, as well as to
change the light pattern on the LEDs. Text, as well
as graphical patterns, stored in the memory of the
controlling microcontroller of the toy can be
displayed.

Design Specifications

The aim of the project is to design a batteryless
POV toy that is programmed with text and
graphics patterns in a microcontroller. The toy uses
seven LEDs arranged in a column, which is waved
through the air. These LEDs are controlled by the
microcontroller, which generates a pattern of light
on the LEDs that an external observer sees as a
message or graphics due to the persistence of
vision. The operating power for the toy is derived
from the Faraday generator, as described earlier in
the chapter. Figure 7-15 shows the block diagram
of the toy.

Design Description

The illustration on the following page shows the
schematic diagram of the POV toy. The diagram

Chapter 7 ■ Alternate Energy Projects 207

Rectifier,
Capacitor,
and
Regulator

Power
Supply

AVR Micro

Block diagram of the POV toyFigure 7-15

shows the bridge rectifier using diodes D1 through
D4 (1N5819) and a 4700uF/25V filter capacitor.
The voltage regulator used is LP2950-5V for 5V
output voltage to power the microcontroller and
the LEDs. The important aspect in a POV toy is
the ability to generate the same LED patterns over
and over in the air, and for that, some sort of
synchronization signal is required. In our POV toy,
this signal is generated by a reed switch connected
to the tube of the Faraday generator using
connector SL2. The Faraday generator is
connected at right angles to the column of LEDs.
As the toy is waved in the air, the magnets traverse
the length of the tube. The reed switch, connected
at one end of the tube, is shorted in the presence of
the magnets. The magnetic field is sensed by the
microcontroller and is used to synchronize the
LED lighting pattern.

The LEDs are connected in current sink mode
(i.e., the port pin has to be set to logic •0Ž for the
LED to light up).

Fabrication

The POV toy was fabricated on a general-purpose
circuit board, as seen in the next illustration. The
circuit board was fixed on a plastic tube. Any
plastic tube of suitable strength can be used. We
used the tubes that semiconductor manufacturers
package ICs in (incidentally, the tube we used is
marked •AtmelŽ). At a right angle to the tube, the
Faraday generator tube was fixed. After fixing the
Faraday tube, we glued the reed switch and
covered it with hot melt glue for extra protection.
The reed switch was fixed to the right side of the
tube, with the LEDs facing you.

208 tinyAVR Microcontroller Projects for the Evil Genius

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

The following illustration shows a close-up view
of the reed switch glued on one end of the Faraday
generator tube.

The reed switch is critical for the operation of
the POV toy. A reed switch consists of two
contacts of a switch coated with ferrous material.
In the presence of a magnetic field, the two
contacts are pulled together and the switch closes.
When the magnetic field is removed the switch
opens. The next illustration shows a reed switch.

To use the POV toy, simply start shaking the
toy in the air rapidly. It would start printing the
programmed message as seen in the following
illustration.

Chapter 7 ■ Alternate Energy Projects 209

Design Code

The compiled source code, along with the
MAKEFILE, can be downloaded from
www.avrgenius.com/tinyavr1.

The important part of the program is the
message/graphics that need to be displayed. These
are encoded as bytes and stored in the MSG[]
array. The size of the array (which depends upon
the length of the message to be displayed) is
defined as a constant maxchar. The code as shown
displays •Make:♥Ž and so MSG has a size of 45
bytes. Since the number of entries in the array is
45, the maxchar constant is set to 45. If you want,
you can program your own message; then the
maxchar constant has to be set according to the
number of entries in the MSG[] array.

The program waits for the synchronization
signal from the reed switch, and when it receives
the signal, it starts sending the elements of the
array MSG[] to the LEDs connected to PortA.
Each LED pattern lasts a few milliseconds. Then
the LEDs are turned off before the next byte of the
array is output to the LEDs. This continues until
the entire array is transferred to the LEDs. The
program then waits for the next synchronization
signal from the reed switch.

//Make: H

const char MSG[] PROGMEM= {0x80, 0xfd,

0xfb, 0xf7, 0xfb, 0xfd, 0x80, 0xff,

0xdd, 0xae, 0xb6, 0xb6, 0xb9, 0xc3,

0xbf, 0xff, 0x80, 0xf7, 0xeb, 0xdd,

0xbe, 0xff, 0xe3, 0xcd, 0xad, 0xad,

0xb3, 0xff, 0xff, 0x93, 0x93, 0xff,

0xf3, 0xe1, 0xc0, 0xc0, 0xc1, 0x87,

0x87, 0xc1, 0xc0, 0xc0, 0xe1, 0xf3,

0xff, 0xff};

//size: 45 bytes

#define maxchar 45

void main(void)

{

unsigned char temp;

DDRA= 0x7f;

PORTA=255;

while(1)

{

PORTA = 255;

while((PINA&0x80) == 0x80);

while((PINA&0x80) == 0);

_delay_loop_2(3000);

while((PINA&0x80) == 0);

_delay_loop_2(1000);

for(temp=0; temp<maxchar; temp++)

{

PORTA= pgm_read_byte(&MSG[temp]);

_delay_loop_2(150);

PORTA=0xff;

_delay_loop_2(50);

}

}

}

Working

Using the POV toy is easy. The important task is to
program the microcontroller so that it displays the
desired message. The encoding of the message is
shown in Figure 7-16. Port bit PA7 is used as reed
switch input, while PA6 to PA0 are used to connect
the LEDs in current sink mode. Thus, to turn on an
LED, the port bit has to be •0.Ž Keeping the bit D7
of the port as •1,Ž the rest of the seven bits are
encoded as shown in the figure and the message or
graphics bytes are created.

210 tinyAVR Microcontroller Projects for the Evil Genius

2
11

D4

D3

D2

D1

D0

D5

D6

80 F
D

F
B

F
7

F
B

F
D

80 F
F

D
D

A
E

B
6

B
9

C
3

B
6

B
F

F
F

80 F
7

E
B

D
D

B
E

F
F

80 F
7

E
B

D
D

B
E

F
F

F
F

93 93 F
F

F
3

E
1

C
0

C
0

C
1

87 87 C
1

C
0

C
0

E
1

F
3

F
F

F
F

Encoding the LED lighting patterns. The message has 45 bytes.Figure 7-16

Conclusion

In this chapter we have seen a few projects based
on the Faraday generator. The basic Faraday

generator can produce sufficient power for many
small embedded applications, as shown in this
chapter.

212 tinyAVR Microcontroller Projects for the Evil Genius

C Programming for
AVR Microcontrollers

A P P E N D I X A

GONE ARE THE DAYS when one had to write the
machine code for a particular function. Earlier,
assembly language was primarily used for
microcontroller programming. In assembly, one
has to write the code in the form of mnemonics
like •ADD Rd, RsŽ to add the contents of register
Rs to Rd. The assembler would then translate the
assembly code into the machine code. But with
assembly, it is difficult to write complex codes
because of the low level of abstraction. Assembly
is difficult to master and differs in notation from
device to device.

On the other hand, C, being a high-level
language, provides a higher degree of abstraction
and a rich collection of libraries. C is a general-
purpose programming language that can work for
any microcontroller family, provided a cross-
compiler exists for it. With C, one can write codes
faster, create codes that are easy to understand, and
achieve a good degree of software portability. C is
always a popular and influential language because
of its simplicity, reliability, and the ease of writing
a compiler for it.

The use of embedded processors in mobile
phones, digital cameras, medical plant equipment,
aerospace systems, and household devices like
microwave ovens and washing machines is
widespread because of their low cost and ease of
programming. The intelligence of these devices
comes from a microcontroller and an embedded
program in it. The program not only has to run

fast, but also has to work in the limited memory
as well. The AVR family provides many
microcontrollers with different memory sizes and
features. Although the programming structure for
embedded devices is the same as any other
software coding, it differs in the programming
style. Proper optimization needs to be applied
while dealing with embedded devices. One should
be careful about the timing and space complexities
here. It is good to avoid declaring a large number
of variables. Moreover, their types should be
properly selected because of space (memory)
limitations in microcontrollers. For example, if a
variable is always expected to have a value
between 0 and 255, one should declare it as an
unsigned charinstead of int or short. Tiny
devices contain limited data and program memory,
so optimization needs to be done while designing
systems with these devices.

Another kind of optimization needed during
designing has to do with the time complexity of
the codes. Timing considerations should be taken
care of, especially while writing interrupt
subroutines. One must have a mental picture of
how one•s C code is using memory and consuming
time. For example, floating point calculations take
more time than integer arithmetic, and should be
avoided. Fixed point calculation is an alternative
solution for floating point calculations.

213

Differences Between
ANSI C and Embedded C

In Chapter 1, we gave an overview of ANSI C and
embedded C. The major differences between the
two are discussed in this section.

Infinite vs. Noninfinite Program

In the operating system (OS) environment, the OS
schedules the tasks for the CPU and keeps it
occupied all the time. Hence, when your C
program has been allocated the CPU, it does its
tasks, and upon their completion, the OS takes
back all the resources it had allotted to the
program. In contrast to this, there is no operating
system in embedded systems and your program is
the only running piece of software. Hence, it must
never terminate. In other words, it must keep the
CPU occupied all the time. For this purpose, C
programs for embedded systems are generally run
in infinite loops in the form while (1) or for (;;) .
These loops never terminate, and the program runs
continuously.

Including Different Files for
Different Microcontrollers

#include is a preprocessor directive that directs the
compiler to include certain header “les that allow
access to library functions. This is a standard
feature of the C language. When writing programs
for embedded systems, we include specific header
files for different microcontroller platforms, which
allows us access to some library functions and also
tells the compiler about the various features of the
microcontroller on which we intend to run the
program. #include can also be used to define
various macros, which we will use to access
certain processor-speci“c features from inside the
C language that would otherwise be inaccessible
by standard C constructs. Examples are the names
of the I/O registers and bits of the AVR
microcontrollers. We will explain the header files

and library functions for AVR in detail in later
sections.

Minimal Use of Console Functions

The standard input/output functions are generally
not used in embedded systems programming
because, by default, embedded systems have no
display device like a PC. Console input/output
functions like printf , scanf, putchar, gets, puts,
etc., although they exist on most of the embedded
system compilers, can•t be used in the raw form.
They have to be bound to certain utilities of the
controller before use.

Data Types and Operators

C provides a basic, standard, and minimal set of
data types. However, more complex data types can
be created using structures and unions. A variable
is used to hold data lying within a particular range,
according to the type of the declared variable.
When a variable is declared, it is allocated a
certain amount of memory.

The primary data types in C are:

■ char This is a single-byte data type that
is generally used to represent a character in
the ASCII set. Originally there were 127
characters in the ASCII set. A signed charhas
a range of …128 to 127, whereas the range for
unsigned charis from 0 to 255.

■ short This is another form of the integer type
unit that can also be written as short int. This is
typically two bytes long. A signed shorthas a
range from …32768 to 32767, and an unsigned
short can have values from 0 to 65535.

■ int The size of an integer can be 16 bits or 32
bits, depending on the architecture. On AVR
devices, int declares a 16-bit data variable with
values ranging from …32768 to 32767.
Similarly, an unsigned int will have values
from 0 to 65535.

214 tinyAVR Microcontroller Projects for the Evil Genius

■ long This represents a long integer with a
typical size of 32 bits. The range is from
…2147483648 to 2147483647 in signed format
and from 0 to 4294967295 in unsigned format.
Long is mainly used to store large values in a
variable.

An int can be equivalent to a short or a long,
according to the base architecture. However,
shorts can never be bigger than ints, and ints can
never be bigger than longs.

In embedded programming, flags are variables
commonly used to hold the status of running
program. Generally, flags take limited values. So,
it is always advantageous to declare these flags as
char type to avoid wasting memory.

Floating Point Types

C provides another set of data types, known as
float and double, to hold decimal numbers with a
large range. Unlike fixed point notation, the
decimal point is not fixed at a particular position in
floats and doubles, hence the name floating point.
A float occupies 4 bytes with a range from …3.4e38
to +3.4e38. For higher ranges, C provides another
8-byte type, called •double,Ž with a range from
…1.7e308 to +1.7e308. If double is insufficient,
another data type called long double exists with
an even higher range. However, in the case of
embedded applications, one should avoid the use
of floating points, as most of the devices do not
support the floating point hardware and such
calculations are carried out by a piece of software
called a floating point emulator. This emulator
becomes a part of the hex file, thereby increasing
its size, and hence, a performance penalty is to be
incurred for executing a bigger code.

Variables and Constants

A variable is a name for a reserved chunk of
memory that is used to hold a value of a particular
type. Syntactically, C puts the type first followed
by the variable name. The following declares an
integer variable named •countŽ initialized to 10
and an uninitialized integer named •numberŽ:

int count = 10, number;

By default, int represents the signed type;
hence, a range from …32768 to +32767 is allowed
for count. C is a case-sensitive language; thus, •aŽ
and •AŽ correspond to different variables.
Variables names may contain digits and
underscores (_), but can not start with a digit.
Variable names should be different from the
reserved keywords in C. On the other hand, a
constant declaration reserves an area of memory
that has a fixed value during compile and run time.
These can be char, int , or float constants. A char
constant like •AŽ has a value of 65 in decimal.
Similarly, an integer number like 120 in the source
code is a constant int . An int constant can be
appended by •LŽ or •lŽ (e.g., 1300L) to designate
it as a long integer, and with a •uŽ or •UŽ for
unsigned notation. Hence, 300UL represents an
unsigned long integer constant with a value of 300.
Similarly, for the float constant, a suffix of •fŽ or
•FŽ can be added. Another popular way of writing
constants includes using a base other than 10. For
example, constants can be written in binary, octal,
or hexadecimal format by adding a prefix 0b (or
0B), 0, or 0x (or 0X), respectively, to the value. So,
0xff represents the number 255 in decimal.

Appendix A ■ C Programming for AVR Microcontrollers 215

0b00001111 = = 017 = = 0x0f = = 15

(in binary) (in octal) (in hexadecimal) (in decimal)

Operators

The different operators available in C are described
in the following sections.

Assignment Operator (=)

This is a binary operator that copies the value on
the right to the value on the left. A constant cannot
be put on the left side of an assignment operator.

a � 2;

assigns 2 to variable •aŽ and

a � x � 1;

stores the value of •x � 1Ž in •a,Ž where x is
another variable.

Mathematical Operators

Both binary and unary mathematical operators
are available in C. While using mathematical
operators, one must have knowledge of the priority
order of these operators, which decides which
operation is going to be performed first. To avoid
confusion, one can use parentheses. The
mathematical operator between an integer and a
float will give the result in float type. The int type
is first internally converted to float and then the
result is obtained. The available binary operators
are listed in the following table.

The unary operators in C are described in the
following table.

Post increment (or post decrement) operators
increment (or decrement) the variable after the
immediate statement, whereas pre increment
operators increment it before the current
instruction.

Logical Operators

There are some logical operators available in C,
which the following table lists.

The expression

<condition 1> && <condition 2>

returns true if both conditions 1 and 2 are true;
otherwise it returns false.

Similarly, the expression

<condition 1> | | <condition 2>

returns false if both conditions 1 and 2 are false;
otherwise it returns true.

The NOT operator negates the logic followed by
it. In C, any nonzero value returns true and a zero
returns false. Thus, if,

int x=2;

if(!x)

{

<some code>

}

216 tinyAVR Microcontroller Projects for the Evil Genius

Binary Octal Hexadecimal Decimal

0b00001111 017 0x0f 15

+ Addition

– Subtraction

/ Division

* Multiplication

% Remainder

count++ post increment

++count pre increment

count-- post decrement

--count pre decrement

! Boolean NOT (unary operator)

&& Boolean AND (binary operator)

| | Boolean OR (binary operator)

since x is a non-zero number, it returns true.
Hence, !x will correspond to false and the if- block
will not be executed.

Relational Operators

The following table lists binary operators that
return either 0(false) or 1(true).

Bitwise Operators

These operators work on the individual bits of the
variable commonly used with unsigned types.
More detail on bit operators is provided in later
sections. The most commonly used bitwise
operators are described in the following table.

The bitwise operators are critical for proper
operations and handling of AVR I/O ports and
resistors. Their usage is discussed in detail in the
next section.

Efficient Management
of I/O Ports

From this section onwards, we start with the actual
coding in C language. The first thing we start off
with are the input/output ports, which are one of
the most critical things to manage. They are the
entities that take the user input and display the
result in your program. The rest of the processing
is locked inside your controller.

AVR devices have multiple I/O ports named
PORTA, PORTB, PORTC, etc. Each I/O port can
have a maximum of eight pins. Each port has three
registers associated with it:

■ DDRx Data direction register

■ PORTx Data output register

■ PINx Data input register

where x stands for the port name. Each of the
three registers is eight bits wide and used for
manipulating eight bits of a port. The bits in these
three and, in fact, all the registers, of AVR devices
are numbered from 0(LSB) to 7(MSB). The DDRx
configures the pins as an input or output,
depending on whether the corresponding bits are 1
(output) or 0 (input). The PORTx register is used
to set the output if the pin is declared as an output
bit, and it is used to enable (1)/disable (0) the pull-
up resistors if the pin is declared as an input. The
PINx register is used to read the value of the logic
applied on the pins if it is declared as an input.

In the WinAVR GCC compiler, all of the AVR
peripheral registers are available as macros and are
written in capital letters. Thus, any one of the
following three lines of equivalent code declares
all the pins of PORTB as output:

■ DDRB � 255; //In decimal

■ DDRB � 0xff; //In hexadecimal notation

■ DDRB � 0b11111111; //In binary notation

Appendix A ■ C Programming for AVR Microcontrollers 217

= = Equal

! = Not equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

~ Negation (unary operator)

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive XOR

>> Right shift of bits (equivalent to

division by 2)

<< Left shift of bits (equivalent to

multiplication by 2)

Note that there is only one set of registers for
all eight pins of a particular port, which poses a
problem when you want handle them individually.
For example, the statement

PORTB � 0b00000010;

puts high logic at pin 1 of PORTB. Now suppose
you want to put logic 1 on pin 3 of the same port.
You may write

PORTB � 0b00010000;

but that puts logic 0 at pin 1 and you didn•t intend
to do that. Hence, there must be a solution to
monitor the individual bits, and this is where the
&, ~, |, ^, <<, and >> operators come into the
picture.

Use of & , ~ , | ,^, << and >>

The previously mentioned operators are all bitwise
operators, meaning that they all operate on
individual bits of the operands and store the result
in the corresponding bits of the output variable
specified.

Use of Bitwise NOT Operator

This operator inverts the bits of the operand. It is a
unary operator.

a � 0b00001111;

b � ~a; // b � 0b11110000

Use of Bitwise OR Operator

The bitwise OR operator performs the logical OR
operation on the individual bits of the operands.
For example, suppose you have the two data bytes
a � 0b10101010 and b � 0b01010101. Then the
statement c � a|b performs the logical OR
operation on the individual bits of a and b and then
stores the result in c. The value of c would be
0b11111111.

We have discussed the difficulty posed in setting
pin 3 of PORTB to logic 1 without affecting the

value of pin 1 of the same port. A solution to this
problem can be achieved by using the bitwise OR
operator, as shown here:

PORTB � PORTB|0b00001000;

As you can see, this operation OR•s the contents
of PORTB with a number that has a 1 at its third
bit position. Now we know that if any of the
operands to the OR operator is 1, the result will be
1, irrespective of the other operand. So, this
operation sets the third bit of PORTB to 1. But
what about the other bits? Well, the other bits of
PORTB have been OR•ed with logic 0, and
whenever one of the operands to the OR operation
is logic 0, the result is the same as the other
operand. Hence, we have achieved the solution.
The statement can be written in shorthand as

PORTB |� 0b00001000;

Use of Bitwise AND Operator

The bitwise AND operator performs the logical
AND operation on the individual bits of the
operands. As in the previous example, suppose
you have the two data bytes a � 0b10101010 and
b � 0b01010101. Then the statement c � a&b
performs the logical AND operation on the
individual bits of a and b and then stores the result
in c. So, the value of c would be 0b00000000.

We have discussed how to set the individual
logic bits to 1 using the OR operation. Similarly,
individual bits can be set to logic 0 using the AND
operator, as shown here:

PORTB � PORTB&~ (0b00001000);

Now the ~ operator complements the individual
bits so the effective and equivalent statement
would be

PORTB � PORTB& (0b11110111);

This operation AND•s the contents of PORTB
with a number that has a 0 at its third bit position.
Now we know that if any one of the operands to
the AND operator is 0, the result will be 0,

218 tinyAVR Microcontroller Projects for the Evil Genius

irrespective of the other operand. This operation
sets the third bit of PORTB to 0. But what about
the other bits? Well, the other bits of PORTB have
been AND•ed with logic 1, and whenever one of
the operands to the AND operation is logic 1, the
result is the same as the other operand. Hence, we
have achieved a solution to this problem also.

Use of Bitwise XOR Operator

The bitwise XOR operator performs the logical
XOR operation on the individual bits of the
operands. As in the previous cases, suppose you
have the two data bytes a � 0b10101011 and
b � 0b01010101. Then the statement c � a^b
performs the logical XOR operation on the
individual bits of a and b and then stores the result
in c. So the value of c would be 0b11111110.

In AVR programming, the XOR operator is used
to toggle the individual bits of the port without
using the if … else condition testing. Whenever any
one of the operands to this operator is 1, the result
is the complement of the other; and whenever any
of the operands is 0, the result is the same as the
other. Hence, pin 4 of PORTC can be toggled as
follows:

PORTC ^� 0b00010000;

Use of Right Shift (>>) and
Left Shift (<<) Operators

These operators operate on the binary content of
any variable and shift it either left or right by the
amount specified.

Suppose the contents of any variable, a, initially
are as shown in the following table.

We perform the left shift operation on a to shift
its bits by 4:

a � a<<4;

After the operation, the contents of a would be
as shown in the following table.

You can see that the contents of a have shifted
left by 4 and 0s have been assigned to the four
least significant bits.

Let•s look at another example:

b � 1<<2;

This statements tells the compiler to shift the
contents of 1 by 2. Initially, 1 can be represented
as shown in the following table.

After the operation, the contents of b would be
as shown in the table.

Hence, Bit2 of b has become 1. This is a
standard way of manipulating individual bits.
Applying the bitwise OR operation to any port and
b and then storing the result back in port would set
Bit2 to 1 and other bits would be unaffected, as
explained earlier. As an example, consider the
following statements to declare Bit7 of PORTD as
output:

DDRD |� 1<<7;

Appendix A ■ C Programming for AVR Microcontrollers 219

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1 1 1 1 0 1 1 1

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 1 1 1 0 0 0 0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 0 0 0 0 0 0 1

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

0 0 0 0 0 1 0 0

In fact, all the bit positions of AVR•s I/O
registers are given a name that you can find in the
datasheet. These names are then translated into
macros by WinAVR. For example, the pins of the
PORTD register are named PD7 to PD0 and
declared in the compiler as

#define PD7 7 and others alike

Thus, the following line of code also sets the
logic of Bit3 of PORTB to 1:

PORTB |� 1<<PB3;

With these concepts in mind, you can
completely understand the code for Project 1
discussed in Chapter 1.

A Few Important
Header Files

■ io.h This file resides inside the WinAVR/
avr/include/avr folder, but by default, the
compiler looks only up to the •includeŽ folder
while searching for header files. Hence, you
have to give the relative path and include the
file as avr/io.h. This file reads the name of the
microcontroller from the MAKEFILE and
automatically includes the corresponding
header file specific to that controller, which
defines various I/O port addresses, bit names,
vector addresses, etc., specific to that
controller.

■ interrupt.h This file is included as
avr/interrupt.h and defines various necessities
for incorporating interrupt support in your
source code.

■ pgmspace.h This file is included as
avr/pgmspace.h and is used to store and
retrieve constants from program memory.

■ delay.h This file is included as util/delay.h
and gives two accurate delay functions:
_delay_usand _delay_ms. Note that there
is a limit to the amount of delay that can be
introduced with this function, which depends
on clock frequency. Read this file for more
details. To include this file, you have to
indicate the frequency at which your system is
running, which is done by declaring a macro
F_CPU equal to the clock frequency.

Functions

A function is a block of statements that always
performs an isolated task of some kind. This is
analogous to the real-world situation in which
every person does a specialized job of some kind.
In real life, we depend on others to perform some
of life•s tasks. Similarly, C programs can be
considered as a collection of functions that
perform a specialized task.

Why Use Functions?

Writing functions avoids rewriting code. For
example, in a program, if we need to give some
delay between two actions, it would never be
economical in terms of space to write the same
delay instructions again and again. Rather, a
function that contains the delay instructions can
serve the purpose. Breaking a program into various
functions infuses clarity into the program and
makes it easier to keep track of the tasks that are
performed. It is a good programming practice to
break the program in small functions that perform
some logically isolated tasks.

How Functions Work

Using functions includes three steps:

■ Declaration This is also called the prototype
of the function. A declaration of a function
specifies how a function looks. It includes the

220 tinyAVR Microcontroller Projects for the Evil Genius

return type, the name of the function, and the
arguments it takes. After performing its task, a
function may or may not return a value,
depending on the return type specified. The
function name can be anything, except the
default keywords in C. By arguments of a
function, we mean the variables that are passed
to the function and that it uses to do its task.

int GetMax(int a, int b);

This statement declares a function that takes
two integer-type arguments and returns a value,
which is also an integer. As its name suggests,
this function intends to return the maximum
between •aŽ and •b.Ž

■ Definition This contains the sequence of
instructions specifying the function•s behavior.
It should begin with the same name and type as
declared. For example:

int GetMax(int a, int b)

{

if(a > b)

return a;

else

return b;

}

■ Calling This is actually using the function in
the program. Whenever a function is called, the
control reaches to the body of the function
(definition). A function can be called from any
other function, and in fact, a function can even
call itself (recursion). A function is called by
writing its name along with the name of the
variables that are supposed to be passed to it.

In C programs, there is always a function
named •mainŽ from which program execution
always begins. A function can call other
functions or itself as many times as it wants. It
is necessary to declare the functions before
they are called in a program. However, in a
file, if a function is defined before it is called,
then declaring that function is not necessary.

Interrupt Handling

An interrupt is a flow control mechanism that is
implemented on most microcontrollers. Many
events in the outside world happen asynchronously
with respect to µC clock, like pressing a switch,
sending a byte through a serial port, timer
overflow, etc. The interrupt tells the processor
about the occurrence of an event so the processor
doesn•t need to keep querying for it. For example,
there are two ways for a processor to know if a
switch is pressed or not. One way is to keep
scanning the switch for its status. The other way is
to tell the processor that a switch has been pressed
by interrupting the execution of the main program.

When a device interrupts the CPU, the main
program execution is halted and the processor
jumps to a subroutine called ISR (interrupt
subroutine) corresponding to that interrupt. After
the required action has been taken, the interrupted
program execution is resumed.

Many interrupts are allowed in AVR, some
synchronous and others asynchronous. One must
enable the global interrupt and the specific
interrupts (maskable) that one needs to use. During
interrupts and subroutine calls, the return address,
which is the program counter (PC) holding the
address of next instruction in the main program, is
stored on the stack. The stack is effectively
allocated in the general data SRAM, and
consequently, the stack size is only limited by the
total SRAM size and the usage of the SRAM. All
user programs must initialize the SP (stack pointer)
in the reset routine before subroutines or interrupts
are executed.

Prototype for Interrupts

In C programming, handling interrupts is easy
since there are different subroutine names for
interrupts and the compiler saves the status register
contents before executing an ISR. When the
processor jumps to an ISR, global interrupts are
disabled automatically so that no other interrupts

Appendix A ■ C Programming for AVR Microcontrollers 221

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

can occur, and they are enabled at the finish of an
ISR. In assembly, return from an ISR is done using
the reti command, which enables the global
interrupt enable bit and, hence, is different from
the ret statement. The following example code
shows the method to enable a timer for an AVR
microcontroller for interrupt on overflow. The
timer used is Timer0, which is an eight-bit timer.

Initialization of Timer0

//enabling the global interrupt

sei();

//Setting timer frequency = fclk/1024

TCCR0 = (1<<CS02) | (1<<CS01);

TCNT0 = 0x00;

//enabling the timer overflow interrupt

TIMSK | = (1<<TOIE0);

Defining the Timer Overflow
Interrupt Subroutine

ISR(TIMER0_OVF_vect)

{

PORTD = 0xff; //any normal command

//or operation

<some more code>

} //no need to write return

Every interrupt has a unique vector name to be
written inside ISR(), which is defined in a header
file “interrupt.h” . Thus, one must include this
header file while using interrupts and ISR name
convention. The processor calls this ISR subroutine
ISR(TIMER0_OVF_vect) whenever there is an
overflow in Timer0, and interrupt occurs.

Arrays

Arrays are groups of similar data type elements.
Arrays can be of chars, ints, floats, doubles,
similar pointers, structures or unions, etc. They
provide a way to declare a large number of
variables without naming each of them
individually. In C, an array of variables is formed

by putting all of the elements contiguously in
memory. This laying out of elements in contiguous
memory locations is important for accessing the
elements and passing them to functions. While
declaring an array of elements, the size of array or
number of elements should be defined with a static
value. For example, an array of 100 int variables is
declared as follows:

int x[100] ;

Here, int specifies the type of the variable and x
is the name of the variable. The number 100 tells
us how many elements of type int are present in
this array, often called the dimension or size of the
array. Any element in this array is accessed using
the subscript in the square brackets ([]) following
the array name (x here). The subscript tells us the
position of the number in the array starting from 0.
Thus, variables are x[0], x[1], x[2] ƒ.x[99] and
can be processed like any other normal variable.
An array can be initialized with values also, like
this:

int marks[5] = { 90, 97, 94, 80, 91} ;

float weight[] = { 50.3, 55.4, 13.2, 20.0} ;

Hence, marks[2] refers to 94 and marks[3] to
80. When an array is initialized, the compiler
calculates its dimension itself if not mentioned.
Note that there is no method in C to determine if
the subscript used in accessing an array element is
out of bounds of the array. It will be out of the
array memory and has unpredictable data.

More C Utilities

In this section, we discuss some additional features
of C language that make it easier for the
programmers to write their codes and also to
improve the actual execution of the program.

222 tinyAVR Microcontroller Projects for the Evil Genius

The C Preprocessor

As the name suggests, this is a program that
processes the source program before compilation.
So, what does the preprocessor do? It processes the
special commands in C programs known as
preprocessor commands (sometimes called
directives). These directives offer great flexibility
and convenience while writing programs. This
section introduces some popular and most
commonly used directives in programming.

File Inclusion

Here is a directive #include, which allows one file
to be included in another. The command for using
this directive is:

#include "filename"

where filename is the name of the existing file to
be included. This file should exist in the current
directory of the source file or in the specified path
directories. This is mostly used for including
header files, although source files can also be
included. Another way of using this directive is
like this:

#include <filename>

with the difference that this time, the preprocessor
searches for the file named filename only in the
specified list of directories in the path variable.

Macro Substitution

Let•s now discuss another important and widely
used directive: #define. This is used to replace any
expression, statement, or constant in the whole
program. For example, see the following code:

#define PI 3.1415

void main ()

{

float circle_area, circle_circumference;

int radius = 5;

circle_area = PI * radius * radius;

circle_circumference = 2 * PI * radius;

}

Here, the preprocessor simply replaces the token
PI with 3.1415 throughout the source code.
However, no substitution takes place if PI is
written inside quoted strings (like •PIŽ). A macro
can be used with an argument also or to replace a
complex expression. For long expressions, one
may extend it to several lines by placing a •\Ž at
the end of each line to be continued. The following
program is a valid one that uses a macro with an
argument:

#define delay(x) for(i=0;i<100*x;i++) \

asm("nop");

void main()

{

int i;

……

……

delay(10); //using macro with

//an argument

……

……

}

Now, the question is why you would use
#define in programs. This directive makes the
program easy to read, to modify, and to port. For
example, a constant used many times in a program
can be changed to any value without needing to
change it in all the places where it is used. It is
always a good programming practice to use macros.

Appendix A ■ C Programming for AVR Microcontrollers 223

Macros vs. Functions

As you may have noticed, macros with arguments
can be used like functions. But unlike functions,
macros are substituted every place where they are
used without any calling and returning. This, of
course, makes the program run faster, but at the
cost of increased size of the output file. Hence, the
concern is about space needed for a particular
program. The moral of the story is to use macros
instead of functions when they are small and are
used many times in a program.

Macros for AVR

Writing C programs for AVR devices uses standard
header files as explained earlier. Having a look at
these header files, one would find a lot of macros
defined for I/O pins, registers, and bit names of
these registers. For example, the header file for the
ATtiny45 device contains one macro for ADC. The
ADCSR register has eight bits with positions from
0 (LSB) to 7 (MSB). These are defined in the
header file and can be used readily in a C program.

Enumerated Data Types

An enumeration is a data type consisting of a set
of values that are called integral constants. In
addition to providing a way of defining and
grouping sets of integral constants, enumerations
are useful for variables that have a small number
of possible values. The general syntax for defining
an enumerated data type in C is:

enum Days{

Sunday = 0,

Monday,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday

};

Here, Sunday has value •0Ž and the consecutive
days have values of increasing order, that is,
Monday � 1, Tuesday � 2, and so on. One can
assign other values to these names explicitly, like:

enum cards{

CLUBS = 1,

DIAMONDS = 2,

HEARTS = 4,

SPADES = 8

};

Volatile Qualifier

Types of data can also be qualified by using a type
qualifier. One such type qualifier is volatile. When
a variable is declared, the compiler puts certain
optimizations on it according to the situation. The
purpose of volatile is to force an implementation to
suppress optimization that could otherwise occur.
For example, the compiler sometimes loads a
variable from data memory to its registers and
performs some operations on it. Now the changed
value is not written back to memory instantly. So
when any other subroutine uses that variable, it
gets the old value, resulting in a wrong output. A
variable is qualified with volatile as shown:

volatile int temperature;

It is best to use the volatile qualifier when
sharing of variables occurs, like with one global
variable among different functions and interrupt
subroutines.

Const Qualifier

Another qualifier available in C is const, which
makes objects constant by placing them in read-
only memory. A constant object should be
initialized at the time of declaration. The syntax is:

const int my_marks;

This appendix provided a brief discussion on C
concepts required for AVR microcontrollers. For
in-depth coverage of the topic, readers may refer to
any C programming book.

224 tinyAVR Microcontroller Projects for the Evil Genius

Designing and
Fabricating PCBs

A P P E N D I X B

225

IN CHAPTER 1, WE EXPLAINED the advantages of
making a custom PCB (printed circuit board) for
our projects over using a general-purpose board.
We also discussed the several different types of
software available for designing PCBs; out of
those, we have used the free version of EAGLE
(Easily Applicable Graphical Layout Editor) from
CadSoft. There are three stages of PCB design,
namely schematic design, layout design, and
routing. Layout design and routing are often
customized for the fabrication process that has to
be followed to make the board after designing it on
a PC. We used the Roland Modela MDX-20 PCB
milling machine for manufacturing our boards, and
so we have done the design rule check (DRC)
settings in EAGLE according to this machine. The
settings for different projects are largely the same
with minor variations.

EAGLE Light Edition

CadSoft offers three different versions of EAGLE:
Professional, Standard, and Light. These differ
from each other on the basis of the maximum
number of sheets in the schematic, signal layers in
routing, and maximum board area for layout. We
have used the Light edition to make our boards.
This version has the same features as the
Professional edition, but their usage is bounded
within certain limits. It offers Schematic Editor
with only one sheet allowed, Layout Editor with a
maximum allowed board size of 4 by 3.2 inches,

and Autorouter capable of routing tracks in only
two signal layers (top and bottom). These features
are sufficient for the PCBs of all the projects
discussed in this book. A PCB designed in the
Professional edition can still be viewed in the Light
edition but can•t be edited. CadSoft allows the free
use of EAGLE•s Light edition for noncommercial
projects. You can download the latest version from
http://cadsoft.de. CadSoft updates their software
frequently. In fact, this book was started with
version 5.6 of EAGLE, and now at the time of this
writing, version 5.10 is available.

EAGLE Windows

There are three main windows/GUIs that you
would require for schematic entry and designing a
PCB using EAGLE: Control Panel, Schematic
Editor, and Layout Editor. Each is introduced
below.

Control Panel

The Control Panel is the first window that appears
after starting EAGLE. Its screenshot is shown in
Figure B-1.

The Control Panel is the central system for the
software and gives commands to other windows
for their operations. To start a new project in
EAGLE, go to File | New | Project. This creates a
new folder in the •eagleŽ directory. The •eagleŽ
directory is the default directory for storing

projects, and its location is specified while
installing EAGLE. After that, you can create
schematic and board files under it by going to File
| New | Schematic/Board. When saving the
schematic and board files for the first time, you
need to specify the destination directory, which, by
default, is the project directory created earlier.
However, you can store these files at a different
location. Generally, a new board is not created as
such. First of all, a new schematic is made, and
after designing the circuit, the board is made from
the schematic itself.

Schematic Editor

This is the window for designing schematic
(circuit) diagrams, and it opens up when you create
a new schematic or load an existing one. Its
screenshot is shown in Figure B-2.

Layout Editor

This is the window for placing the components on
the board and routing the tracks. Eagle keeps the
schematic and board in sync if both windows are

open simultaneously, that is, a change in the
schematic is reflected in the board also. This is
called forward and back annotation. However, if
the layout window is not open while editing the
schematic, this sync is lost and EAGLE can•t keep
track of further changes. It becomes virtually
impossible to design the board then, and the only
option is to make a new board from the schematic.
A screenshot of the Layout Editor is shown in
Figure B-3.

EAGLE Tutorial

The instructions related to EAGLE commands,
settings, adding components to the schematic,
laying out the board, routing (manual/auto), and
other things required for designing the board are
discussed in detail in the tutorial that is provided
from CadSoft in the EAGLE package itself.
The document can be found at Installation
Directory\EAGLE-5.10.0\doc\tutorial-en.pdf. It
covers all the prerequisites for designing the
boards of the projects discussed in this book. Also,
if some of the terminology pertaining to EAGLE

226 tinyAVR Microcontroller Projects for the Evil Genius

Control PanelFigure B-1

that has been used in this appendix up until now is
not understood, it would become clear if you read
this document. A more comprehensive manual can
be found at Installation Directory\EAGLE-
5.10.0\doc\manual-en.pdf. You are advised to read
the tutorial before proceeding to the next section.

Adding New Libraries

The packages for some of the components used in
this book have been made by us and packed in a
library. To use these components, you need to add
the library to the EAGLE Control Panel. The

Appendix B ■ Designing and Fabricating PCBs 227

Schematic EditorFigure B-2

Layout EditorFigure B-3

library file can be downloaded from
www.avrgenius.com/tinyavr1.

You can save this file in any directory, but it is
best to put this file at Installation Directory\
EAGLE-5.10.0\lbr, which is the default storage
directory for EAGLE library files. Once you have
saved this file, go to the Schematic Editor and
click the Library menu in the top menu bar. Then
select Use and select the previously saved library
file. After this, you can add components from this
library to your schematic and board, as explained
in the tutorial document.

Placing the Components
and Routing

Before you start laying out the board, change the
DRC settings according to your fabrication
process. Once this is done, place the components,
keeping in mind the limitations and boundaries of
the fabrication process. If your fabrication process
has a poor resolution, your components need to be
placed far away from each other.

Routing can be done either manually or using
EAGLE•s auto-routing feature. If you are
designing a single-sided board, auto-routing would
not be able to route all of the tracks in most cases,
so they have to be done manually, either in the
same layer or in the other layer. When the tracks
are routed in the other layer, they are called
jumpers and are not put on the board by the
fabrication equipment. Instead, the nodes that are
connected by this track are done so either by using
tinned copper wire or insulated copper wire. These
tracks can also be left unrouted because they have
to be made through external wires in any case, but
if jumpers are small in length, straight, and not
passing through any component, the final soldered
board looks clean. We describe the fabrication
process we used in detail in the next section.

Roland Modela MDX-20
PCB Milling Machine

Now, we move to the fabrication of PCBs using
the Roland Modela MDX-20 PCB milling
machine. We will describe how to fabricate a
single-layered printed circuit board (routed in the
bottom layer of EAGLE) with through-hole
components placed on the opposite side of the
routed layer and SMD (surface mount device)
components placed on the same layer, which is
tracked or routed. The software used in this
process has been tested on Windows. One piece of
software, CAM.py, is not able to send commands
to the serial port on Windows because it has been
written for Linux. However, its output file can be
sent to the serial port through different software, as
described later.

Step 1: Making the Schematic and
Laying Out the Board in EAGLE

A basic knowledge of EAGLE Schematic Editor
and Layout Editor is a prerequisite for this. So you
are advised to go through the tutorial mentioned in
earlier sections, if you have not done that yet. The
first step is to design the schematic according to
your requirements. Once your schematic is
complete and error free (use the menu command
Tools | Erc to verify this), you are ready to design
the PCB layout. In the Schematic Editor, go to File
and click Switch To Board. The Layout Editor will
open. First of all, make sure that the outer
boundary of your board starts at the coordinates
(0,0). This is required to avoid confusion when you
specify the offsets. Place the components any way
you want.

To make sure the board can be fabricated with
the Roland Modela milling machine, we will use a
set of design rules that specify the layers used (the
bottom layer only), the minimum distances between
pads and traces, diameters of holes, width of copper
traces, etc. Open the Design Rules dialog with the

228 tinyAVR Microcontroller Projects for the Evil Genius

Appendix B ■ Designing and Fabricating PCBs 229

menu command Tools | Drc and load the modela.dru
file (provided at www.avrgenius.com/tinyavr1)
using the Load button.

With the design rules loaded, lay out the PCB
tracks, either manually or with the help of
EAGLE•s auto-router. As mentioned before, it may
not be possible to route all the tracks in a single
side, so you can use jumpers or leave them
unrouted. When the layout is complete, verify it
using the menu command Tools | Drc | Check. If it
shows errors, remove them by changing the
position of components, tracks, etc.

Step 2: Creating the Toolpath for Drilling

From the original PCB layout, we can prepare data
for cutting and drilling with the Modela machine.
In this step, we will create the toolpath for drilling
the holes of the PCB.

In order to create the outline of the signal traces
and holes, there is an EAGLE User Language
Program (ULP) written by Marc Boon (fablab
mill-n-drill.ulp) that will create the toolpath for
milling the outlines of the tracks and drilling the
holes. However, we will not be using this data for
milling the outlines of tracks. To mill the tracks,
we can use the already routed tracks in the bottom
layer along with pads and vias in their respective
layers. The modified version of the ULP program,
customized for our requirements, can be
downloaded from www.avrgenius.com/tinyavr1.

Before running the program, you have to create
two new layers in the Layout Editor:

■ Layer no 111 Name: Roland_Milling

■ Layer no 112 Name: Roland_Drilling

To create the layers, click the layer icon in the
command toolbar, and click the New button.
After you have created the layers, run the ULP
program by selecting File | Run and then open
fablab-mill-n-drill.ulp. You should see a dialog as
shown in Figure B-4. Specify the tool diameter
(0.79375 mm is recommended, as it corresponds

to a 1/32-inch diameter drill bit) of the milling tool
mounted in the milling machine for drilling the
holes. Next, specify the signal that should not be
isolated from the copper plane. By default, this is
the GND signal. If you want all signals to be
isolated, make sure this field is empty.

Finally, there is a check box that should be
selected if you want holes that are larger than the
tool diameter to be milled to their specified size. If
you don•t select this, all holes will be drilled and
will have the diameter of the tool. Clicking the OK
button will create the toolpath for milling in layer
111 and the tool path for drilling in layer 112. As
explained before, we would only be using layer 112.

Step 3: Creating Drilling and Cutting
Files for Driving the Roland Modela
Milling Machine

To create the computer numerical control (CNC)
files that will drive the Roland Modela milling
machine, we will use EAGLE•s CAM Processor.
The CAM Processor can create output files for a
variety of plotter and printing devices. The Roland
Modela is not one of them, however, but we can
define it ourselves by specifying the required
commands for this machine in a file called
eagle.def, located in the bin folder of the EAGLE
installation. By adding a few lines to this file, the

Fablab mill-n-drill.ulp screenshotFigure B-4

230 tinyAVR Microcontroller Projects for the Evil Genius

CAM Processor now knows this machine as an
output device and can generate computer
numerical control (CNC) files for it.

Replace the file eagle.def in EAGLE•s bin
folder with the eagle.def file provided at
www.avrgenius.com/tinyavr1, and restart EAGLE
after saving your board and schematic.

Now open the saved layout again and start the
CAM Processor by clicking the fourth button on
the main toolbar. In the CAM Processor, load the
job fablab mill-n-drill.cam, which can be
downloaded from our www.avrgenius.com/tinyavr1
using the menu command File | Open | Job. You
will get a dialog as shown in Figure B-5.

This dialog contains the definition of this CAM
job. There are two sections: Bottom Copper
Contour Milling and Hole Drilling Bottom. Each
section specifies a device (from the modified
eagle.def), an output file, some options, and the
layers used.

All settings are predefined in the CAM job and
should not be modified. The only exceptions are

the X and Y offsets in the lower-left corner. Since
we are milling the bottom side, the layout is
mirrored (hence, the Mirror check box is selected).
However, mirroring the layout means that all
coordinates will be mirrored around the Y-axis,
translating positive X-coordinates to negative ones.
We will have to offset our layout so it will be in
the range of the milling machine•s coordinate
system. Selecting the pos. Coord check box is
supposed to do this, but it doesn•t do it properly (it
adds too much offset). So we leave this unchecked
and specify the offset manually.

Specifying the Offsets (Important)

There are lots of issues involved with specifying
the offsets. First, the layout is mirrored, which
gives negative X-coordinates, and also we don•t
want our board to be milled at coordinates (0,0)
because it corresponds to the corner of the raw
board and may be damaged or deformed at that
point. Hence, it is always a good idea to start your
board at the coordinates (1,1) specified in inches.

fablab mill-n-drill.cam screenshotFigure B-5

Now go to Layout Editor and take the following
readings:

■ Rightmost X-coordinate (gives the width of the
board)

■ Lowermost Y-coordinate

As we mentioned earlier, if you have placed
your board at (0,0), the lowermost Y-coordinate will
be 0. We have taken the rightmost X-coordinate,
because when the board is mirrored its right side
becomes the left side and vice versa. Now offsets
are calculated as:

■ X offset � Rightmost X-coordinate � 1
(in inches)

■ Y offset � 1 … Lowermost Y-coordinate
(in inches)

Specify these offsets in both sections. Make sure
that the layer selected in the Bottom Copper
Contour Milling section is 20 … Dimension and the
layer selected in the Hole Drilling Bottom section
is 112 … Roland_Drilling. Click the Process Job
button. It will create two files with extensions

.millbot and .drillbot in the same folder that
contains your .brd files. The file with the extension
.drillbot is used for drilling the holes, and the file
with the extension .millbot is used for cutting the
board.

Step 4: Creating Milling Files for Driving
the Roland Modela Milling Machine

As mentioned in step 2, we use EAGLE•s routed
tracks, pads, and vias to generate the milling data.
Unfortunately, there is no single job available, as
in step 3, that can generate the milling data that
can be read directly by the machine. So we follow
a two-step process for this. Go to the CAM
Processor and load the job gerb274x.cam, which is
present in EAGLE by default. You will get a dialog
as shown in Figure B-6.

This dialog contains the definition of this job. It
contains five sections, but for single-layer (bottom)
boards that have to be made without any
identification layer, only a single section„Solder
Side„is useful. Make sure that the four layers

Appendix B ■ Designing and Fabricating PCBs 231

gerb274x.cam screenshotFigure B-6

232 tinyAVR Microcontroller Projects for the Evil Genius

shown in the previous figures are selected. The rest
of the settings should not be changed from their
default configuration. Specifying offsets here is not
important because we would do it in the second
step. By clicking Process Job, you would get
multiple output files, but only the file with the
extension .sol is required.

The .sol file is not readable by the Modela
machine and has to go through one more stage of
transformation. For this we use software called
CAM.py, which is written in Python and, hence, is
platform independent. However, it cannot capture the
serial port of a Windows PC. The file CAM.py can
be downloaded from www.avrgenius.com/tinyavr1.

Cam.py (translation: computer-aided machining
file written in the Python programming language)
tells Modela what to cut and how to cut, and this
clever software tool was developed by Prof.
Gershenfeld. This software tool was developed in
Python and runs on all platforms. To run this
software on Windows, the computer must have
preinstalled Python, or you can install Python from
www.avrgenius.com/tinyavr1. The software cam.py
also requires a library called Python Imaging
Library (PIL). To date, this library is available for
Python versions below Python 2.7, so the installed
Python version must be below Python 2.7. The
library PIL can be downloaded from
www.avrgenius.com/tinyavr1.

The software cam.py can now be operated on a
PC running Windows by executing the cam.py file
from the Python command line. The execution also
can be made from the system•s command prompt.
Save cam.py in the same directory where Python is
installed. Open a command prompt window, and
navigate to the Python directory. Then type python
cam.py on the command prompt window, and the

software window will open. Figure B-7 shows a
screenshot of the cam.py window.

At the top of the cam.py window, you can see
some user controls, as shown in Figure B-8. These
are described next.

Click the Input File button, navigate to your .sol
file, and open it. You will see your layout in tiny
form in the bottom-left corner of the window. You
can make it larger by either changing the number
in the xy display size box or you can click the next
box, Auto, and the file will just about fill your
window. This is shown in Figure B-9.

Cam.py screenshotFigure B-7

Cam.py user controlsFigure B-8

The second line of buttons and boxes on the top
menu bar starts with x min and y min. These refer
to the origin of the x-axis and the y-axis on the bed
of the milling machine. So the point where x � 0
and y � 0 on the milling machine is in the lower-
left corner. If you started milling with x � 0 and
y � 0, your machine would start cutting right at
the lower-left corner of the milling machine bed.
As mentioned before, we want to start the board

from (1,1) inches. So, change x min and y min to
1 and 1. The next parameter is the xy scale factor,
and this should be set to 1 if the board has to be
the same size as that in EAGLE. Next to the scale
factor are dx: and dy: These tell you the size of
your imported object. At the bottom of the
CAM window, there are other buttons, as shown in
Figure B-10.

To determine what machine you are using and
the file extension name, look at the Output Device
menu below the Output File button. By selecting
one of the different machines, you automatically
pull up a set of tool parameters that relate to that
machine, and if you look in the Output File
window, you•ll see that a file with the correct
extension attached to it has been created. Select
Roland Modela NC Mill in the Output Device
option, and the .rml file extension appears in the
Output File window. Don•t forget to press ENTER as
this tells CAM to accept the name, the toolset, and
the parameters you•ve set thus far. Once you•ve
done this, you•ll have to reset x min and y min to 1
again, as CAM won•t retain those numbers when
you choose a new machine.

In the next row of buttons, you•ll see Contour
Boundary, Raster Interior, and Write Toolpath. If
we click Contour Boundary, the program outlines
in red all the areas that we want to keep, and
clicking this button is mandatory to mill the board.
If we want to etch away all the unwanted copper
and just leave the traces that are important for
connecting the components, click Raster Interior.

Appendix B ■ Designing and Fabricating PCBs 233

More cam.py user controlsFigure B-10

Cam.py loading a fileFigure B-9

234 tinyAVR Microcontroller Projects for the Evil Genius

Using Write Toolpath, you can save the file with
all of the parameters you have chosen. This allows
you to open and mill the exact same file with the
exact same dimensions, depth of cut, velocity, etc.

z up tells you how high above the material the
end mill should lift to move from one place to
another. The default setting is 0.05 inches. z down
tells you how deeply into the material to cut. The
default setting is …0.005 inches. xy speed tells you
how fast the mill runs in the x and y directions.
z speed tells you how fast the mill runs in the
z direction. The default settings are 4 for both of
these cases. Tool Diameter refers to the setting for
the size of your end mill. The default setting
matches with the 1/64-inch drill bit that we use for
milling the tracks. Contour Undercut is a setting
that controls where the center of the tool will cut
in relation to the lines in your design object. It•s a
way to let you control precisely whether the tool
cuts on the line, just inside the line, or just outside
the line. If not needed, leave it to 0.0. Raster
Overlap determines the resolution with which
unwanted copper is etched away.

Once all these settings are in place, you are
ready to send your board file to the machine for
fabrication. The Send To button doesn•t operate in
Windows, as cam.py was designed for Linux-based
systems and is coded so as to access the relevant
serial port. The output .rml file generated can be
sent to the machine using bray•s terminal. This is
described later.

Step 5: Milling, Drilling, and
Cutting the PCB

Take two pieces of flame resistant 2 (FR2) copper
board stock (one sacrificial and one useful), and
turn one of them (the sacrificial one) upside down
so that the copper is facing down. Put pieces of
double-sided tape on the back of the copper board
as shown in Figure B-11. The area where you will
be milling needs to be solidly attached to the

surface of the Modela bed, so be sure to put lots
of tape, close together, on the back, but not
overlapping.

The material bed on the Modela has a grid of
centimeter-sized squares. Place your material about
two squares over and two squares up to
accommodate your default (1,1) offset settings
(basically, 1-inch offset is too large, and if we
place our board leaving 2 cm, we give the net
offset of 2.54 cm (1 inch) … 2 cm � 0.54 cm,
which is good enough). After placing the sacrificial
board on the bed, place the useful one over the
sacrificial one in the similar way. Now using a
piece of cloth or your shirtsleeve, firmly adhere the
useful board over the sacrificial one by pressing
down and rubbing back and forth over the copper
board, as shown in Figure B-12. Don•t do this with
your fingers, as the oil from your skin can affect
the conductivity of the copper traces. The
sacrificial board is used to prevent the Modela bed
from getting damaged when you drill the holes.

The next task is to set the drill bit into the
correct position. The drill bit rests in a position in
the back of the machine. To put it in active mode,
press the View button on the Control Panel as
shown in Figure B-13. The drill bit will move to its
origin of x � 0, y � 0 (which is the lower-left side
of the bed), as shown in Figure B-14. Now you
want the mill to move to the x � 1, y � 1 position.

Bare FR2 board with double-sided
tape

Figure B-11

To do this, you need to send the commands
to the machine by serial port. We use bray•s
terminal for this, which can be downloaded from
www.avrgenius.com/tinyavr1. Open the terminal
and configure the settings as shown in Figure B-15.

Check that the serial port name on your PC is
com1. It may vary on your PC, however, so change
that setting accordingly. After this, click the
Connect button. Now you want the drill bit to
move to the (1,1) position. For that, there is a file
provided at www.avrgenius.com/tinyavr1 with the
name move%d%d.txt. Open it, and it will show the
following contents:

PA;PA;!PZ0,400;VS10;!VZ10;!MC0;PU%d,%d;

!MC0;

In this text, replace %d,%d with the x- and
y-coordinates of the position you want your drill
bit to move to but pay attention in this file, because
you have to specify the coordinates in milli-inches
instead of inches. So to move the drill bit to (1,1)
make the following changes:

PA;PA;!PZ0,400;VS10;!VZ10;!MC0;PU1000,

1000;!MC0;

Copy this text in the Transmit section of the
terminal (which is gray) and press ENTER. You will

Appendix B ■ Designing and Fabricating PCBs 235

Placing the bare board on the machine’s bedFigure B-12

View buttonFigure B-13

see the drill bit move to the (1,1) position over the
copper board. Now back to the machine. We have
to set the drill bit into position now. For milling,
use a 1/16-inch drill bit, and for drilling and
cutting, use a 1/32-inch drill bit. The drill bit can
be held in place by a collet with two inset screws
on opposite sides of the collet. Take the tiny Allen
wrench that comes with the Modela, as shown in
Figure B-16, and loosen the inset screws. Hold on
to the drill bit firmly so you don•t drop it and
break the fine, fragile end, and push the drill bit
fairly high in the collet. Tighten the screws slightly
so that the drill bit is held in place, but not too

firmly. This is merely to get the drill bit safely out
of the way while you position the carriage.

Your next move is to bring the entire drill bit
carriage down to its lowest point„where the metal
sides meet the metal base for the motor carriage.
Do this by pushing and holding down the Down
button on the Control Panel. Now you want to
back off this position ever so slightly. So push and
hold the Up button until the carriage moves up a
little bit. What you are doing right now is
indicating to the machine where Z � 0 is located.
If you don•t back off from the lowest position, the

236 tinyAVR Microcontroller Projects for the Evil Genius

Drill bit in origin (x = 0, y = 0) positionFigure B-14

Bray’s terminalFigure B-15

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

tool can•t drill into the material. Now again, hold
on to the drill bit with your finger, loosen the inset
screws, and carefully place the drill bit on the
surface of the copper, as shown in Figures B-17
and B-18. Now tighten the screws finger-tight such
that the drill bit is firmly held in place.

Now you•re ready to cut your circuit board. As a
safety precaution, lift the drill bit off of the surface
just above where you are going to start cutting,
that is, (1,1).

To do that, go back to the computer terminal
screen and type the following text again:

PA;PA;!PZ0,400;VS10;!VZ10;!MC0;PU1000,

1000;!MC0;

Now you are ready to send the .rml file to mill
the tracks. Select the Send File option on the
terminal, and send the appropriate file. After
milling is completed, remove the 1/16-inch drill bit
and use the 1/32-inch drill bit. Repeat the
procedure described earlier and send the .drillbot
and .millbot files. After this, your board is ready to
be soldered and tested.

Appendix B ■ Designing and Fabricating PCBs 237

Working with the Allen wrenchFigure B-16

Final position of the drill bitFigure B-18

Careful setting of the machineFigure B-17

This page intentionally left blank

Illuminated LED
Eye Loupe

A P P E N D I X C

IN CHAPTER 1, WE LOOKED AT a set of tools that
would be useful for building and prototyping the
various projects described in this book. One of the
tools was the eye loupe, shown in the following
illustration.

It•s commonly used by watchmakers, and we
find it very useful for inspecting components,
printed circuit boards, etc. The photograph shows
an eye loupe with 10× magnification. The problem
with using an eye loupe in inspecting tiny
components is the lack of illumination. In this
appendix, we show how the eye loupe can be
modified by adding white LEDs to provide
illumination in the field of view. We actually show

three versions of the illuminated LED eye loupe.
The first version uses a 9V battery and provides a
fixed level of illumination; the second uses a single
1.5V AAA battery, and also provides fixed
illumination; while the third version is a
microcontroller-based solution that allows the user
to adjust the illumination as per their requirements.
The third version requires a 9V battery for
operation.

All three versions require the eye loupe to be
fitted with eight white LEDs with series current-
limiting resistors as shown in the circuit diagram in
Figure C-1. The LEDs have a 3-mm diameter. All
eight LEDs with independent series resistors are
connected in parallel.

To solder the LEDs and resistors, we need a
piece of general-purpose printed circuit board
(PCB) as seen here.

239

The PCB is cut in an annular shape, as shown in
the next photograph, such that the lens end of the
eye loupe fits snugly into the PCB.

Once the PCB is cut, the LEDs are soldered
uniformly around the hole. Please note that the
LEDs are inserted from the solder side (the copper
side) of the PCB and then soldered. Normally,
components are inserted from the component side
and soldered on the solder side, but here we have
inserted the LEDs from the solder side. For
soldering the LEDs, allow about half an inch of
LED pins above the surface of the PCB. After
soldering the LEDs, the LEDs are bent a little bit
towards the center of the PCB.

Once all the LEDs are soldered on the solder
side of the PCB, the series resistors are installed
from the component side of the PCB and soldered
to individual LEDs, as shown in the following
photograph.

240 tinyAVR Microcontroller Projects for the Evil Genius

+

10
0

O
h

m −

LEDs and resistor circuit for the illuminated LED eye loupeFigure C-1

Once the resistors are soldered to the LEDs, the
other free ends of the resistors are soldered
together. Also, the anodes of all the LEDs are
soldered together, as seen in the following
photograph.

In the next step, two wires are soldered„one to
the anodes of the LEDs and one to the shorted end
of all the resistors. The LEDs are covered with hot
glue to protect them from physical damage, as seen
in the following photograph.

The PCB assembly is now complete, and it•s
time to attach the eye loupe in the center of the
PCB, as seen in the following two photographs.

Once the wires are soldered to the PCB, they
are connected to a 9V battery with an on/off switch
in series so that you can turn on/off the LED when
required.

Appendix C ■ Illuminated LED Eye Loupe 241

Version 2 of the Illuminated
LED Eye Loupe

The previous version of the illuminated LED eye
loupe uses a 9V battery for powering the LEDs.
However, a 9V battery is bulky and expensive.
Using a 1.5V battery is preferred, but white LEDs
need more than 3.5V for operation. So if operation
with a 1.5V battery is desired, an electronic circuit
to boost the battery voltage from 1.5V to, say, 4V
is required. Such a voltage boost can be achieved

easily with a boost type DC-DC converter, but the
added penalty is the high cost of a converter. A
simple voltage boost circuit can be built with a
single transistor oscillator called the relaxation
oscillator, shown in Figure C-2.

It uses just three components: an NPN
transistor, a special inductor, and a resistor. The
output of such a relaxation oscillator is shown in
Figure C-3, and it shows a pulsed waveform with
more than 10V. This pulsed waveform is quite
suitable to drive the white LEDs in our eye loupe.

The critical component of the circuit is the
special inductor. It uses two coils of 36-gauge
copper enameled wire wound together on a suitable
former such as a ferrite bead or a toroid or a
dumbbell. The dots on the two coils in Figure C-2

242 tinyAVR Microcontroller Projects for the Evil Genius

1 KOhm

2SD789

1.
5V

 B
a

tt
er

y

On/Off Switch

Vout

L1

Relaxation oscillator circuit diagramFigure C-2

Output of the relaxation oscillatorFigure C-3

show the phase of the inductors. To build this
inductor, start with enough length to wind about
10 to 20 turns. Take two equal lengths, as shown
in the following illustration.

Twist them together. Also ensure that the
insulation is removed from the ends (A and A*
and B and B*) of the wires.

Wind the twisted wires around the ferrite
material (toroid, dumbbell, etc.) that you have
chosen. The following illustration shows the wires

wound on a dumbbell-shaped toroid former with
two pins.

Solder any two opposite ends of different wires,
either A and B* or B and A* together. Thus, from
four wire ends you are left with three wire ends.
These three wire ends are used for the inductor, as
shown in Figure C-2.

The soldered and completed circuit board is
shown in the following photograph. The connector

Appendix C ■ Illuminated LED Eye Loupe 243

*

*

A A

B B

Pin 1 Pin 2

Dumbbell-
shaped ferrite

A A*

B B*

A A*

B
B*

Pin 1

Pin 2

A

B

A*

B*

Pin 1
Pin 2

244 tinyAVR Microcontroller Projects for the Evil Genius

on the left is connected to the LED-and-resistor
arrangement of the eye loupe.

Version 3 of the Illuminated
LED Eye Loupe

The previous two versions of the illuminated LED
eye loupe provide fixed light intensity. Sometimes,
however, you may feel that the light is too bright,
and at other times you might want some extra
intensity. This version of the eye loupe will meet
those needs. The project uses an eight-pin tinyAVR
microcontroller. Tiny13 is quite suitable and
sufficient for this project, although a Tiny24 or
Tiny25 may also be used. Figure C-4 shows the
circuit diagram. The circuit is powered with a 9V
battery and uses the LP2950-5V voltage regulator
to power the microcontroller. The circuit has a

potentiometer to set the desired intensity on the
LEDs of the eye loupe. The potentiometer setting
is read by the ADC channel of the microcontroller
(pin 2) and is translated into a corresponding
PWM signal on an output pin of the
microcontroller (pin 7). This pin drives a medium-
power NPN transistor. The collector of the
transistor is connected to the …ve pin of the LED
circuit (see Figure C-1). The positive terminal of
the LED circuit is connected to the 9V battery of
the circuit. The PWM signal varies the intensity
from 100% to 0%, depending upon the setting of
the potentiometer.

The following photographs show the soldered
and completed circuit. The software for the
controller is identical to the controller used in
Project 3 (RGB LED color mixer) in Chapter 2.

Voltage

Regulator

+

Raw DC Voltage (+9V)

Vcc

Intensity
(2)

PWM
(7)

470 Ohm

2SD789

10
 K

O
h

m

Gnd (4)

Vcc (8)

−

+

Vout10
u

F 10uF

LP2950−5V

Tiny13

Circuit diagram of the microcontroller-based LED intensity control circuit for the illuminated
LED eye loupe

Figure C-4

Appendix C ■ Illuminated LED Eye Loupe 245

This page intentionally left blank

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Index

References to figures are in italics.

A

AC adapters, 14…15
address counter, 102
alkaline batteries, 12
analog comparator, 6
analog to digital converter, 6
ANSI C, vs. embedded C, 23…24, 214
architecture, 3…4

analog comparator, 6
analog to digital converter, 6
clock options, 6…7
debugWIRE on-chip debug system, 8
interrupts, 5
I/O ports, 4
memory, 4
memory programming, 8
power management and sleep modes, 7
system reset, 7
timers, 5
universal serial interface (USI), 5…6

arrays, 222
assignment operator, 216
asynchronous clock sources, 5
ATtiny13, 2
ATtiny25/45/85, 2
ATtiny261/461/861, 2
ATtiny48/88, 2
audio feedback, 169…171

fridge alarm redux, 176…178
musical toy, 185…189
RTTTL player, 178…185
tone player, 171…176

autoranging frequency counter, 82…84
AVR Studio, getting started on a project with, 21…22

B

batteries, 11…13
fruit battery, 14

batteryless electronic dice, 201…206
batteryless infrared remote, 196…201
batteryless persistence-of-vision toy, 206…211
bench vice, 20
bit banging, 101
bitwise operators, 217, 218…220
brownout reset, 7

C

C language, 20
ANSI C vs. embedded C, 23…24, 214
constants, 215…216
data types, 214…215
enumerated data types, 224
floating point types, 215
functions, 220…221
operators, 216…217

C preprocessor, 223…224
C programming

arrays, 222
efficient management of I/O ports, 217…220
header files, 220
interrupt handling, 221…222
overview, 213

C utilities, 222…224
calibrated resistor capacitor (RC) oscillator, 6
CAM.py, 232
Celsius and Fahrenheit thermometer, 80…82
Charlieplexing, 2, 65…67

vs. multiplexing LEDs, 65
CLK_ADC, 6

247

CLK_CPU, 6
CLK_FLASH, 6
CLK_I/O, 6
clock options, 6…7
Colpitts oscillator, 153, 154
const qualifier, 224
contactless tachometer, 149…153
Conway, John, 113
copper braid, 17, 18
crystal oscillator, 6

D

data memory space, 4
DDRAM, 103
debugWIRE on-chip debug system, 8
decoders, 62…63
delay.h, 220
devices, 2…3, 4
DIP packaging, 2
display data RAM. SeeDDRAM
drill machine, 19

E

EAGLE Light Edition, 225
adding new libraries, 227…228
placing the components and routing, 228
tutorial, 226…227
windows, 225…226

EEPROM memory, 4
electronic birthday blowout candles, 159…164
electronic dice, 201…206
electronic fire-free matchstick, 140…143
embedded computers, 1
enumerated data types, 224
external clock, 5, 6
external reset, 7
eye loupe, 17, 18

illuminated LED eye loupes, 239…245

F

Faraday-based generators, 16, 17, 191…192
building the Faraday generator, 194…195
experimental results and discussion, 195…196

Faraday•s law, 191
Fibonacci LFSR, 46
filter capacitor circuits, 14…15
flickering LED candle, 35…41
frequency counter, 82…84
fridge alarm, 164…167
fridge alarm redux, 176…178

fruit battery, 14
functions, 220…221

G

Galois LFSR, 36, 40…41
Game of Life, 113…116
geek clock, 84…90
GLCDs

glitches, 104…105
Nokia 3310, 100…104

graphical LCDs. SeeGLCDs

H

hardware development tools, 17…20
H-bridge, 171, 172, 176
header files, 220
high-voltage serial programming (HVSP), 8

I

illuminated LED eye loupes, 239…245
#include, 214, 223
inductive loop-based car detector and counter,

153…159
inductors, as magnetic field sensors, 131
infrared remote control devices, 196…201
in-system programming (ISP), 8
interrupt service routine (ISR), 5
interrupt.h, 220
interrupts, 5

handling, 221…222
I/O ports, 4

efficient management of, 217…220
io.h, 220

L

LCDs
Game of Life, 113…116
glitches, 104…105
overview, 99
principle of operation, 99…100
rise and shine bell, 123…128
temperature plotter, 105…109
Tengu on graphics display, 109…113
tic-tac-toe, 117…119
Zany Clock, 119…123

LDRs, 130
LED displays, 2
LED pen, 49…54
LEDs

autoranging frequency counter, 82…84

248 tinyAVR Microcontroller Projects for the Evil Genius

batteryless electronic dice, 201…206
batteryless persistence-of-vision toy, 206…211
Celsius and Fahrenheit thermometer, 80…82
Charlieplexing, 65…67
color and typical electrical and optical

characteristics, 30
controlling, 32…35
electronic birthday blowout candles, 159…164
flicker, 33
flickering LED candle, 35…41
geek clock, 84…90
LED pen, 49…54
mood lamp, 67…72
multiplexing, 55…65
overview, 29…31
random color and music generator, 45…49
reverse-bias, 131
RGB dice, 90…93
RGB LED color mixer, 41…45
RGB tic-tac-toe, 93…97
as a sensor and indicator, 131…136
as sensors, 129…130
spinning LED top with message display, 144…149
types of, 31…32
valentine•s heart LED display with proximity

sensor, 136…139
voltmeter, 76…80
VU meter with 20 LEDs, 72…76

LFSR, 36, 40…41, 45…46
light doodles, 49…54
light-dependent resistors. SeeLDRs
light-emitting diodes. SeeLEDs
liquid crystal displays. SeeLCDs
lithium batteries, 12
logical operator, 216…217
low-frequency crystal oscillator, 6

M

M3 nuts and bolts, 19
macro substitution, 223
macros

for AVR, 224
vs. functions, 224

magnetic flux, 191
Make All, 20
Make Clean, 20
Make Program, 20
MAKEFILE Template, 20…21
mathematical operators, 216
memory, 4

memory programming, 8
mood lamp, 67…72
Moore, Gordon, 1
Moore•s Law, 1
multimeter, 19
multiplexing LEDs, 55…65

vs. Charlieplexing, 65
musical toy, 185…189

N

needle-nose pliers, 19
negative temperature coefficient (NTC), 130
nippers, 19
Nokia 3310, 100…104

O

operators, 216…217

P

PCBs, 14, 225
fabricating, 228…237
making your own, 24…26
See alsoEAGLE Light Edition; Roland Modela

MDX-20 PCB milling machine
PCD8455, 101…103
pgmspace.h, 220
phase lock loop (PLL) clock, 5
phase lock loop (PLL) oscillator, 6
picoPower technology AVR microcontroller class, 3
positive temperature coefficient (PTC), 130
POV toy, 206…211
power management, 7
power sources

AC adapters, 14…15
batteries, 11…13
Faraday-based generators, 16, 17
fruit battery, 14
RF scavenging, 16…17
solar power, 16
USB, 15…16

power-on reset, 7
printed circuit boards. SeePCBs
program memory space, 4
Programmer•s Notepad, 20
projects

autoranging frequency counter, 82…84
batteryless electronic dice, 201…206
batteryless infrared remote, 196…201
batteryless persistence-of-vision toy, 206…211
Celsius and Fahrenheit thermometer, 80…82

Index 249

projects (continued)
contactless tachometer, 149…153
electronic birthday blowout candles, 159…164
electronic fire-free matchstick, 140…143
elements of, 8…11
flickering LED candle, 35…41
fridge alarm, 164…167
fridge alarm redux, 176…178
Game of Life, 113…116
geek clock, 84…90
Hello World of Microcontrollers, 26…28
inductive loop-based car detector and counter,

153…159
LED as a sensor and indicator, 131…136
LED pen, 49…54
mood lamp, 67…72
musical toy, 185…189
random color and music generator, 45…49
RGB dice, 90…93
RGB LED color mixer, 41…45
RGB tic-tac-toe, 93…97
rise and shine bell, 123…128
RTTTL player, 178…185
spinning LED top with message display, 144…149
temperature plotter, 105…109
Tengu on graphics display, 109…113
tic-tac-toe, 117…119
tone player, 171…176
valentine•s heart LED display with proximity

sensor, 136…139
voltmeter, 76…80
VU meter with 20 LEDs, 72…76
Zany Clock, 119…123

pulse width modulation
pulse width modulated (PWM) signal, 33…34
software-generated PWM, 43

R

random color and music generator, 45…49
random numbers, generating, 188
rechargeable batteries, 12…13
rectifiers, 14…15
reflective LCDs, 99…100
relational operator, 217
RF scavenging, 16…17
RGB dice, 90…93
RGB LED color mixer, 41…45
RGB LEDs, 31…32
RGB tic-tac-toe, 93…97
rise and shine bell, 123…128

Ritchie, Dennis, 23
Roland Modela MDX-20 PCB milling machine,

228…237
RTTTL player, 178…185

S

screwdriver set, 19
sensors

contactless tachometer, 149…153
electronic birthday blowout candles, 159…164
electronic fire-free matchstick, 140…143
fridge alarm, 164…167
inductive loop-based car detector and counter,

153…159
inductors as magnetic field sensors, 131
LED as a sensor and indicator, 131…136
LEDs as, 129…130
spinning LED top with message display, 144…149
valentine•s heart LED display with proximity

sensor, 136…139
serial peripheral interface (SPI), 6
shake detector, 202
silver oxide batteries, 12
sleep modes, 7
small form factor (SFF) PCs, 1
SMD packaging, 4
software development, 20…24
solar power, 16
solder iron, 17, 18
solder wire, 17, 18
spinning LED top with message display, 144…149
square waves, 170
SRAM, 2, 4
static random access memory. SeeSRAM
Steinhart-Hart equation, 80, 130
supercapacitors, 140, 141, 192, 195…196
synchronous clock sources, 5
system reset, 7

T

tachometers, 149…153
temperature plotter, 105…109
Tengu on graphics display, 109…113
thermistors, 130
thermocouple, 80
tic-tac-toe, 117…119
timers, 5
Tiny devices, 2…3, 4
Tiny form factor computers, 1
tinyAVR devices, 2…3, 4

250 tinyAVR Microcontroller Projects for the Evil Genius

tinyAVR microcontrollers, 2
tone player, 171…176
transmissive LCDs, 100
transreflective LCDs, 100
tweezers, 19
two wire interface (TWI), 6

U

universal serial interface (USI), 5…6
USB, 15

pins of the USB mini- or microconnector, 16

V

valentine•s heart LED display with proximity sensor,
136…139

volatile qualifier, 224
voltage regulators, 15

choosing the right one, 192…194
voltmeter, 76…80
VU meter with 20 LEDs, 72…76

W

watchdog oscillator, 6
watchdog reset, 7
WinAVR, 20…21

getting started on a project with, 23

Z

Zany Clock, 119…123
zinc-carbon batteries, 12

Index 251

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

	Contents
	Acknowledgments
	Introduction
	1 Tour de Tiny
	About the Book
	Atmel’s tinyAVR Microcontrollers
	tinyAVR Devices
	tinyAVR Architecture
	Elements of a Project
	Power Sources
	Hardware Development Tools
	Software Development
	Making Your Own PCB
	Project 1 Hello World! of Microcontrollers
	Conclusion

	2 LED Projects
	LEDs
	Types of LEDs
	Controlling LEDs
	Project 2 Flickering LED Candle
	Project 3 RGB LED Color Mixer
	Project 4 Random Color and Music Generator
	Project 5 LED Pen
	Conclusion

	3 Advanced LED Projects
	Multiplexing LEDs
	Charlieplexing
	Project 6 Mood Lamp
	Project 7 VU Meter with 20 LEDs
	Project 8 Voltmeter
	Project 9 Celsius and Fahrenheit Thermometer
	Project 10 Autoranging Frequency Counter
	Project 11 Geek Clock
	Project 12 RGB Dice
	Project 13 RGB Tic-Tac-Toe
	Conclusion

	4 Graphics LCD Projects
	Principle of Operation
	Nokia 3310 GLCD
	Project 14 Temperature Plotter
	Project 15 Tengu on Graphics Display
	Project 16 Game of Life
	Project 17 Tic-Tac-Toe
	Project 18 Zany Clock
	Project 19 Rise and Shine Bell
	Conclusion

	5 Sensor Projects
	LED as a Sensor
	Thermistor
	LDR
	Inductor as Magnetic Field Sensor
	Project 20 LED as a Sensor and Indicator
	Project 21 Valentine’s Heart LED Display with Proximity Sensor
	Project 22 Electronic Fire-free Matchstick
	Project 23 Spinning LED Top with Message Display
	Project 24 Contactless Tachometer
	Project 25 Inductive Loop-based Car Detector and Counter
	Project 26 Electronic Birthday Blowout Candles
	Project 27 Fridge Alarm
	Conclusion

	6 Audio Projects
	Project 28 Tone Player
	Project 29 Fridge Alarm Redux
	Project 30 RTTTL Player
	Project 31 Musical Toy
	Conclusion

	7 Alternate Energy Projects
	Choosing the Right Voltage Regulator
	Building the Faraday Generator
	Experimental Results and Discussion
	Project 32 Batteryless Infrared Remote
	Project 33 Batteryless Electronic Dice
	Project 34 Batteryless Persistence-of-Vision Toy
	Conclusion

	A: C Programming for AVR Microcontrollers
	Differences Between ANSI C and Embedded C
	Data Types and Operators
	Efficient Management of I/O Ports
	A Few Important Header Files
	Functions
	Interrupt Handling
	Arrays
	More C Utilities

	B: Designing and Fabricating PCBs
	EAGLE Light Edition
	EAGLE Windows
	EAGLE Tutorial
	Adding New Libraries
	Placing the Components and Routing
	Roland Modela MDX-20 PCB Milling Machine

	C: Illuminated LED Eye Loupe
	Version 2 of the Illuminated LED Eye Loupe
	Version 3 of the Illuminated LED Eye Loupe

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

